

TEST REPORT

ETSI EN 301 489-1 V2.1.0 (2016-04) ETSI EN 301 489-17 V3.1.0 (2016-04)

Product	:	GEOMETRIC WIRELESS SPEAKER
Model Name	:	P326.24X
Brand	:	N/A
Report No.	:	PTCHX04161100303E-EM02

Prepared for

Prepared by

DongGuan Precise Testing Service Co.,Ltd.

Building D, Baoding Technology Park, Guangming Road 2, Guangming Community Dongcheng District, Dongguan, Guangdong, China

TEST RESULT CERTIFICATION

Applicant's name	:	
Address	:	
Manufacture's name	:	
Address	:	
Product name	:	GEOMETRIC WIRELESS SPEAKER
Model name	:	P326.24X
Brand Name		N/A

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the RED 2014/53/EU requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Date of Test

Test Result:		Pass
Date of Issue:		Nov.04, 2016
Date (s) of performance of tests	:	Nov.02, 2016 ~ Nov.03, 2016

Tested By:

Approved & Authorized Signer

August Qiu / Engin Chris Du /Mana

Page

2	TEST	SUMMARY	4
3	GEN	ERAL INFORMATION	5
	3.1	GENERAL DESCRIPTION OF E.U.T.	5
4	EQUI	PMENT DURING TEST	6
	4.1	EQUIPMENTS LIST	6
	4.2	MEASUREMENT UNCERTAINTY	8
5	EMC	REQUIREMENTS FOR EMISSIONS	9
	5.1	CONDUCTED EMISSIONS	10
	5.2	RADIATED EMISSIONS	.13
	5.3	VOLTAGE FLUCTUATION AND FLICKERS	.18
	5.4	HARMONICS CURRENT	.21
6	EMC	REQUIREMENT FOR IMMUNITY	. 24
	6.1	Performance Criteria Description	. 25
	6.2	ELECTROSTATIC DISCHARGE(ESD)	. 28
	6.3	ELECTRICAL FAST TRANSIENTS (EFT)	.30
	6.4	SURGES	.31
	6.5	CONDUCTED IMMUNITY 0.15MHz TO 80MHZ	. 32
	6.6	VOLTAGE DIPS AND INTERRUPTIONS	.33
7	TEST	SETUP	.35
8	EUT	PHOTOS	. 37

2 Test Summary

Test	Test Requirement	Test Method	Limit / Severity	Result
	EMC	Emission		
Conducted Emissions	EN 301 489-17	EN301489-1, EN 55022	Class B	PASS
Radiated Emissions	EN 301 489-17	EN301489-1, EN 55022	Class B	PASS
Harmonic Current Emissions	EN 301 489-17	EN301489-1, EN 61000-3-2	Clause 7 of EN61000-3-2	N/A
Voltage Fluctuations and Flicker	EN 301 489-17	EN301489-1, EN 61000-3-3	Clause 5 of EN61000-3-3	N/A
	EMC	Immunity	· · ·	
Electrostatic Discharge(ESD)	EN 301 489-17	EN301489-1, EN 61000-4-2	±2,4 kV Contact ±2,4,8 kV Air	PASS
Radiated Immunity (R/S)	EN 301 489-17	EN301489-1, EN 61000-4-3	3V/m, 80%, 1kHz, Amp. Mod.	PASS
Electrical Fast Transients (EFT)	EN 301 489-17	EN301489-1, EN 61000-4-4	AC ±0.5/1.0 kV	N/A
Surge Immunity	EN 301 489-17	EN301489-1, EN 61000-4-5	±1kV D.M.† ±2kV C.M.‡	N/A
Conducted Immunity (C/S)	EN 301 489-17	EN301489-1, EN 61000-4-6	3Vrms(emf), 80%, 1kHz Amp. Mod.	N/A
Voltage Dips and Interruptions	EN 301 489-17	EN301489-1, EN 61000-4-11	0 % UT* for 0.5per 0 % UT* for 1per 70 % UT* for 25per 0 % UT* for 250per	N/A
Remark:		1		
N/A: Not Applicable				

3 General Information

3.1 General Description of E.U.T.

Product Name	:	GEOMETRIC WIRELESS SPEAKER
Model Name	:	P326.24X
Model Description	:	N/A
Bluetooth Version	:	BT3.0
Operating frequency	:	2402-2480MHz, 79 channels
Antenna installation:	:	Integrated Antenna
Antenna Gain:	:	0dBi
Type of Modulation	:	BT(1Mbps): GFSK BT EDR(2Mbps): π/4-DQPSK BT EDR(3Mbps): 8-DPSK
Power supply	:	DC 5V by adapter/DC 3.7V from battery
Hardware version	:	N/A
Software version	·	N/A

