Report No.: LCS1605191745E

RADIO TEST REPORT

For

Fitness Band

Test Model: DW-007FIT+

Additional Model NO .: DW-009Fit+, DW-010Fit+, DW-011Fit+, DW-012Fit

+, DW-013Fit+

Prepared for Address

Prepared by Address

Tel Fax Web Mail

Date of receipt of test sample Number of tested samples Serial number Date of Test Date of Report Shenzhen LCS Compliance Testing Laboratory Ltd. 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China (+86)755-82591330 (+86)755-82591332 www.LCS-cert.com webmaster@LCS-cert.com

 \mathbf{F}

May 24, 2016

:

:

1 Prototype May 24, 2016 - June 15, 2016 June 15, 2016

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 1 of 44

Report No.: LCS1605191745E

Electromagnetic compatibility and Data transmission equipment open	RADIO TEST REPORT ETSI EN 300 328 V1.9.1 (2015-02) I Radio spectrum Matters (ERM); Wideband transmission system rating in the 2,4 GHz ISM band and using wide band modulation ng the essential requirements of article 3.2 of the R&TTE Directive
Report Reference No	: LCS1605191745E
Date of Issue	: June 15, 2016
Testing Laboratory Name	: Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Testing Location/ Procedure	 Full application of Harmonised standards Partial application of Harmonised standards Other standard testing method
Applicant's Name	B LOS LOS LOS
Address	133 135 135 135 135 135 135 135 135 135
Test Specification	Tes Tes Tes Tes
Standard	: ETSI EN 300 328 V1.9.1 (2015-02)
Test Report Form No	: LCSEMC-1.0
TRF Originator	: Shenzhen LCS Compliance Testing Laboratory Ltd.
Master TRF	: Dated 2011-03
Shenzhen LCS Compliance Testi This publication may be reproduced	ng Laboratory Ltd. All rights reserved. d in whole or in part for non-commercial purposes as long as the
Shenzhen LCS Compliance Testin This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compl assume liability for damages resulti	ng Laboratory Ltd. All rights reserved.
Shenzhen LCS Compliance Testin This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compl assume liability for damages resulti its placement and context.	ng Laboratory Ltd. All rights reserved. d in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source of liance Testing Laboratory Ltd. takes no responsibility for and will no
Shenzhen LCS Compliance Testin This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compl assume liability for damages resulti its placement and context. Test Item Description	ng Laboratory Ltd. All rights reserved. d in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source of liance Testing Laboratory Ltd. takes no responsibility for and will no ing from the reader's interpretation of the reproduced material due to
Shenzhen LCS Compliance Testin This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compl assume liability for damages resulti its placement and context. Test Item Description Trade Mark	ng Laboratory Ltd. All rights reserved. d in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source of liance Testing Laboratory Ltd. takes no responsibility for and will no ing from the reader's interpretation of the reproduced material due to : Fitness Band
Shenzhen LCS Compliance Testin This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compl assume liability for damages resulti its placement and context. Test Item Description Trade Mark Test Model	ng Laboratory Ltd. All rights reserved. d in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source of liance Testing Laboratory Ltd. takes no responsibility for and will no ing from the reader's interpretation of the reproduced material due to : Fitness Band : N/A
Shenzhen LCS Compliance Testin This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compl assume liability for damages resulti its placement and context.	ng Laboratory Ltd. All rights reserved. d in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source of liance Testing Laboratory Ltd. takes no responsibility for and will no ing from the reader's interpretation of the reproduced material due to Fitness Band N/A DW-007FIT+ DC 3.7V by Lithium ion polymer battery(100mAh)
Shenzhen LCS Compliance Testin This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compl assume liability for damages resulti its placement and context. Test Item Description Trade Mark Test Model Ratings	ng Laboratory Ltd. All rights reserved. d in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source of liance Testing Laboratory Ltd. takes no responsibility for and will no ing from the reader's interpretation of the reproduced material due to Fitness Band N/A DW-007FIT+ DC 3.7V by Lithium ion polymer battery(100mAh) Recharge Voltage: 5V/120mA
Shenzhen LCS Compliance Testing This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compl assume liability for damages resulti its placement and context. Test Item Description. Trade Mark Ratings Result	ng Laboratory Ltd. All rights reserved. d in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source of liance Testing Laboratory Ltd. takes no responsibility for and will no ing from the reader's interpretation of the reproduced material due to : Fitness Band : N/A : DW-007FIT+ : DC 3.7V by Lithium ion polymer battery(100mAh) Recharge Voltage: 5V/120mA : Positive
Shenzhen LCS Compliance Testing This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compl assume liability for damages resulti its placement and context. Test Item Description. Trade Mark Ratings Result	ng Laboratory Ltd. All rights reserved. d in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source of liance Testing Laboratory Ltd. takes no responsibility for and will no ing from the reader's interpretation of the reproduced material due to : Fitness Band : N/A : DW-007FIT+ : DC 3.7V by Lithium ion polymer battery(100mAh) Recharge Voltage: 5V/120mA : Positive

SHE

Test Model : DW-007FIT+ EUT : Fitness Band Applicant : Address : Telephone : / Fax : / Manufacturer :	
EUT : Fitness Band Applicant : Address : Telephone : / Fax : /	
Applicant : Address : Telephone : / Fax : /	
Address : Telephone : / Fax : /	165 165 165 165 165 165 165 165 165 165
Address : Telephone : / Fax : /	
Fax : /	
Fax : /	
3	
Manufacturer ·	
	Res Re
Address:	
Telephone : /	
Fax : /	
Factory	100 T.CO
Factory:	
/ Wai 055	
Telephone : /	
Fax : /	

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 3 of 44

Report No.: LCS1605191745E

Revision History

evision	Issue Date	Les F	Revisions	Revised By	65
)	June 15, 20	D16 7	The First Issue	Gavin Liang	de la
N.S.S.	600	63	ES .	ES.	20
CS.	65	S.CS	S.S.	C.C.S	12

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 4 of 44

Report No.: LCS1605191745E

TABLE OF CONTENTS

Test Report Description

1. GENERAL INFORMATION			7
1.1. PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TES	т (EUT)	6.2.2	7
1.2. OBJECTIVE			
1.3. RELATED SUBMITTAL(S)/GRANT(S)			
1.4. Test Methodology			
1.5. DESCRIPTION OF TEST FACILITY 1.6. SUPPORT EQUIPMENT LIST			8
1.0. SUPPORT EQUIPMENT LIST 1.7. External I/O			
1.7. EXTERNAL I/O 1.8. LIST OF MEASURING EQUIPMENT			
1.9. MEASUREMENT UNCERTAINTY			
1.9. Test Environment			
1.10. DESCRIPTION OF TEST MODES	<u>92</u>		10
2. SYSTEM TEST CONFIGURATION			
2.1. JUSTIFICATION			11
2.2. EUT EXERCISE SOFTWARE			
2.3. SPECIAL ACCESSORIES			
2.4. BLOCK DIAGRAM/SCHEMATICS			
2.5. EQUIPMENT MODIFICATIONS			
2.6. CONFIGURATION OF TEST SETUP			
3. SUMMARY OF TEST RESULT			
4. RF OUTPUT POWER			
4.1. Limit			
4.2. Test Setup			
4.3. TEST PROCEDURE			
4.4. Test Result			
5. POWER SPECTRAL DENSITY			
5.1. Liмit			
5.2. TEST SETUP			
5.3. TEST PROCEDURE			
5.5. Test Result			
6. DUTY CYCLE, TX-SEQUENCE, TX-GAP			
6.1. Liмit			
6.2. TEST SETUP			
6.3. TEST PROCEDURE			
6.4. Test Result			
7. MEDIUM UTILISATION (MU) FACTOR			
7.1. LIMIT			
7.2. TEST SETUP			
7.3. TEST PROCEDURE 7.4. TEST RESULT			
8. ADAPTIVITY (ADAPTIVE EQUIPMENT USING MC			
8.1. LIMIT.			
8.1. LIMIT			
8.3. TEST PROCEDURE			
8.4. TEST RESULT			
9. OCCUPIED CHANNEL BANDWIDTH			
9.1. LIMIT			
9.2. TEST SETUP			
9.3. Test Procedure			
9.4. Test Result	12.55	160	23

