

EMC TEST REPORT

On Behalf of

WIRELESS SPEAKER SUNGLASSES

Model No.: P326.981

Prepared for :

Address :

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address : Building i, No.2, Lixin Road, Fuyong Street, Bao'an District,

518103, Shenzhen, Guangdong, China

Report Number : T1872164 01

Date of Receipt : December 07, 2017

Date of Test : December 07, 2017- December 11, 2017

Date of Report : December 11, 2017

Version Number : REV0

TABLE OF CONTENTS

Dε	escription	Page
1.	General Information	6
	1.1. Description of Device (EUT)	
	1.2. Accessories of Device (EUT)	
	1.3. Ancillary Equipment Details	
	1.4. Test Lab Information	
2.	Summary of Standards and Results	
	2.1. Test Results Description:	
	2.2. Test Standard Description:	
	2.3. Performance Criteria Description	
	2.4. Block Diagram of Configuration	12
	2.5. Test mode	
	2.6. Test Conditions	12
	2.7. Measurement Uncertainty (95% confidence levels, k=2)	13
	2.8. Test Equipment	
3.	Conducted Emission	15
	3.1. Limit for AC Mains Port	15
	3.2. Test Procedure	15
	3.3. Test Setup	15
	3.4. Operation Condition of EUT	16
	3.5. Test Result	16
4.	Radiated Emission	19
	4.1. Limit	19
	4.2. Test Setup	19
	4.3. Test Procedure	20
	4.4. Operation Condition of EUT	20
	4.5. Test Result	20
5.	Harmonic Current Emissions	23
	5.1. Test Procedure	23
	5.2. Limit	23
	5.3. Test Setup	23
	5.4. Operation Condition of EUT	24
	5.5. Test Result	24
6.	Voltage Fluctuations and Flicker	25
	6.1. Test Procedure	25
	6.2. Limit	25
	6.3. Test Setup	25
	6.4. Operation Condition of EUT	
	6.5. Test Result	25
7.	RF Electromagnetic Field	26
	7.1. Lest Levels and Performance Criteria	

	7.2. Test Procedure	26
	7.3. Test Setup	26
	7.4. Operation Condition of EUT	27
	7.5. Test Result	27
8.	Electrostatic Discharge	28
	8.1. Test Level and Performance Criteria	28
	8.2. Test Procedure	28
	8.3. Test Setup	29
	8.4. Test Result	30
9.	Fast Transients Test	31
	9.1. Lest Levels and Performance Criteria	31
	9.2. Test Procedure	31
	9.3. Test Setup	32
	9.4. Test Result	32
10.	Injection Current Test	33
	10.1.Test Level and Performance Criteria	33
	10.2.Test Procedure	33
	10.3.Test Setup	33
	10.4.Test Result	33
11.	Voltage Dips and Interruptions	34
	11.1.Test level and Performance Criteria	34
	11.2. Test Procedure	34
	11.3. Test Setup	34
	11.4. Test Result	34
12.	Surge Test	35
	12.1.Test Level and Performance Criteria	35
	12.2.Test Procedure	35
	12.3.Test Setup	36
	12.4.Test Result	36
13.	Photos of Test Setup	37
	13.1.Photos of Power Line Conducted Emission Test	37
	13.2.Photos of Radiated Emission.	37
	13.3.Photos of Electrostatic Discharge Immunity Test	38
	13.4.Photo of RF Test	39
14.	Photos of EUT	40

TEST REPORT DECLARATION

Applicant

Address

Manufacturer :

Address :

EUT Description : WIRELESS SPEAKER SUNGLASSES

A) Model No. : P326.981

(B) Trademark : N/A

Measurement Standard Used:

ETSI EN 301 489-1 V2.1.1

ETSI EN 301 489-17 V3.1.1

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. Also, this report shows that the EUT is technically compliant with the EN 301 489-1 and EN 301 489-17 requirements.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature)......