4 Equipment During Test

4.1 Equipments List

CONE	OUCTED EMISSIC	ON					_
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	EMI Test Receiver	Rohde&Schw arz	ESCI	101417	July 15, 2016	July 14, 2017	1 year
2	Artificial Mains Network	Narda	L2-16B	000WX31025	July 15, 2016	July 14, 2017	1 year
RADIA	ATEDEMISSION						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	EMI Test Receiver	Rohde&Schw arz	ESCI	101417	July 15, 2016	July 14, 2017	1 year
2	Trilog Broadband	SCHWARZBE CK	VULB9160	9160-3355	July 15, 2016	July 14, 2017	1 year
3	Amplifier	EM	EM-30180	060538	July 15, 2016	July 14, 2017	1 year
4	Horn Antenna	SCHWARZBE CK	BBHA9120D	9120D-1246	July 15, 2016	July 14, 2017	1 year
HARM	IONICS AND FIL	СК					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Harmonics & FlickerAnalyzer	LAPLACE	AC2000A	311216	July 15, 2016	July 14, 2017	1 year
2	AC Power Source	MToni	PHF-5010	630976	July 15, 2016	July 14, 2017	1 year
ESD							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	ESD Generator	HTEC	HESD 16	1416011	July 15, 2016	July 14, 2017	1 year
RS							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Signal Generator	Agilent	N517113- 50B	MY53050160	Oct.30, 2016	Oct.29, 2017	1 year
2	Amplifier	A&R	150W1000 M3	313157	Oct.30, 2016	Oct.29, 2017	1 year
3	Amplifier	A&R	50SIG6M2	0342835	Oct.30, 2016	Oct.29, 2017	1 year
4	Antenna	SCHWARZBE CK	STLP9149	9149.222	Oct.30, 2016	Oct.29, 2017	1 year
5	Isotropic Field Probe	A&R	FL7006	0342652	Oct.30, 2016	Oct.29, 2017	1 year

PREG	CISE TESTING						
6	Log-periodic Antenna	SCHWARZBE CK	STLP 9128E	9128E-012	Oct.30, 2016	Oct.29, 2017	1 year
cs							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	C/S Test System	SCHLODER	CDG-6000- 25	126A1279/20 14	July 15, 2016	July 14, 2017	1 year
2	CDN	SCHLODER	CDN-M2+3	A2210251/20 13	July 15, 2016	July 14, 2017	1 year
EFT							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	EFT Generator	HTEC	HEFT51	1416010	July 15, 2016	July 14, 2017	1 year
Surge							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Surge Generator	HTEC	HCOMB 70	142101	July 15, 2016	July 14, 2017	1 year
2	Surge Generator	HTEC	TCOMB 4	142103	July 15, 2016	July 14, 2017	1 year
3	CDN	HTEC	SCDN 161P	142102	July 15, 2016	July 14, 2017	1 year
Dips							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Dips Tester	HTEC	HPFS 161P	1416009	July 15, 2016	July 14, 2017	1 year

4.2 Measurement Uncertainty

Parameter	Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5dB
Power Spectral Density, conducted	±3dB
Unwanted Emissions, conducted	±3dB
All emissions, radiated	±6dB
Time	±2%
Duty Cycle	±2%
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±3%
Conduction disturbance(150kHz~30MHz)	±3.26dB
Radiated Emission(30MHz~1GHz)	±4.73dB
Radiated Emission(1GHz~25GHz)	±5.02dB

5 EMC Requirements for Emissions

(1) Normal Test Conditions:

Ambient Condition: Normal

(2) Extreme Test Conditions:

N/A

(3) Test Configuration

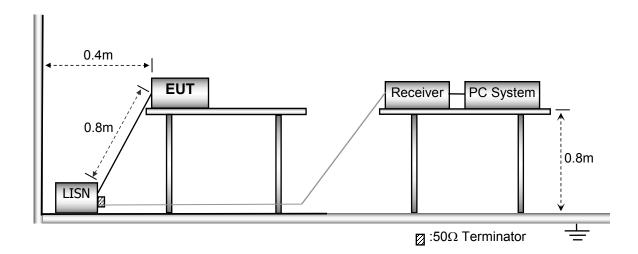
- measurements shall be made in the operational mode producing the largest emission in the frequency bandbeing investigated consistent with normal applications;
- the equipment shall be configured in a manner which is representative for normal/typical operation, wherepractical;
- where radio equipment is provided with an integral antenna, it shall be tested with the antenna fitted in amanner typical of normal intended use, unless declared as a removable antenna;
- if the equipment is part of a system, or can be connected to ancillary equipment, then it shall be acceptable totest the equipment while connected to the minimum representative configuration of ancillary equipmentnecessary to exercise the ports;
- if the equipment has a large number of ports, then a sufficient number shall be selected to simulateactualoperational conditions and to ensure that all the different types of termination are covered;
- ports, which in normal operation are connected, shall be connected to an ancillary equipment or to arepresentative piece of cable terminated to simulate the impedance of the ancillary equipment. RF input/outputports shall be correctly terminated;
- the configuration and mode of operation during the measurements shall be precisely noted in the test report.

(4) Test Mode

TM1	Bluetooth link
TM2	Charging

5.1 Conducted Emissions

Test Requirement	:	EN 301489-17
Test Method	:	EN 301489-1, EN 55022 ,EN 55024
FrequencyRange	:	150kHz to 30MHz
Class/Severity	:	Class B/ Table 2 of EN55022, EN 55024
Detector	:	Peak for pre-scan(9kHz Resolution Bandwidth)


5.1.1. E.U.T. Operation

Operating Environment:		
Temperature	:	25.5 °C
Humidity	:	51 % RH
Atmospheric Pressure	:	101.2kPa
EUT Operation:		BT mode
Defends costion F(4)		

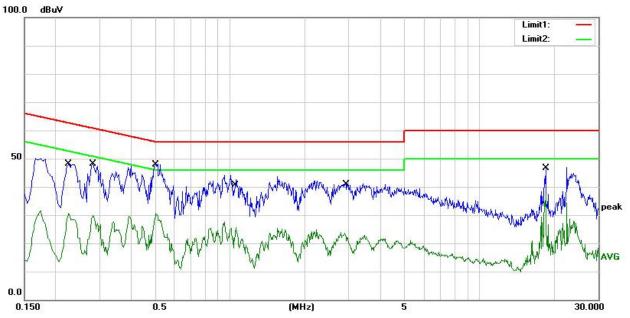
Refer to section 5(4).