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 5 of 44

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	Report No.: LCS16051917451
10.1. Limit	
10.2. Test Setup	
10.3. Test Procedure	
10.4. Test Result	
11. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS	
11.1. Liмit	
11.2. Test Setup	
11.3. Test Procedure	
11.4. Test Result	
12. RECEIVER SPURIOUS EMISSIONS	
12.1. Limit	
12.2. Test Setup	
12.3. Test Procedure	
12.4. Test Result	
13. RECEIVER BLOCKING	
13.1. Limit	
13.2. Test Setup	
13.3. Test Procedure	
13.4. Test Result	
14. PHOTOGRAPHS OF TEST SETUP	
15 FUT DUOTOCD ADUS	37

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 6 of 44

Report No.: LCS1605191745E

1. GENERAL INFORMATION

1.1. Product Description for Equipment Under Test (EUT)

EUT	: Fitness Band
Test Model	: DW-007FIT+
Power Supply	: DC 3.7V by Lithium ion polymer battery(100mAh)
	Recharged by DC 5V/120mA Adapter
Hardware Version	: V1.0
Software Version	: V1.0
Bluetooth	:
Frequency Range	: 2.402-2.480GHz
Channel Number	: 40 channels for Bluetooth V4.0 (DTS)
Channel Spacing	: 2MHz for Bluetooth V4.0 (DTS)
Modulation Type	: GFSK for Bluetooth V4.0 (DTS)
Bluetooth Version	: V4.0
Antenna Description	: FPC Antenna, 2.41dBi(Max.)

DIT AGATI			
DW-009Fit+	DW-010Fit+	DW-011Fit+	DW-012Fit+
DW-013Fit+	~ CS - ~	2S - 28	2 03

models were tested.

1.2. Objective

This Type approval report is prepared on behalf of **DIGILINK GROUP CO.,LTD.** in accordance with ETSI EN 300 328 V1.9.1 (2015-02), Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive.

The objective is to determine compliance with ETSI EN 300 328 V1.9.1 (2015-02).

1.3. Related Submittal(s)/Grant(s)

No Related Submittals.

1.4. Test Methodology

All measurements contained in this report were conducted with ETSI EN 300 328 V1.9.1 (2015-02).

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 7 of 44

Report No.: LCS1605191745E

1.5. Description of Test Facility

CNAS Registration Number. is L4595.
FCC Registration Number. is 899208.
Industry Canada Registration Number. is 9642A-1.
VCCI Registration Number. is C-4260 and R-3804.
ESMD Registration Number. is ARCB0108.
UL Registration Number. is 100571-492.
TUV SUD Registration Number. is SCN1081.
TUV RH Registration Number. is UA 50296516-001

1.6. Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
- 130		- 63	3	6.03

1.7. External I/O

I/O Port Description 	Quantity 		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 8 of 44

Report No.: LCS1605191745E

.8. List Of Measurin Description	Manufacturer	Model	Serial Number	Cal. Date	Due Date
X-series USB Peak and Average Power Sensor Agilent	S. CS	U2021XA	MY54080022	2015/11/09	2016/11/08
4 Ch.Simultaneous Sam pling 14 Bits 2 MS/s	Agilent	U2531A	MY54080016	2015/11/09	2016/11/08
Test Software	Ascentest	AT890-SW	20141230	2015/12/30	2016/12/29
MXA Signal Analyzer	Agilent	N9020A	MY50510140	2015/10/27	2016/10/26
Vector Signal Generator	Agilent	E4438C	MY42081396	2015/11/28	2016/11/27
Vector Signal Generator	Agilent	N5182A	MY47071151	2015/11/28	2016/11/27
10dB Coaxial Coupler	Agilent	87300C	MY44300299	2016/03/27	2017/03/26
Temperature/Humidity Meter	zhicheng	ZC1-2	TR8-TH	2016/05/07	2017/05/06
Splitter /Combiner (Qty: 2)	Mini-Circuits	ZAPD-50W 4.2-6.0 GHz	NN256400424	2016/03/27	2017/03/26
Splitter/Combine (Qty: 2)	MCLI	PS3-7	4463/4464	2016/03/27	2017/03/26
ATT (Qty: 1)	Mini-Circuits	VAT-30+	30912	2016/03/27	2017/03/26
RF Cable (Qty: 6)	Mini-Circuits	N/A	DFS-1~6	2016/03/27	2017/03/26
DC Power Supply	IDRC	CD-035-020PR	977272	2015/09/15	2016/09/14
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2015/06/18	2016/06/17
Amplifier	SCHAFFNER	COA9231A	18667	2015/06/18	2016/06/17
Amplifier	Agilent	8449B	3008A02120	2015/06/16	2016/06/15
Amplifier	MITEQ	AMF-6F-260400	9121372	2015/06/16	2016/06/15
Spectrum Analyzer	Agilent	E4407B	MY41440292	2015/06/16	2016/06/15
Signal analyzer	Agilent	E4448A(Externa l mixers to 40GHz)	US44300469	2015/06/16	2016/06/15
Loop Antenna	R&S	HFH2-Z2	860004/001	2015/06/18	2016/06/17
By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2016/06/10	2017/06/09
Horn Antenna	EMCO	3115	6741	2016/06/10	2017/06/09
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	2016/06/10	2017/06/09
RF Cable-R03m	Jye Bao	RG142	CB021	2015/06/18	2016/06/17
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2015/06/18	2016/06/17
Signal Generator	R&S	SMR40	10016	2015/06/16	2016/06/15

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 9 of 44

Report No.: LCS1605191745E

1.9. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

on the apparatus.	
Parameter	Uncertainty
Occupied Channel Bandwidth	5 %
RF output power, conducted	1,5 dB
Power Spectral Density, conducted	3 dB
Unwanted Emissions, conducted	3 dB
All emissions, radiated	6 dB
Temperature	1 °C
Humidity	5 %
DC and low frequency voltages	3 %
Time	5 %
Duty Cycle	5 %

1.9. Test Environment

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	21
Humidity (%RH)	25-75	50
Barometric pressure (mbar)	860-1060	950-1000

1.10. Description Of Test Modes

LCS has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode				
Mode1: Transmit by BLE	Bang	Rea	Bas	150
Mode2: Receive by BLE	1900	1.00	CS1	1 GE
Neter	. 20	- 12 S	5 23	10 2

Note:

- (1) For portable device, radiated spurious emission was verified over X, Y, Z Axis, and shown the worst case on this report.
- (2) Regard to the frequency band operation for systems using Wide Band modulation: the lowest, middle, highest frequency channel for conducted test, and the lowest, highest frequency channel for radiation spurious test.
- (3) The extreme test condition for voltage and temperature were declared by the manufacturer.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 10 of 44

Report No.: LCS1605191745E

2. SYSTEM TEST CONFIGURATION

2.1. Justification

The system was configured for testing in engineering mode.

2.2. EUT Exercise Software

N/A.

2.3. Special Accessories

N/A.

2.4. Block Diagram/Schematics

Please refer to the related document.