Project Engineer

Approved by (name + signature)......

Project Manager

Date of issue..... December 11, 2017

Revision History

Revision	Issue Date	Revisions	Revised By
00	December 11, 2017	Initial released Issue	Simple Guan

Report No.: T1872164 01

1. General Information

1.1. Description of Device (EUT)

EUT Name : WIRELESS SPEAKER SUNGLASSES

Trade Name : N/A

Model No. : P326.981 DIFF. : N/A

Power supply : DC 3.7V from battery or DC 5V from USB for charge.

Operation frequency : 2402MHz-2480MHz

Modulation : GFSK, π/4 DQPSK, 8-DPSK

Antenna Type : PCB Antenna, Maximum Gain is 1.5dBi

Software version : 0.1.0

Hardware version : HC-X13 V2

1.2. Accessories of Device (EUT)

N/A

1.3. Ancillary Equipment Details

No.	Description	Manufacturer	Model	Serial Number	Certification or DOC
1	Notebook	ACER	ZQT	N/A	DOC

1.4. Test Lab Information

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

2. Summary of Standards and Results

2.1. Test Results Description:

No.	TEST PARAMETER	APPLICATION	RESULTS						
	EN 55032 EMC emission								
1	Radiated emission	Enclosure of ancillary equipment	PASS						
2	Conducted emission	DC power input/output port	N/A						
3	Conducted emission	AC mains input/output port	PASS						
4	Harmonic Current Emissions	AC mains input port	N/A						
5	Voltage Fluctuation & Flicker	AC mains input port	N/A						
6	Conducted emission	Telecommunication port	N/A						
	EN 550	24 Immunity							
7	RF electromagnetic field	Enclosure	PASS						
8	Electrostatic Discharge	Enclosure	PASS						
9	Fast transients common mode	Signal,telecommunication and control ports,DC and AC power ports	N/A						
10	RF Common mode	Signal,telecommunication and control ports,DC and AC power ports	N/A						
11	Transients and Surges	DC power input ports for vehicular use	N/A						
12	Voltage dips and interruptions	AC mains power input ports	N/A						
13	Surges,line to line and line to ground	AC mains power input ports, wired network ports	N/A						

Note: N/A means this test item is not applicable for this device. Cause EUT belongs to portable Equipment, so test items reference to 301489-1 V2.1.1 Clause 7.1 and 7.2

2.2. Test Standard Description:

ETSI EN 301 489-1 V2.1.1: ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU and the essential requirements of article 6 of Directive 2014/30/EU

ETSI EN 301 489-17 V3.1.1: ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 17: Specific conditions for Broadband Data Transmission Systems; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU.

EN 55032:2012 + AC:2013: Electromagnetic compatibility of multimedia equipment — Emission requirements.

EN55024:2010: Information technology equipment- Immunity characteristics- Limits and methods of measurement.

2.3. Performance Criteria Description

used as intended.

According to EN 301489 -17 standard, the general performance criteria as following:

performance criteria A for immunity tests with phenomena of a continuous nature; performance criteria B for immunity tests with phenomena of a transient nature; performance criteria C for immunity tests with power interruptions exceeding a certain time. The equipment shall meet the minimum performance criteria as specified in the following clauses.

Criteria	During test	After test
Α	Shall operate as intended.	Shall operate as intended.
	(see note 1).	Shall be no degradation of performance (see note 3).
	Shall be no loss of function.	Shall be no loss of function.
	Shall be no unintentional transmissions.	Shall be no loss of stored data or user programmable
		functions.
В	May show loss of function (one or more).	Functions shall be self-recoverable.
	May show degradation of performance	Shall operate as intended after recovering.
	(see note 2).	Shall be no degradation of performance (see note 3).
	Shall be no unintentional transmissions.	Shall be no loss of stored data or user programmable
		functions.
С	May be loss of function (one or more).	Functions shall be recoverable by the operator.
		Shall operate as intended after recovering.
		Shall be no degradation of performance (see note 3).