5.1.2. Test Setup

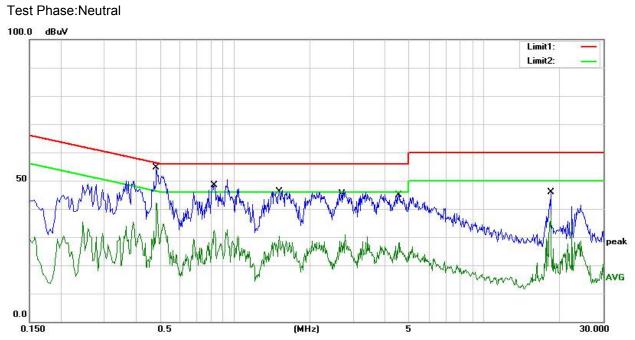
The conducted emission tests were performed using the setup accordance with the EN 55022.

5.1.3. Measurement Description

An initial pre-scan was performed on the live and neutral lines.


No futher quasi-peak or average measurements were performed since no peak emissions were detected within 10dB line below the average limit.

Please refer to the following peak scan graph for reference.


5.1.4. Test Results

Test Phase: Line,

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.2261	33.22	9.20	42.42	62.59	-20.17	QP
2	0.2261	18.47	9.20	27.67	52.59	-24.92	AVG
3	0.2801	36.03	9.15	45.18	60.81	-15.63	QP
4	0.2801	21.24	9.15	30.39	50.81	-20.42	AVG
5	0.4971	39.40	9.15	48.55	56.05	-7.50	QP
6	0.4971	27.21	9.15	36.36	46.05	-9.69	AVG
7	1.0404	31.03	9.15	40.18	56.00	-15.82	QP
8	1.0404	15.33	9.15	24.48	46.00	-21.52	AVG
9	2.8907	25.55	9.26	34.81	56.00	-21.19	QP
10	2.8907	11.61	9.26	20.87	46.00	-25.13	AVG
11	18.4284	32.75	9.80	42.55	60.00	-17.45	QP
12	18.4284	25.81	9.80	35.61	50.00	-14.39	AVG
·		•					

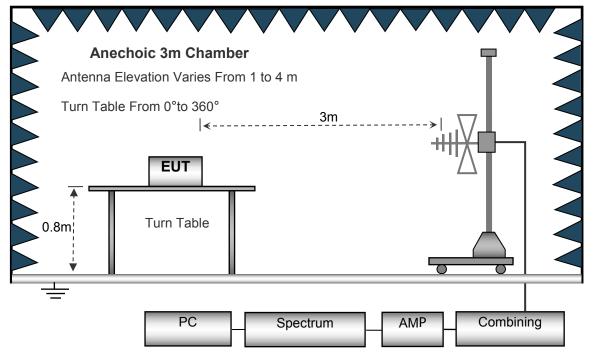
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.4857	40.23	9.15	49.38	56.24	-6.86	QP
2	0.4857	24.88	9.15	34.03	46.24	-12.21	AVG
3	0.8235	36.63	9.25	45.88	56.00	-10.12	QP
4	0.8235	17.97	9.25	27.22	46.00	-18.78	AVG
5	1.5277	32.84	9.25	42.09	56.00	-13.91	QP
6	1.5277	16.16	9.25	25.41	46.00	-20.59	AVG
7	2.6688	28.91	9.26	38.17	56.00	-17.83	QP
8	2.6688	14.03	9.26	23.29	46.00	-22.71	AVG
9	4.5443	27.68	9.27	36.95	56.00	-19.05	QP
10	4.5443	12.09	9.27	21.36	46.00	-24.64	AVG
11	18.4305	32.78	9.67	42.45	60.00	-17.55	QP
12	18.4305	28.65	9.67	38.32	50.00	-11.68	AVG

5.2 Radiated Emissions

Test Requirement	:	EN 301489-17
Test Method	:	EN 301489-1, EN 55022
FrequencyRange	:	30MHz to 1GHz, 1GHz to 6GHz
Class/Severity	:	Class B/ Table 6 of EN55022 (30MHz to 1GHz),EN 55024
Detector	:	Class B/ Table 8 of EN55022 (1GHz to 6GHz),EN 55024 Peak for pre-scan (120kHz Resolution Bandwidth Below 1GHz; 1MHz Resolution Bandwidth Above 1GHz)

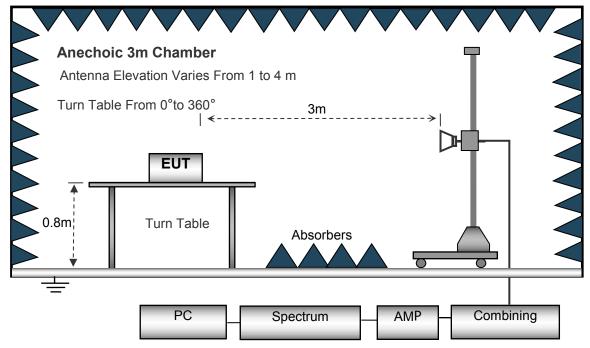
5.2.1. EUT Operation

Operating	Environment:
-----------	--------------


Temperature	:	25.5 °C
Humidity	:	51 % RH
Atmospheric Pressure	:	101.2kPa
EUT Operation:		BT mode

Refer to section 5(4).