2.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

2.6. Configuration of Test Setup

Please refer to the test setup photo.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 11 of 44

Report No.: LCS1605191745E

3. SUMMARY OF TEST RESULT

 \boxtimes No deviations from the test standards

Deviations from the test standards as below description:

Technical requirements for the equipment using wide band modulations other than FHSS:

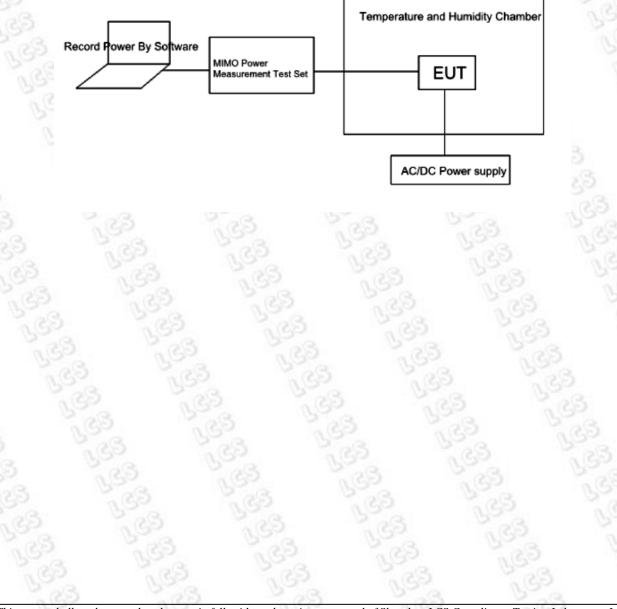
Performed Test Item	Normative References	Test Performed	Deviation
RF Output Power	ETSI EN 300 328 V1.9.1 (2015-02)	Yes	No
Power Spectral Density	ETSI EN 300 328 V1.9.1 (2015-02)	Yes	No
Duty cycle, Tx-Sequence, Tx-gap	ETSI EN 300 328 V1.9.1 (2015-02)	N/A	N/A
Medium Utilisation (MU) factor	ETSI EN 300 328 V1.9.1 (2015-02)	N/A	N/A
Adaptivity	ETSI EN 300 328 V1.9.1 (2015-02)	N/A	N/A
Occupied Channel Bandwidth	ETSI EN 300 328 V1.9.1 (2015-02)	Yes	No
Transmitter unwanted emissions in the out-of-band domain	ETSI EN 300 328 V1.9.1 (2015-02)	Yes	No
Transmitter unwanted emissions in the spurious domain	ETSI EN 300 328 V1.9.1 (2015-02)	Yes	No
Receiver Spurious Emissions	ETSI EN 300 328 V1.9.1 (2015-02)	Yes	No
Receiver Blocking	ETSI EN 300 328 V1.9.1 (2015-02)	N/A	N/A

Note: The EUT can operate in an adaptive mode, and can't operate in a non-adaptive mode which is stated by the supplier.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 12 of 44

4. RF OUTPUT POWER

4.1. Limit


For adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be 20 dBm.

The maximum RF output power for non-adaptive equipment shall be declared by the supplier and shall not exceed 20 dBm. For non-adaptive equipment using wide band modulations other than FHSS, the maximum RF output power shall be equal to or less than the value declared by the supplier.

This limit shall apply for any combination of power level and intended antenna assembly.

4.2. Test Setup

For Conducted Measurement

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 13 of 44

4.3. Test Procedure

Refer to ETSI EN 300 328 V1.9.1 (2015-02) Clause 5.3.2

Step 1:

• The fast power sensor use the following setting: Sample speed 1 MS/s.

Step 2:

• Connect the power sensor to the transmit port, sample the transmit signal and store the raw data.Use these stored samples in all following steps.

Step 3:

• Find the start and stop times of each burst in the stored measurement samples.

Step 4:

• Between the start and stop times of each individual burst calculate the RMS power over the burst. Save these Pburst values, as well as the start and stop times for each burst.

Step 5:

• The highest of all Pburst values (value "A" in dBm) will be used for maximum e.i.r.p. calculations.

Step 6:

- Add the (stated) antenna assembly gain "G" in dBi of the individual antenna.
- If applicable, add the additional beamforming gain "Y" in dB.

The RF Output Power (P) shall be calculated using the formula below: P = A + G + Y

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 14 of 44

Report No.: LCS1605191745E

4.4. Test Result

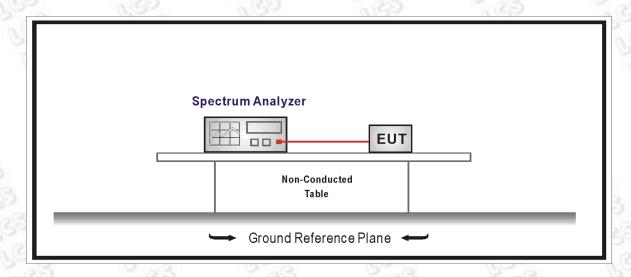
Pass

***Note: 20 bursts had been captured for power measurement.

:	Fitness Band		
:	RF Output Power	5 29	3
:	Mode 1: Transmit by BLE	3 32	B Bo
	:	: Fitness Band : RF Output Power : Mode 1: Transmit by BLE	: RF Output Power

Test Conditions		Frequency (MHz)	RF Output Power EIRP (dBm)	Limit (dBm)
1 CED	1 CS	2402	0.35	LeS.
Tnom (25°C)	Vnom (DC 3.7V)	2440	0.47	20
LGE C	(DC 3.7V)	2480	0.59	
R.C.	9	2402	0.18	63
Tmax (40°C)	Vmax	2440	0.28	20
0	(DC 4.1V)	2480	0.40	
50	LGS.	2402	0.13	3
Tmax (40°C)	$0^{\circ}C)$ Vmin (DC 2 20)	2440	0.28	20
RED	(DC 3.3V)	2480	0.41	
Pas	Res	2402	0.17	63
Tmin (-20°C)	Vmax (DC 4.1V)	2440	0.24	20
Res	(DC 4.1V)	2480	0.38	
Res	8 N	2402	0.16	n CS
Tmin (-20°C)	Vmin (DC 3.3V)	2440	0.30	20
9 8	(DC 3.5V)	2480	0.41	5 6

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 15 of 44


Report No.: LCS1605191745E

5. POWER SPECTRAL DENSITY

5.1. Limit

For equipment using wide band modulations other than FHSS, the maximum Power Spectral Density is limited to 10dBm per MHz.

5.2. Test Setup

5.3. Test Procedure

Refer to ETSI EN 300 328 V1.9.1 (2015-02) Clause 5.3.3

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

- Start Frequency: 2 400 MHz
- Stop Frequency: 2 483,5 MHz
- Resolution BW: 10 kHz
- Video BW: 30 kHz
- Sweep Points: > 8 350
- Detector: RMS
- Trace Mode: Max Hold
- Sweep time: Auto

For non-continuous signals, wait for the trace to be completed. Save the (trace) data set to a file.

Step 2:

For each frequency point, add up the amplitude (power) values for the different transmit chains and use this as the new data set.

Step 3:

Add up the values for amplitude (power) for all the samples in the file.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 16 of 44

Step 4:

Normalize the individual values for amplitude so that the sum is equal to the RF Output Power (e.i.r.p.).

Step 5:

Starting from the first sample in the file (lowest frequency), add up the power of the following samples representing a 1 MHz segment and record the results for power and position (i.e. sample #1 to #100). This is the Power Spectral Density (e.i.r.p.) for the first 1 MHz segment which shall be recorded.

Step 6:

Shift the start point of the samples added up in step 5 by 1 sample and repeat the procedure in step 5 (i.e. sample #2 to #101).

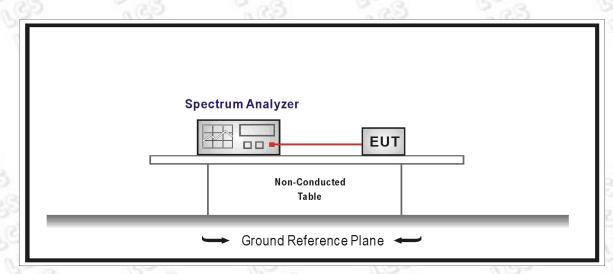
Step 7:

Repeat step 6 until the end of the data set and record the radiated Power Spectral Density values for each of the 1 MHz segments. From all the recorded results, the highest value is the maximum Power Spectral Density for the UUT.