5.2.2. Test Setup


The radiated emission tests were performed using the setup accordance with the EN55022.

Frequency Range: Below 1 GHz

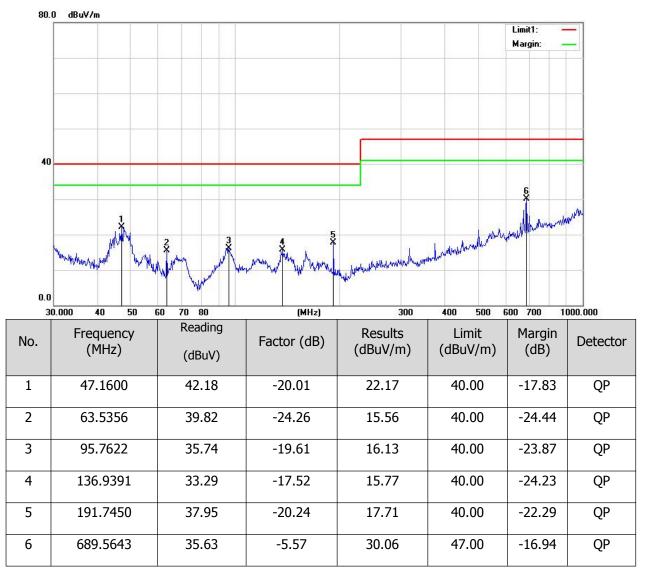
FrequencyRange: Above 1 GHz

5.2.3. Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:



Margin = Corr. Ampl. – Class B Limit

5.2.4. Test Result

Frequency Range: 30MHz ~ 1000MHz

Antenna Polarization: Horizontal

Antenna Polarization: Vertical 80.0 dBu∀/m Limit1: Margin: 40 5 X 6 X 0.0 300 500 600 700 1000.000 30.000 70 80 (MHz) 400 40 50 60 Reading Frequency Results Limit Margin Factor (dB) Detector No. (MHz) (dBuV/m) (dBuV/m) (dB) (dBuV) 1 31.7313 36.62 -12.08 24.54 40.00 -15.46 QP 2 38.4808 37.21 -15.54 40.00 21.67 -18.33 QP 3 66.4990 44.26 -24.19 20.07 40.00 -19.93 QP 4 137.9028 39.79 -17.52 22.27 40.00 -17.73 QP 5 QP 159.2250 42.94 -18.46 24.48 40.00 -15.52 564.6390 47.00 6 28.19 -6.59 21.60 -25.40 QP

Frequency Range: 1000MHz ~ 6000MHz Antenna Polarization: Horizontal& Vertical

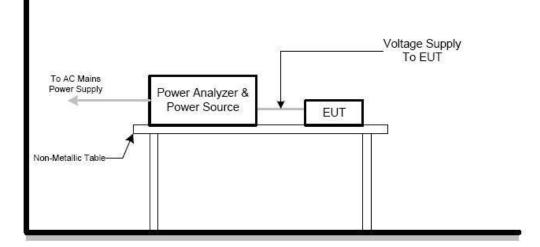
Remark: Absolute Level= Reading Level+ Factor, Margin= Absolute Level - Limit

Freq. (MHz)	Reading (dBuV)	Corr.Factor (dB)	Measured (dBuV/m)	Limits (dBuV/m)	Margins (dBuV/m)	Ant. H/V	Mark
1750.25	73.52	-10.98	62.54	70.00	-7.46	V	РК
1750.25	52.16	-10.98	41.18	50.00	-8.82	V	AVG
2122.35	65.59	-10.54	55.05	70.00	-14.95	V	РК
2122.35	51.83	-10.54	41.29	50.00	-8.71	V	AVG
1750.12	67.45	-11.52	55.93	70.00	-14.07	Н	РК
1750.33	55.58	-11.52	44.06	50.00	-5.94	Н	AVG
2150.26	65.28	-10.08	55.20	70.00	-14.80	Н	РК
2150.72	53.80	-10.08	43.72	50.00	-6.28	Н	AVG

5.3 VOLTAGE FLUCTUATION AND FLICKERS

Tests	Measurement Value	Limit	Descriptions	
	IEC555-3	IEC/EN 61000-3-3		
P _{st}	≤ 1.0,Tp= 10 min.	≤ 1.0,Tp= 10 min.	Short Term Flicker Indicator	
Plt	N/A	≤0.65, Tp=2 hr.	Long Term Flicker Indicator	
T _{dt(s)}	≤ 3%	≤ 3.3%	Relative Steady- State V-Chang	
d _{max} (%)	≤ 4%	≤ 4%	Maximum Relative V-Chang	
d _c (%)	N/A	\leq 3.3% for > 500 ms	Relative V-change Characteristic	

Test Requirement : IEC/EN 61000-3-3


5.2.5. EUT Operation

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature	:	25.5 °C
Humidity	:	51 % RH
Atmospheric Pressure	:	101.2kPa
EUT Operation:		BT mode

Refer to section 5(4).