5.5. Test Result

Product	:	Fitness Band	.23
Test Item	:	Maximum Spectral Power Density	i cS
Test Mode	:	Mode 1: Transmit by BLE	S Sas

Frequency (MHz)	Total Power Density (dBm/MHz)	Limit (dBm/MHz)
2402	-13.83	10.00
2440	-13.56	10.00
2480	-13.44	10.00


Report No.: LCS1605191745E

6. DUTY CYCLE, TX-SEQUENCE, TX-GAP

6.1. Limit

The Duty Cycle shall be equal to or less than the maximum value declared by the supplier. The Tx-sequence time shall be equal to or less than 10 ms. The minimum Tx-gap time following a Tx-sequence shall be equal to the duration of that proceeding Tx-sequence with a minimum of 3,5 ms.

6.2. Test Setup

6.3. Test Procedure

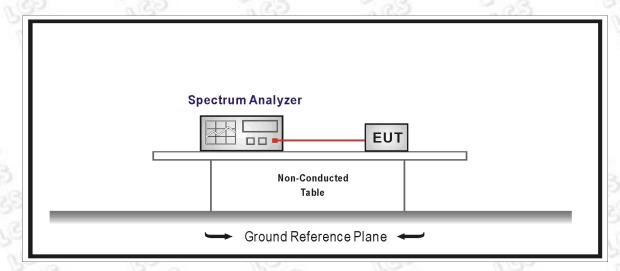
Refer to ETSI EN 300 328 V1.9.1 (2015-02) Clause 5.3.2

6.4. Test Result

These requirements apply to non-adaptive equipment or to adaptive equipment when operating in a non-adaptive mode. The equipment is using wide band modulations other than FHSS. These requirements do not apply for equipment with a maximum declared RF Output power of less than 10dBm E.I.R.P. or for equipment when operating in a mode where the RF Output power is less than 10dBm E.I.R.P.

No applicable.

Report No.: LCS1605191745E


7. MEDIUM UTILISATION (MU) FACTOR

7.1. Limit

For non-adaptive equipment

For non-adaptive equipment using wide band modulations other than FHSS, the maximum Medium Utilization factor shall be 10 %.

7.2. Test Setup

7.3. Test Procedure

Refer to ETSI EN 300 328 V1.9.1 (2015-02) Clause 5.3.2

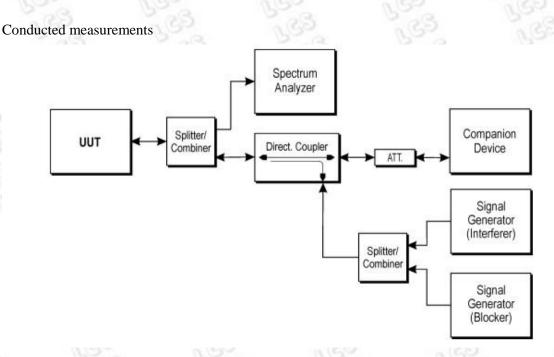
7.4. Test Result

This requirement does not apply to adaptive equipment unless operating in a non-adaptive mode. In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10dBm E.I.R.P. or for equipment when operating in a mode where the RF Output power is less than 10dBm E.I.R.P.

No applicable.

8. ADAPTIVITY (ADAPTIVE EQUIPMENT USING MODULATIONS OTHER

THAN FHSS)


8.1. Limit

Adaptivity Limit

- Non-LBT based Detect and Avoid
- --- The channel shall remain unavailable for a minimum time equal to 1 s after which the channel may be considered again as an 'available' channel;
- --- COT \leq 40 ms;
- --- Idle Period shall be minimum 5% of COT with a minimum of 100us;
- --- Detection threshold level = -70dBm/MHz + (20dBm Pout e.i.r.p)/1MHz (Pout in dBm);
- LBT based Detect and Avoid(Frame Based Equipment)
- --- The CCA observation time shall be not less than 18 us;
- --- COT = 1-10 ms;
- --- Idle Period = 5% of COT;
- --- Detection threshold level = -70dBm/MHz + (20dBm Pout e.i.r.p)/1MHz (Pout in dBm);
- LBT based Detect and Avoid(Load Based Equipment)
- --- The CCA observation time shall be not less than 18 us;
- -- COT \leq 13 ms;
- --- Detection threshold level = -70dBm/MHz + (20dBm Pout e.i.r.p)/1MHz (Pout in dBm);
- Short Control Signalling Transmissions:
- --- Short Control Signalling Transmissions shall have have a maximum TxOn / (TxOn + TxOff) ratio of 10 % within any observation period of 50 ms.

Report No.: LCS1605191745E

8.2. Test Setup

8.3. Test Procedure

Refer to ETSI EN 300 328 V1.9.1 (2015-02) Clause 5.3.7

8.4. Test Result

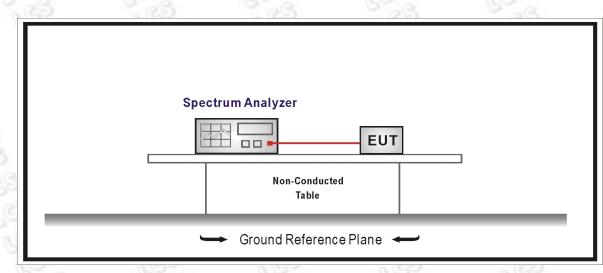
This requirement does not apply to non-adaptive equipment or adaptive equipment operating in a non-adaptive mode providing the equipment complies with the requirements and/or restrictions applicable to non-adaptive equipment.

In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10dBm E.I.R.P. or for equipment when operating in a mode where the RF Output power is less than 10dBm E.I.R.P.

No applicable.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 21 of 44

Report No.: LCS1605191745E


9. OCCUPIED CHANNEL BANDWIDTH

9.1. Limit

The Occupied Channel Bandwidth shall fall completely within the band given in 2.4GHz to 2.4835GHz.

In addition, for non-adaptive systems using wide band modulations other than FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz.

9.2. Test Setup

9.3. Test Procedure

Refer to ETSI EN 300 328 V1.9.1 (2015-02) Clause 5.3.8

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

- Centre Frequency: The centre frequency of the channel under test
- Resolution BW: ~ 1 % of the span without going below 1 % (We set RBW= 20KHz)
- Video BW: $3 \times RBW$ (We set RBW= 62KHz)
- Frequency Span: 2 × Occupied Channel Bandwidth (e.g. 40 MHz for a 20 MHz channel)
- Detector Mode: RMS
- Trace Mode: Max Hold

Step 2:

Wait until the trace is completed. Find the peak value of the trace and place the analyser marker on this peak.

Step 3:

Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 22 of 44

Report No.: LCS1605191745E

9.4. Test Result

Product		Fitness Band	ES .	63
Test Item	:	Occupied Channel Bandwidth	NGS .	CS)
Test Mode	:	Mode 1: Transmit by BLE	BGS	LCS)
Test Result	:	Pass	Bee	1G

2	Channel No.	Frequency (MHz)	99% Bandwidth (MHz)	Limit
	00	2402	1.02	Within the band
	39	2480	1.03	2400.0MHz~2483.5MHz

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 23 of 44

Report No.: LCS1605191745E

10. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

10.1. Limit

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 3.

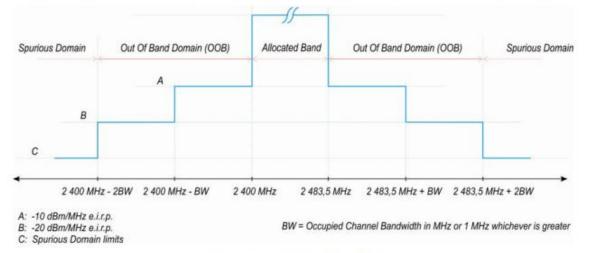
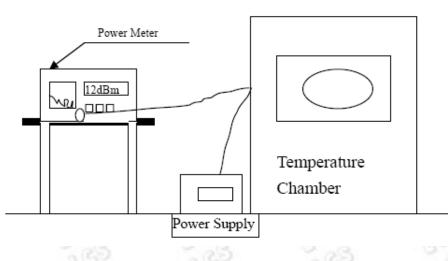



Figure 3: Transmit mask

Note: All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

10.2. Test Setup

For Conducted Measurement

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 24 of 44

Report No.: LCS1605191745E

10.3. Test Procedure

Refer to ETSI EN 300 328 V1.9.1 (2015-02) Clause 5.3.9

Step 1:

- Connect the UUT to the spectrum analyser and use the following settings:
- Centre Frequency: 2 484 MHz
- Span: 0 Hz
- Resolution BW: 1 MHz
- Filter mode: Channel filter
- Video BW: 3 MHz
- Detector Mode: RMS
- Trace Mode: Clear / Write
- Sweep Mode: Continuous
- Sweep Points: Sweep Time [s] / (1 µs) or 5 000 whichever is greater
- Trigger Mode: Video trigger
- NOTE 1: In case video triggering is not possible, an external trigger source may be used.
- Sweep Time: > 120 % of the duration of the longest burst detected during the measurement of the RF Output Power

Step 2: (segment 2 483,5 MHz to 2 483,5 MHz + BW)

- Adjust the trigger level to select the transmissions with the highest power level.
- For frequency hopping equipment operating in a normal hopping mode, the different hops will result in signal bursts with different power levels. In this case the burst with the highest power level shall be selected.
- Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power shall be measured using the Time Domain Power function.
- Select RMS power to be measured within the selected window and note the result which is the RMS power within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with the applicable limit provided by the mask.
- Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + BW 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 3: (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)

• Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW - 0,5 MHz.

Step 4: (segment 2 400 MHz - BW to 2 400 MHz)

• Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 25 of 44

Step 5: (segment 2 400 MHz - 2BW to 2 400 MHz - BW)

• Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz.

Step 6:

• In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figures 1 or 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.

• In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:

- Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain "Y" in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figures 1 or 3.

- Option 2: the limits provided by the mask given in figures 1 or 3 shall be reduced by 10 x log10(Ach) and the additional beamforming gain "Y" in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.

NOTE 2: Ach refers to the number of active transmit chains.

It shall be recorded whether the equipment complies with the mask provided in figures 1 or 3.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 26 of 44

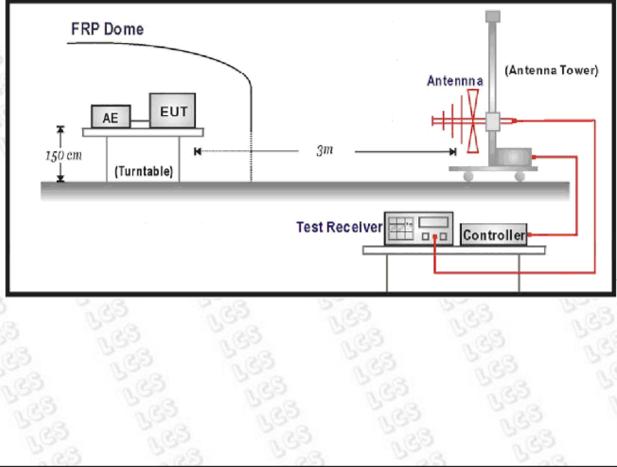
Report No.: LCS1605191745E

10.4. Test Result

Product :	Fitness Band		
Test Item :	Transmitter unwanted em	nissions in the out-of-band d	lomain
Test Mode :	Mode 1: Transmit by BL	E	Sag B
S Sec	3 53	503	Bag B
Frequency (MHz)	Test Conditions (℃)	Max measured Values (dBm/MHz)	Limit (dBm/MHz)
2400–2BW~ 2400-BW	25	-68.54	-20
2400-BW~2400	25	-68.84	-10
2483.5~ 2483.5+BW	25	-66.59	-10
2483.5+BW~ 2483.5+2BW	25	-68.32	-20
2400–2BW~ 2400-BW	-20	-68.64	-20
2400–BW~2400	-20	-68.42	-10
2483.5~ 2483.5+BW	-20	-68.40	-10
2483.5+BW~ 2483.5+2BW	-20	-67.89	-20
2400–2BW~ 2400-BW	40	-68.75	-20
2400–BW~2400	40	-68.17	-10
2483.5~ 2483.5+BW	40	-67.49	-10
2483.5+BW~ 2483.5+2BW	40	-68.79	-20

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 27 of 44

Report No.: LCS1605191745E


11. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

11.1. Limit

Transmitter Limits for Spurious Emissions					
	Maximum power				
Frequency Range	E.R.P. (≤1GHz)	Bandwidth			
	E.I.R.P. (> 1GHz)				
30 MHz to 47 MHz	-36 dBm	100 kHz			
47 MHz to 74 MHz	-54 dBm	100 kHz			
74 MHz to 87,5 MHz	-36 dBm	100 kHz			
87,5 MHz to 118 MHz	-54 dBm	100 kHz			
118 MHz to 174 MHz	-36 dBm	100 kHz			
174 MHz to 230 MHz	-54 dBm	100 kHz			
230 MHz to 470 MHz	-36 dBm	100 kHz			
470 MHz to 862 MHz	-54 dBm	100 kHz			
862 MHz to 1 GHz	-36 dBm	100 kHz			
1 GHz to 12,75 GHz	-30 dBm	1 MHz			

11.2. Test Setup

For Radiated Measurement

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 28 of 44

Report No.: LCS1605191745E

11.3. Test Procedure

Refer to ETSI EN 300 328 V1.9.1 (2015-02) Clause 5.3.10

Step 1:

The sensitivity of the spectrum analyser should be such that the noise floor is at least 12 dB below the limits given in tables 1 or 4.

Step 2:

The emissions over the range 30 MHz to 1 000 MHz shall be identified. Spectrum analyser settings:

- Resolution bandwidth: 100 kHz
- Video bandwidth: 300 kHz
- Detector mode: Peak
- Trace Mode: Max Hold
- Sweep Points: \geq 19400

NOTE 1: For spectrum analysers not supporting this high number of sweep points, the frequency band may need to be segmented.

• Sweep time: For non continuous transmissions (duty cycle less than 100 %), the sweep time shall be sufficiently long, such that for each 100 kHz frequency step, the measurement time is greater than two transmissions of the UUT. For Frequency Hopping equipment operating in a normal operating (hopping not disabled) mode, the sweep time shall be further increased to capture multiple transmissions on the same hopping frequency in different hopping sequences. Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.10.2.1.3 and compared to the limits given in tables 1 or 4.

Step 3:

The emissions over the range 1 GHz to 12,75 GHz shall be identified.

Spectrum analyser settings:

- Resolution bandwidth: 1 MHz
- Video bandwidth: 3 MHz
- Detector mode: Peak
- Trace Mode: Max Hold
- Sweep Points: ≥ 23500

NOTE 2: For spectrum analysers not supporting this high number of sweep points, the frequency band may need to be segmented.