5.2.7. TEST PROCEDURE

a. Harmonic Current Test:

Test was performed according to the procedures specified in Clause 5.0 of IEC555-2 and/or Sub-clause 6.2 of IEC/EN 61000-3-2 depend on which standard adopted for compliance measurement.

b. Fluctuation and Flickers Test:

Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in Clause 5.0/6.0 of IEC555-3 and/or Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.

c. All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

Test Parameter	Measurement Value	Limit	Remarks
P _{st}		1.0	N/A
Plt		0.65	N/A
T _{dt(s)}		0.5	N/A
d _{max} (%)		4%	N/A
d _c (%)		3.3%	N/A

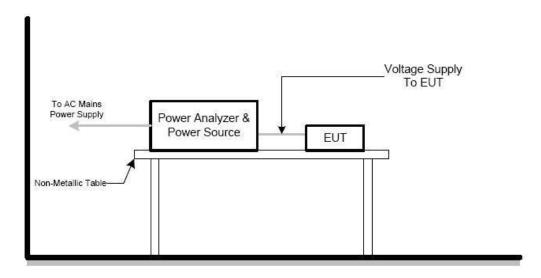
Not apply

5.4 HARMONICS CURRENT

Test Requirement : EN 61000-3-2

IEC 555-2							
	Table - I			Table - II			
Equipment	Harmonic Max. Permissible		Equipment	Harmonic	Max. Permissible		
Category	Order	Harmonic Current	Category	Order	Harmonic Current		
	n	(in Ampers)		n	(in Ampers)		
Odd Harmonics				Odd Harmonics			
	3 2.30		1	3	0.80		
	5 7	1.14		5	0.60		
	7	0.77		7	0.45		
Non	9	0.40	ΤV	9	0.30		
Portable	11	0.33	Receivers	11	0.17		
Tools	13	0.21		13	0.12		
or	15≤n≤39	0.15 · 15/n		15≤n≤39	0.10 · 15/n		
ΤV	Even	Harmonics	1	Even	Harmonics		
Receivers	2	1.08]	2	0.30		
	4 8	0.43		4	0.15		
	8	0.30					
	8≤n≤40	0.23 · 8/n		DC	0.05		

EN 61000-3-2/IEC 61000-3-2							
Equipment	Max. Permissible	Equipment	Equipment Harmonic Max. Permissible				
Category	Harmonic Current	Category	Order	Harmonic	Current		
	(in Ampers)		n	(in A)	(mA/w)		
Class A	Same as Limits Specified in 4-2.1, Table - I, but only odd harmonics required	Class D	3 5 7 9 11 13≤n≤39 only o	2.30 1.14 0.77 0.40 0.33 see Table I dd harmonics re	3.4 1.9 1.0 0.5 0.35 3.85/n		



The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature	:	25.5 °C
Humidity	:	51 % RH
Atmospheric Pressure	:	101.2kPa
EUT Operation:		BT mode

Refer to section 5(4).

5.4.2 Test Setup

5.4.3 TEST PROCEDURE

a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated

to produce the maximum harmonic components under normal operating conditions.

b. The classification of EUT is according to section 5 of EN 61000-3-2. The EUT is

classified as follows:

Class A: Balanced three-phase equipment, Household appliances excluding equipment as

Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio

equipment, equipment not specified in one of the three other classes.

Class B: Portable tools. Portable tools.; Arc welding equipment which is not professional equipment.

Class C: Lighting equipment.

Class D: Equipment having a specified power less than or equal to 600W of the following

types: Personal computers and personal computer monitors and television

receivers.

c. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for

the EUT to be exercised.

5.4.4 Test Result

Note: The active input power of the EUT is less than 75 W. No limits apply for equipment with an active input power up to and including 75W

6 EMC Requirement for Immunity

(1). Normal Test Conditions:

Ambient Condition: Normal

(2). Extreme Test Conditions:

N/A

(3). Test Configuration

• the tests shall be made in the mode(s) of operation specified in clause 4 in the relevant part of the EN 301 489 series [i.13] dealing with the particular type of radio equipment;

• the tests shall be carried out at a point within the specified normal operating environmental range and at therated supply voltage for the equipment;

• if the equipment is part of a system, or can be connected to ancillary equipment, then it shall be acceptable totest the equipment connected to the minimum representative configuration of ancillary equipment necessary to exercise the ports;

• where radio equipment is provided with an integral antenna, it shall be tested with the antenna fitted in amanner typical of normal intended use, unless declared as a removable antenna;

• for the immunity tests of ancillary equipment, without a separate pass/fail criteria, the receiver or transmittercoupled to the ancillary equipment, shall be used to judge whether the ancillary equipment passes or fails;

• if the equipment has a large number of ports, then a sufficient number shall be selected to simulate actual operational conditions and to ensure that all the different types of termination are covered;

• ports, which in normal operation are connected, shall be connected to an ancillary equipment or toarepresentative piece of cable terminated to simulate the impedance of the ancillary equipment. RF input/outputports shall be correctly terminated;

• ports which are not connected to cables during normal intended operation, e.g. service connectors, programming connectors, temporary connectors etc. shall not be connected to any cables for the purpose of EMC testing. Where cables have to be connected to these ports, or interconnecting cables have to be extended in length in order to exercise the Equipment Under Test (EUT), precautions shall be taken to ensure that the evaluation of the EUT is not affected by the addition or extension of these cables;

• the configuration and mode of operation during the tests shall be precisely noted in the test report.

(4).Test Mode

TM1*	Bluetooth link
TM2	Charging

6.1 Performance Criteria Description

EN 301 489-1 Clause 6 requirements:

The performance criteria are used to take a decision on whether a radio equipment passes or fails immunity tests.

For the purpose of the present document four categories of performance criteria apply:

- performance criteria for continuous phenomena applied to transmitters(CT);
- performance criteria for transient phenomena applied to transmitters(TT);
- performance criteria for continuous phenomena applied to receivers(CR);
- performance criteria for transient phenomena applied to receivers(TR).