• Sweep time: For non continuous transmissions (duty cycle less than 100 %), the sweep time shall be sufficiently long, such that for each 1 MHz frequency step, the measurement time is greater than two transmissions of the UUT.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 29 of 44

Report No.: LCS1605191745E

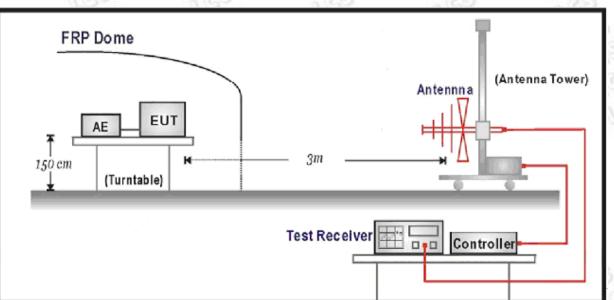
11.4. Test Result

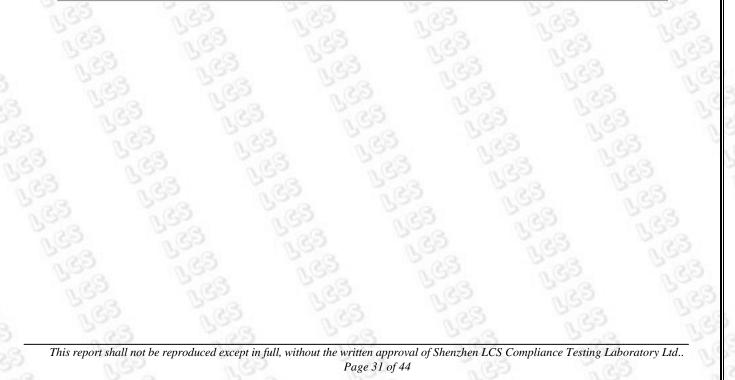
Product	:	Fitness Band	n.Co	CS.
Test Item	:	Transmitter spurious emissions	CS n	630
Test Mode	:	Mode 1: Transmit by BLE	Es	2.29
5	35	13 33	5 PS	Pro-

Frequency	Polarization	Measure Level	Limit	Margin	Detector
(MHz)	(H/V)	(dBm)	(dBm)	(dB)	l,
25	2.63	Channel 0 (2402	2MHz)	Po	2
165.2	Н	-85.0	-36	-49.0	PK
60.7	V	-79.9	-54	-25.9	PK
919.9	Н	-73.9	-36	-37.9	РК
912.6	V	-68.2	-36	-32.2	РК
4806.4	H CS	-51.7	-30	-21.7	РК
4806.1	V	-63.3	-30	-33.3	РК
7203.6	Н	-57.3	-30	-27.3	РК
7201.2	e V	-58.4	-30	-28.4	PK
s Ra	ia S	Channel 39 (248	0MHz)	LGD	0
164.7	Н	-82.0	-36	-46.0	PK
62.1	V	-83.3	-54	-29.3	PK
920.4	Н	-73.3	-36	-37.3	PK
912.5	V	-71.1	-36	-35.1	PK
4956.8	Н	-53.5	-30	-23.5	PK
4963.1	V	-64.3	-30	-34.3	РК
7442.1	Н	-56.7	-30	-26.7	РК
7435.8	V	-52.7	-30	-22.7	PK

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 30 of 44

Report No.: LCS1605191745E


12. RECEIVER SPURIOUS EMISSIONS


12.1. Limit

Spurious emissions limits for receivers				
	Maximum power			
Frequency Range	E.R.P. (≤ 1GHz)	Measurement bandwidth		
	E.I.R.P. (> 1GHz)			
30 MHz to 1 GHz	-57 dBm	100 kHz		
1 GHz to 12.75 GHz	-47 dBm	1 MHz		

12.2. Test Setup

For Radiated Measurement

Report No.: LCS1605191745E

12.3. Test Procedure

Refer to ETSI EN 300 328 V1.9.1 (2015-02) Clause 5.3.11

Step 1:

The sensitivity of the spectrum analyser should be such that the noise floor is at least 12 dB below the limits given in tables 2 or 5.

Step 2:

The emissions over the range 30 MHz to 1 000 MHz shall be identified. Spectrum analyser settings:

- Resolution bandwidth: 100 kHz
- Video bandwidth: 300 kHz
- Detector mode: Peak
- Trace Mode: Max Hold
- Sweep Points: \geq 19400
- Sweep time: Auto

Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.11.2.1.3 and compared to the limits given in tables 2 or 5.

Step 3:

The emissions over the range 1 GHz to 12,75 GHz shall be identified.

Spectrum analyser settings:

- Resolution bandwidth: 1 MHz
- Video bandwidth: 3 MHz
- Detector mode: Peak
- Trace Mode: Max Hold
- Sweep Points: ≥ 23500
- Sweep time: Auto

Allow the trace to stabilize. Any emissions identified during the sweeps above that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.11.2.1.3 and compared to the limits given in tables 2 or 5. Frequency Hopping equipment may generate a block (or several blocks) of spurious emissions anywhere within the spurious domain. If this is the case, only the highest peak of each block of emissions shall be measured using the procedure in clause 5.3.11.2.1.3.

Step 4:

• In case of conducted measurements on smart antenna systems (equipment with multiple receive chains), the steps 2 and 3 need to be repeated for each of the active receive chains (Ach). The limits used to identify emissions during this pre-scan need to be reduced with $10 \times \log 10$ (Ach) (number of active receive chains).

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 32 of 44

Report No.: LCS1605191745E

12.4. Test Result

Product	:	Fitness Band	LGD	13
Test Item	:	Receiver spurious emissions	CS I	G2D
Test Mode	:	Mode 2: Receive by BLE	Es.	128
5	3	13 S.B	Es.	50

Frequency (MHz)	Polarization (H/V)	Measure Level (dBm)	Limit (dBm)	Margin (dB)	Detector
23	S'aS	Channel 0 (2402	2MHz)	Pa	ie.
164.8	Н	-84.0	-57	-27.0	PK
62.2	V	-82.6	-57	-25.6	PK
921.1	Н	-74.8	-57	-17.8	PK
911.7	V	-68.4	-57	-11.4	PK
1251.9	H	-73.7	-47	-26.7	РК
1165.6	V	-68.1	-47	-21.1	РК
2339.8	H	-64.0	-47	-17.0	РК
2116.9	e V	-66.1	-47	-19.1	РК
s Ba	2	Channel 39 (248	OMHz)	LGD	0
164.4	Н	-81.9	-57	-24.9	РК
61.7	V	-85.1	-57	-28.1	PK
919.6	Н	-74.7	-57	-17.7	PK
913.4	V	-70.4	-57	-13.4	РК
1262.4	Н	-72.0	-47	-25.0	PK
1211.7	V	-69.5	-47	-22.5	РК
2084.4	Н	-64.8	-47	-17.8	РК
2154.1	V	-67.2	-47	-20.2	PK

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 33 of 44

Report No.: LCS1605191745E

13. RECEIVER BLOCKING

13.1. Limit

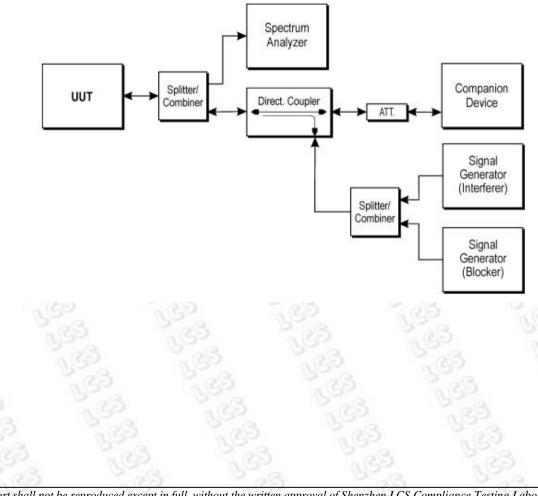

Adaptive equipment using wide band modulations other than FHSS, shall comply with the requirements defined in clause 4.3.2.6.2 (non-LBT based DAA) or clause 4.3.2.6.3 (LBT based DAA) in the presence of a blocking signal with characteristics as provided in table 6.

Table 6: Receiver Blocking parameters

Equipment Type (LBT / non- LBT)	Wanted signal mean power from companion device	Blocking signal frequency [MHz]	Blocking signal power [dBm]	Type of interfering signal	
LBT	sufficient to maintain the link (see note 2)	2 395 or 2 488,5 (see note 1)	-35 CW		
Non-LBT	-30 dBm	(See Hole T)			
NOTE 1: The highest blocking frequency shall be used for testing operating channels within the range					
2 400 MHz to 2 442 MHz, while the lowest blocking frequency shall be used for testing operating					
channels within the range 2 442 MHz to 2 483,5 MHz. See clause 5.3.7.1.					
NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz.					