Normally, the performance criteria depend on the type of radio equipment. Thus, the present document only contains general performance criteria commonly used for the assessment of radio equipment. More specific and product-related performance criteria for a dedicated type of radio equipment may be found in the part of EN 301 489 series [i.13]dealing with the particular type of radio equipment.

Performance	Description
Criteria	
CT,CR	If no further details are given in the relevant part of EN 301 489 series [i.13]
	dealing with the particular type of radioequipment, the following general
	performance criteria for continuous phenomena shall apply.
	During and after the test, the apparatus shall continue to operate as intended. No
	degradation of performance or loss offunction is allowed below a permissible
	performance level specified by the manufacturer when the apparatus is used as
	intended. In some cases this permissible performance level may be replaced by a
	permissible loss of performance.
	During the test the EUT shall not unintentionally transmit or change its actual
	operating state and stored data.
	If the minimum performance level or the permissible performance loss is not
	specified by the manufacturer, then either of these may be deduced from the
	product description and documentation and what the user may reasonably expect
	from the apparatus if used as intended.
TT,TR	If no further details are given in the relevant part of EN 301 489 series [i.13]
	dealing with the particular type of radio equipment, the following general
	performance criteria for transient phenomena shall apply. After the test, the
	apparatus shall continue to operate as intended. No degradation of performance
	or loss of function isallowed below a permissible performance level specified by
	the manufacturer, when the apparatus is used as intended. In some cases this
	permissible performance level may be replaced by a permissible loss of

performance.						
During the EMC exposure to an electromagnetic phenomenon, a degradation of						
performance is, however, allowed. Nochange of the actual mode of operation						
(e.g. unintended transmission) or stored data is allowed.						
If the minimum performance level or the permissible performance loss is not						
specified by the manufacturer, then eitherof these may be deduced from the						
product description and documentation and what the user may reasonably						
expectfrom the apparatus if used as intended.						

EN 301 489-17 Clause 6 requirements:

The performance criteria are:

- performance criteria A for immunity tests with phenomena of a continuous nature;
- performance criteria B for immunity tests with phenomena of a transient nature;
- performance criteria C for immunity tests with power interruptions exceeding a certain time.

Criteria	During test	After test
A	Shall operate as intended.	Shall operate as intended.
	May show degradation of performance (see note 1).	Shall be no degradation of performance (see note 2).
	Shall be no loss of function.	Shall be no loss of function.
	Shall be no unintentional transmissions.	Shall be no loss of stored data or user programmable functions.
В	May show loss of function (one or more).	Functions shall be self-recoverable.
	May show degradation of performance (see note 1). No unintentional transmissions.	Shall operate as intended after recovering. Shall be no degradation of performance (see note 2).
		Shall be no loss of stored data or user programmable
0		functions.
С	May be loss of function (one or more).	Functions shall be recoverable by the
		operator.
		Shall operate as intended after recovering.
		Shall be no degradation of performance (see note 2).

The equipment shall meet the minimum performance criteria as specified in the following clauses.

NOTE 1: Degradation of performance during the test is understood as a degradation to a level not below a

minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance.

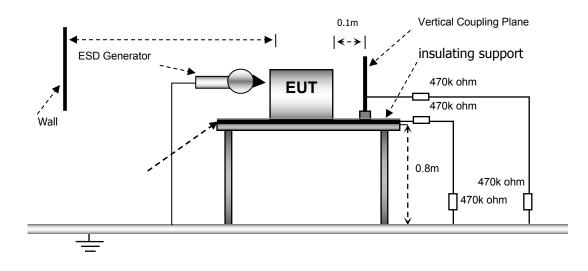
If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2: No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of

performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

Performance	Description						
Criteria							
СТ	The performance criteria A shall apply.						
	Tests shall be repeated with the EUT in standby mode (if applicable) to ensure						
	that unintentional transmission does not occur. In systems using						
	acknowledgement signals, it is recognized that an ACKnowledgement (ACK) or						
	Not ACKnowledgement (NACK) transmission may occur, and steps should be						
	taken to ensure that any transmission resulting from the application of the test is						
	correctly interpreted.						
ТТ	The performance criteria B shall apply, except for voltage dips of 100 ms and						
	voltage interruptions of 5 000 msduration, for which performance criteria C shall						
	apply.						
	Tests shall be repeated with the EUT in standby mode (if applicable) to ensure						
	that unintentional transmission does notoccur. In systems using						
	acknowledgement signals, it is recognized that an acknowledgement (ACK) ornot-						
	acknowledgement (NACK) transmission may occur, and steps should be taken to						
	ensure that any transmissionresulting from the application of the test is correctly						
	interpreted.						
CR	The performance criteria A shall apply.						
	Where the EUT is a transceiver, under no circumstances, shall the transmitter						
	operate unintentionally during the test. Insystems using acknowledgement						
	signals, it is recognized that an ACK or NACK transmission may occur, and						
	stepsshould be taken to ensure that any transmission resulting from the						
	application of the test is correctly interpreted.						
TR	The performance criteria B shall apply, except for voltage dips of 100 ms and						
	voltage interruptions of 5 000 ms durationfor which performance criteria C shall						
	apply.						
	Where the EUT is a transceiver, under no circumstances, shall the transmitter						
	operate unintentionally during the test. Insystems using acknowledgement						
	signals, it is recognized that an ACK or NACK transmission may occur, and						
	stepsshould be taken to ensure that any transmission resulting from the						
	application of the test is correctly interpreted.						

6.2 Electrostatic Discharge(ESD)


Test Requirement		EN 301 489-17,EN 55024	
Test Method		EN 301 489-1, EN 61000-4-2	
Discharge Impedance	:	330 Ω / 150 pF	
Discharge Voltage	:	Air Discharge: +/-2,4,8 KV Contact Discharge:+/-2,4 kV HCP &VCP: +/-2,4 kV	
Polarity	:	Positive & Negative	
Discharge Repeat Times	:	At Least 20 times at each test point	
Discharge Mode Discharge Period	:	Single Discharge second minimum	

6.2.1E.U.T. Operation

Operating Environment:		
Temperature	:	21.5°C
Humidity	:	52.0% RH
Barometric Pressure	:	101.3kPa
EUT Operation:		
Refer to section 6(4).		

6.2.2Block Diagram of Setup

The ESD test was performed in accordance with the EN 61000-4-2.

6.2.3Test Results

Indirect	Application	Performance Criteria				
Discharge Level(kV) Polarity(+/-) Test Point		Horizontal Coupling Vertical Coupli				
2,4	+/-	1	PASS	PASS		

Remark:

Test points : 1. All sides(Front/Top/Back/Left/Right Sides).

Direct	Application	Performance Criteria				
Discharge Level (kV)	Polarity(+/-)	Test Point	Contact Discharge	Air Discharge		
2,4,8	+/-	1	N/A	PASS		
2,4	+/-	2	PASS	N/A		
Remark:						

Test points : 1. All Exposed Surface & Seams; 2. All metallic part N/A: Not applicable.

6.2.4 Radiated Immunity(R/S)

Test Requirement	:	EN 301 489-17
Test Method	:	EN 301 489-1, EN 61000-4-3
Face Under Test	:	Three Mutually Orthogonal Faces
Severity	:	3V/m, 1kHz, 80% Amp. Mod. from 80MHz to 1GHz,
Test Result	:	PASS

6.2.5E.U.T. Operation

Operating Environment:

Temperature	:	21.4°C
Humidity	:	52.1% RH
Barometric Pressure	:	101.2kPa

EUT Operation :BT mode

Refer to section 6(4).

6.2.6Block Diagram of Setup

The Radiated Immunity test was performed in accordance with the EN 61000-4-3.

6.2.7Test Results

Frequency	Level	Modulation	ANT. Polarization	EUT Face	Performance Criteria
80MHz -1GHz,	3V/m	1kHz, 80%, Amp. Mod.	Horizontal/ Vertical	Front,Bac k Left,Right	PASS
1.4GHz - 2.7GHz	3V/m	1kHz, 80%, Amp. Mod.	Horizontal/ Vertical	Front,Bac k Left,Right	PASS

6.3 Electrical Fast Transients (EFT)

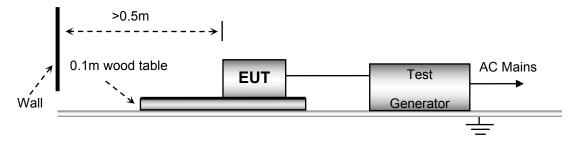
Test Requirement	:	EN 301 489-17,EN 55024
Test Method	:	EN 301 489-1, EN 61000-4-4
Polarity	:	Positive & Negative
Repetition Frequency	:	5kHz
Burst Duration	:	300ms
Test Duration	:	2 minutes per level & polarity

6.3.1 E.U.T. Operation

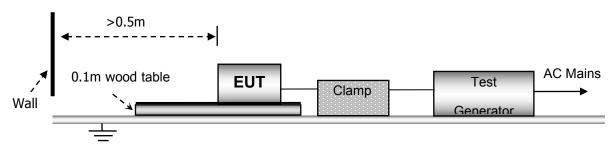
Operating Environment :		
Temperature	:	21.5°C
Humidity	:	52.2% RH
Barometric Pressure	:	101.2kPa

EUT Operation : BT mode

Refer to section 6(4).


6.3.2 Block Diagram of Test Setup

The Electrical Fast Transients Immunity test was performed in accordance with the EN 61000-4-4.



PRECISE TESTING

For AC Mains or DC Ports:

For Signal, Telecommunication or Control Ports:

6.3.3 Test Results

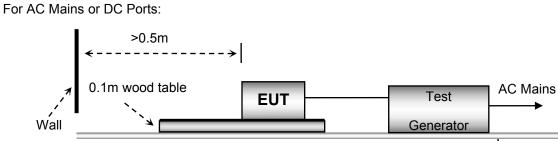
Lead under Test	Test Level	Test Voltage	Performance Criteria
AC Mains	2	±1.0kV	N/A

Not apply

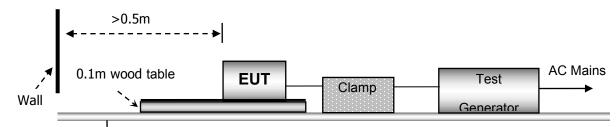
6.4 Surges

Test Requirement	:	EN 301 489-17,EN 55024
Test Method	:	EN 301 489-1, EN 61000-4-5
Interval	:	60s between each surge
No. of surges	:	5 positive, 5 negative at 0°, 90°, 180°, 270°.

6.4.1 E.U.T. Operation


Operating Environment :		
Temperature	:	21.6°C
Humidity	:	52.1% RH
Barometric Pressure	:	101.2kPa
EUT Operation :		BT mode

Refer to section 6(4).


6.4.2 Block Diagram of Test Setup

The Surges Immunity test was performed in accordance with the EN 61000-4-5.