13.2. Test Setup

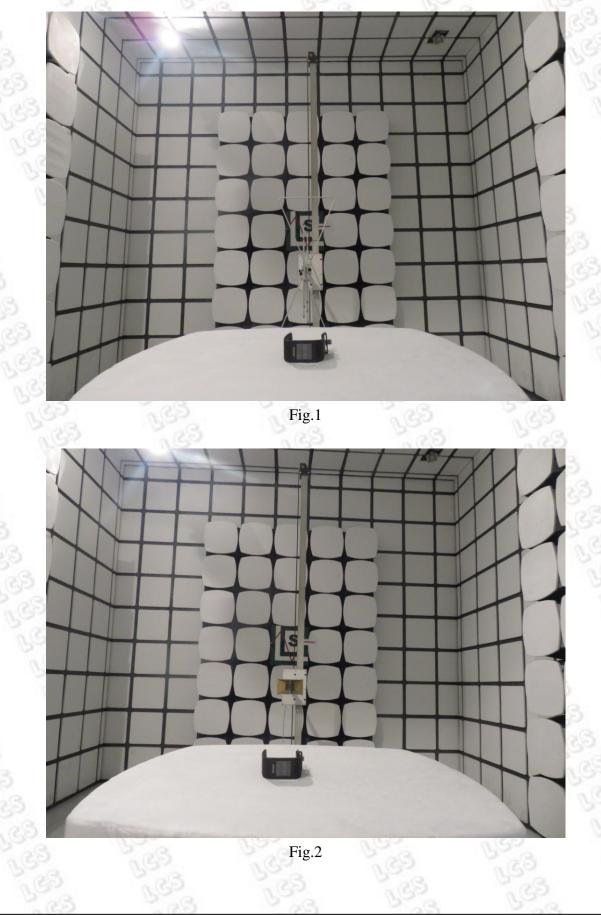
Conducted measurements

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 34 of 44

13.3. Test Procedure

Refer to ETSI EN 300 328 V1.9.1 (2015-02) Clause 5.3.7

13.4. Test Result


This requirement does not apply for equipment with a maximum declared RF Output power level of less than 10dBm E.I.R.P. or for equipment when operating in a mode where the RF Output power is less than 10dBm E.I.R.P.

The RF Output power level of this equipment is less than 10dBm, so this item does not need to test. No applicable.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 35 of 44

Report No.: LCS1605191745E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 36 of 44

Report No.: LCS1605191745E

15.EUT PHOTOGRAPHS

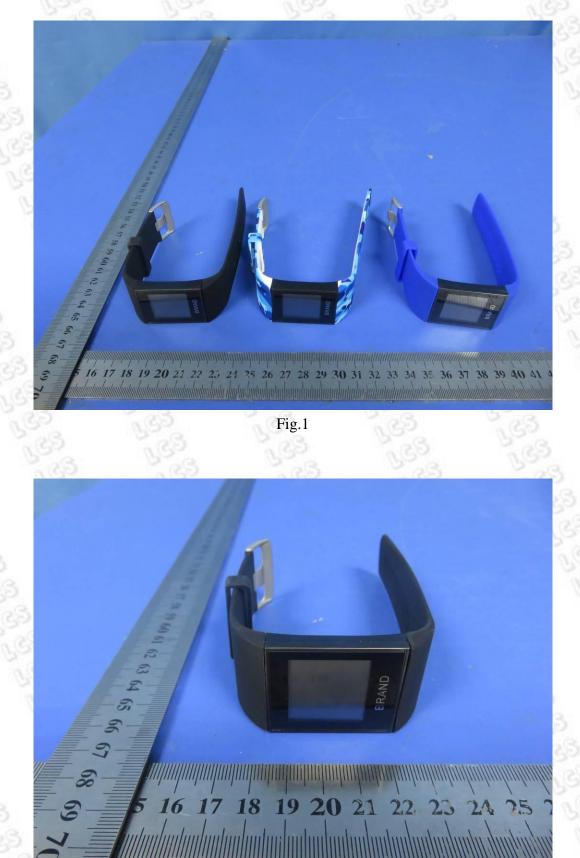
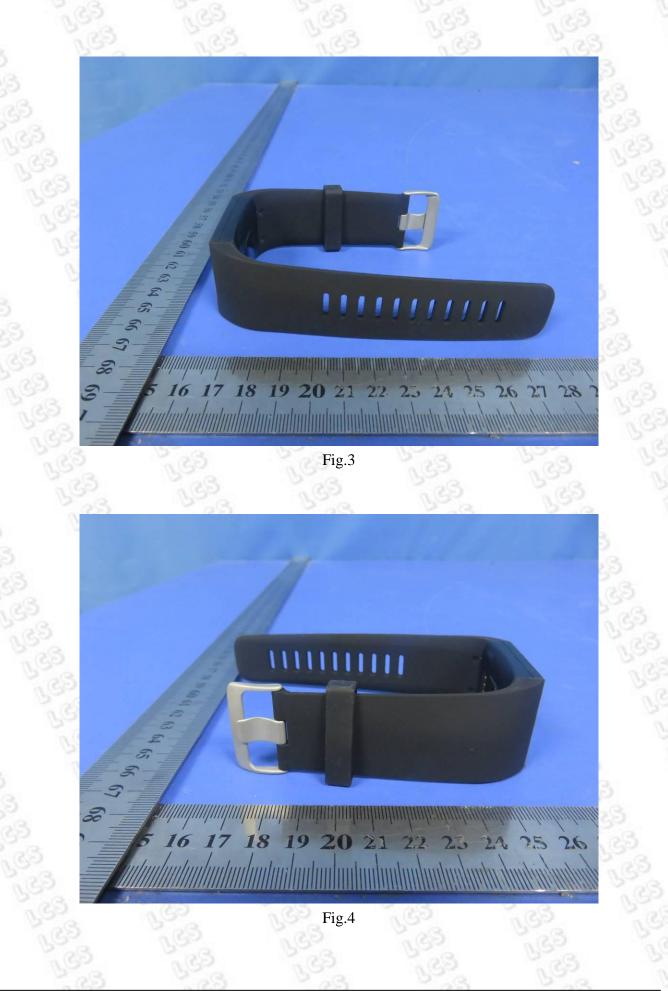
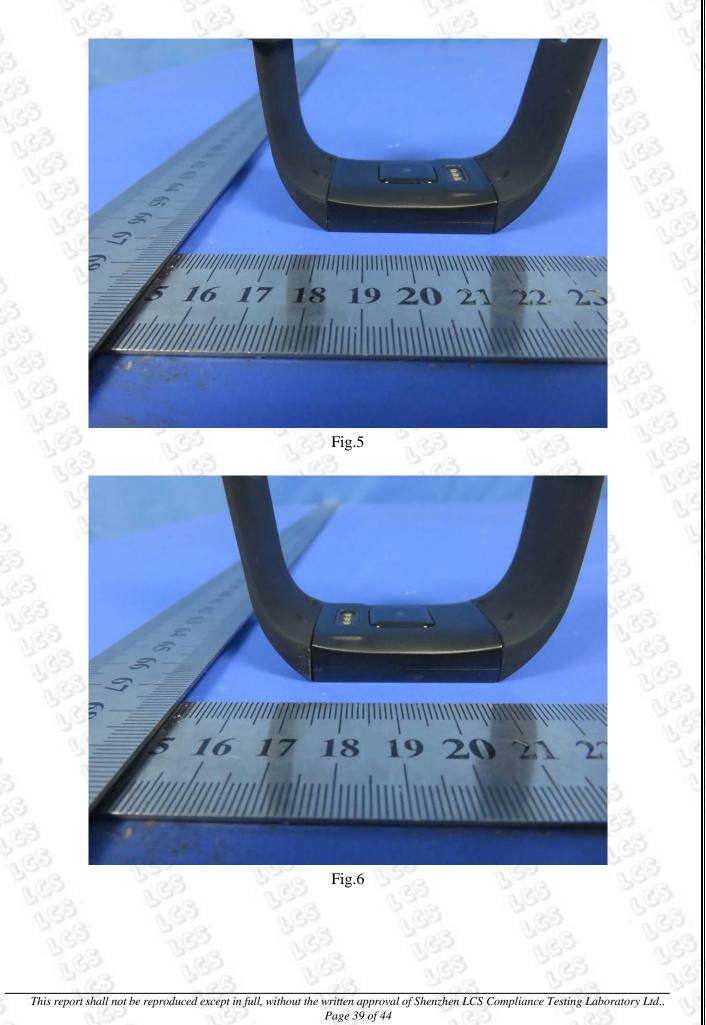
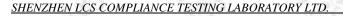



Fig.2

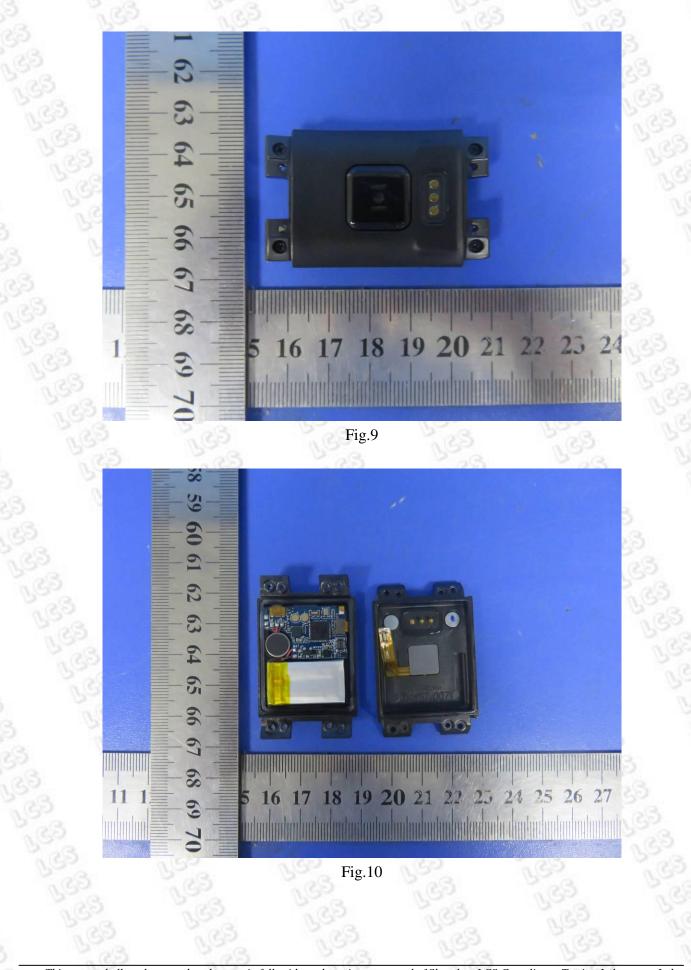
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 37 of 44




Report No.: LCS1605191745E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 38 of 44

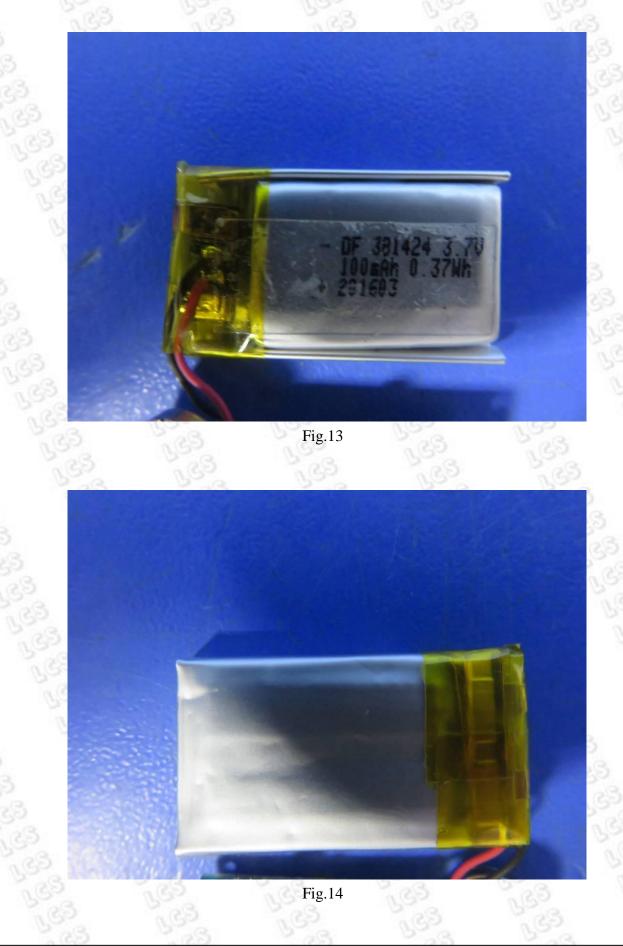
Report No.: LCS1605191745E



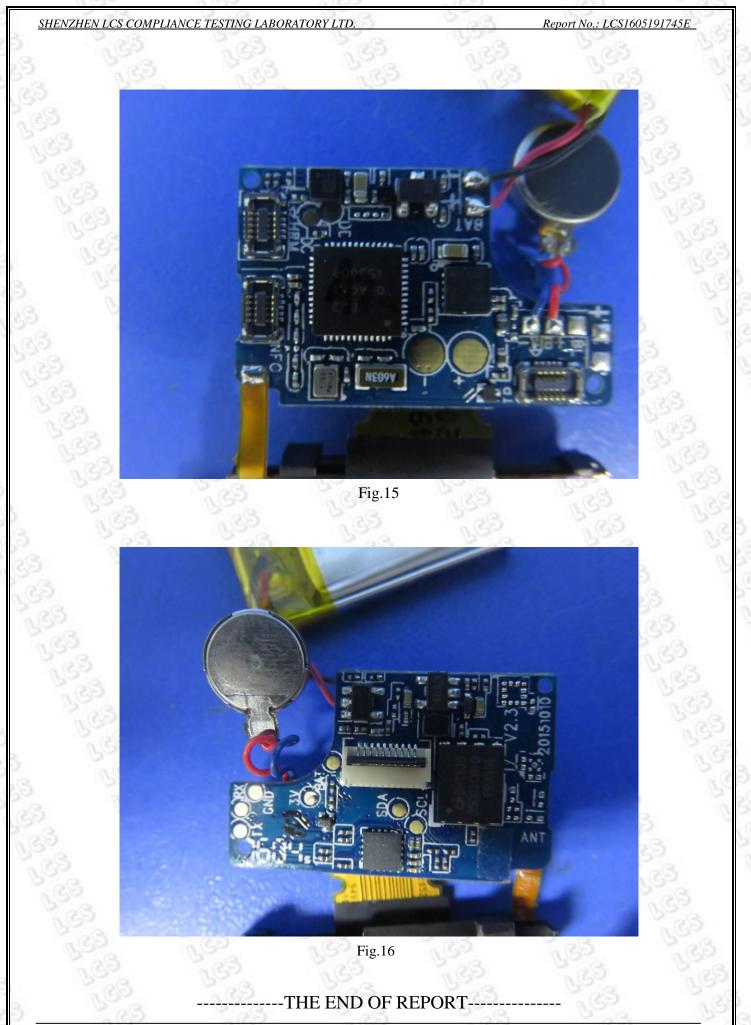
Report No.: LCS1605191745E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 40 of 44

Report No.: LCS1605191745E


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 41 of 44

Report No.: LCS1605191745E



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 42 of 44

Report No.: LCS1605191745E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 43 of 44

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 44 of 44