For Telecommunication Port:

6.4.3 Test Results

Lead under Test	Test Level	Test Voltage	Path	Performance Criteria
AC Mains	2	±1kV	L-N	N/A

Not apply

6.5 Conducted Immunity 0.15MHz to 80MHz

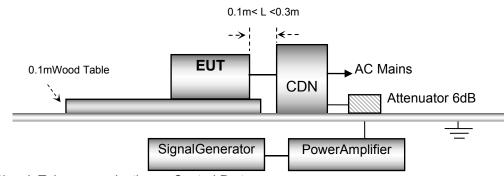
Test Requirement	:	EN 301 489-17,EN 55024
Test Method	:	EN 301 489-1, EN 61000-4-6
Test level	:	3V rms (unmodulatedemf into 150 $\Omega)$
Modulation	:	80%, 1kHz Amplitude Modulation.

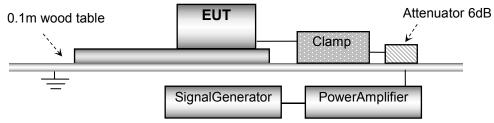
6.5.1 E.U.T. Operation

Operating Environment :

Temperature	:	21.5°C
Humidity	:	52.1% RH
Barometric Pressure	:	101.3kPa

EUT Operation :BT mode


Refer to section 6(4).


6.5.2 Block Diagram of Test Setup

The Injected Currents Immunity test was performed in accordance with the EN 61000-4-6.

For AC Mains or DC Ports:

For Signal, Telecommunication or Control Ports:

6.5.3 Test Results

Line	Frequency	Test Level	Voltage Level	Modulation	Step Size	Dwell Time	Performan ce Criteria
AC Mains	0.15MHz to 80MHz	2	3Vrms	80%, 1kHz Amp. Mod.	1%	1s	N/A

No not apply

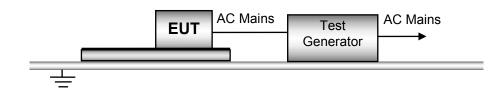
6.6 Voltage Dips and Interruptions

Test Requirement	:	EN 301 489-17,EN 550 24
Test Method	:	EN 301 489-1, EN 61000-4-11
No. of Dips / Interruptions	:	3 per Level at 10ms intervals

6.6.1 E.U.T. Operation

Operating Environment :

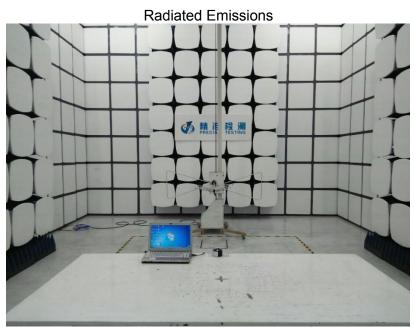
- Humidity : 52.1% RH
- Barometric Pressure : 101.2kPa
- EUT Operation : BT mode


Refer to section 6(4).

6.6.2 Block Diagram of Setup

The Voltage Dips and Interruptions Immunity test was performed in accordance with the

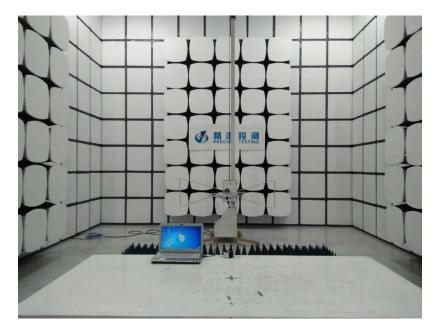
EN 61000-4-11.



6.6.3 Test Results

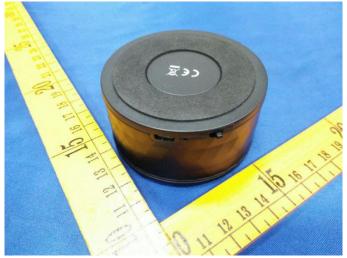
Туре	Residual Voltage	Phase	Cycle	No of dropout	Performance Criteria
	0	0°	0.5	3	N/A
Voltage Dips	0	0°	1	3	N/A
	70	0°	25	3	N/A
Voltage Interruption	0	0°	250	3	N/A

Not apply



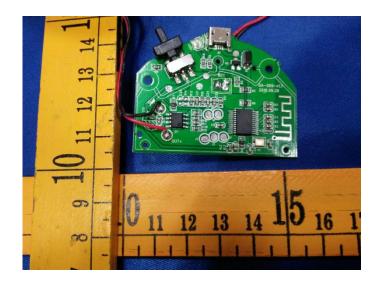
Conducted Emission

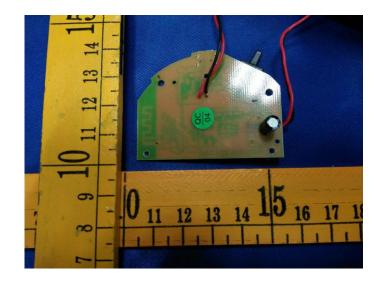
RS

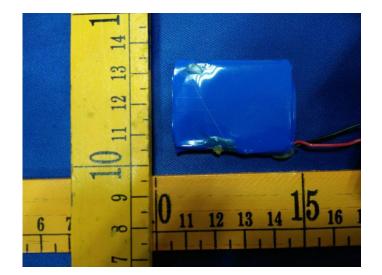


8 EUT Photos

External Photos






Internal Photos

*****THE END REPORT*****