- NOTE 1: Operate as intended during the test allows a level of degradation not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.
- NOTE 2: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance.

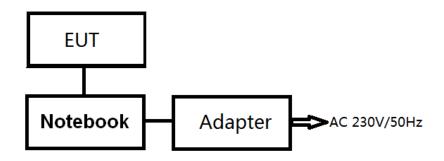
 If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if
- NOTE 3: No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended

PERFORMANCE FOR TT

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR TR

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.


PERFORMANCE FOR CT

The performance criteria A shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an Acknowledgement (ACK) or Not Acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR CR

The performance criteria A shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

2.4. Block Diagram of Configuration

2.5. Test mode

Number	Test mode	Radiated	Conducted	Harmonic	Voltage
		emission	emission	Current	Fluctuation &
				Emissions	Flicker
Mode 1	Charging	*	*	/	/
Mode 2	Bluetooth	/	/	/	/
	Note: 1: * is worst case mode.				

2.6. Test Conditions

All test were performed under the following environmental conditions

Items	Required	
Temperature range	21-25℃	
Humidity range	30-60%	
Pressure range	86-106kPa	

2.7. Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Conducted Emission Test	2.74dB	
Uncertainty for Radiation Emission test in 3m chamber	3.77dB	Polarize: V
(30MHz to 1GHz)	3.80dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	4.16dB	Polarize: H
(1GHz to 25GHz)	4.13dB	Polarize: V
Uncertainty for radio frequency	5.4×10 ⁻⁸	
Uncertainty for conducted RF Power	0.37dB	

2.8. Test Equipment

1	i				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due day
Test Receiver	R&S	ESCI	101165	2017.09.22	2018.09.21
Bilog Antenna	Schwarzbeck	VULB 9168	9168-438	2016.09.30	2018.09.29
Spectrum Analyzer	Agilent	E4407B	MY49510055	2017.09.23	2018.09.22
Horn Antenna	Schwarzbeck	BBHA 9120 D	BBHA 9120 D(1201)	2016.09.30	2018.09.29
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126-466	2017.09.22	2018.09.21
L.I.S.N.#2	R&S	ENV216	101043	2017.09.22	2018.09.21
Pulse Limiter	Schwarzbeck	9516F	9618	2017.09.22	2018.09.21
Harmonics Flicker Analyser	Voltech	PM6000	200006700495	2017.09.28	2018.09.27
ESD Tester	HAEFELY	PESD1610	H310546	2017.09.27	2018.09.26
CONDUCTED IMMUNITY TEST SYSTEM (RF-Generator)	Frankonia	CIT-10/75	12681247/2013	2017.09.22	2018.09.21
Fixed Coaxial Attenuator (6dB Attenuation)	CD	ATT-0675	120540086	2017.09.22	2018.09.21
Coupling-Decoupling Network (CDN)	CD	CDN M2/M3	2302	2017.09.22	2018.09.21
Electromagnetic Injection Clamp (EMC-Clamp)	CD	EM-Clamp	0513A031201	2017.09.22	2018.09.21
Main Interference Simulator	3ctest	VDG-1105G	EC0171002	2017.09.22	2018.09.21
Burst Tester	3ctest	EFT-4001G	EC0461015	2017.09.28	2018.09.27
Capacitive Coupling	3ctest	EFTC	EC0441049	2017.09.22	2018.09.21
Capacitive Coupling	3ctest	EFTC	EC0441049	2017.09.22	2018.09.2

Surge CDN	3ctest	SGN-5010G	EC5591004	2017.09.22	2018.09.21
Surge Generator	3ctest	SG-5006G	EC5581006	2017.09.22	2018.09.21
Base station	Agilent	E4438C	US44271917	2017.09.28	2018.09.27
Universal Radio Communication Tester	R&S	CMU200	116785	2017.09.22	2018.09.21
Signal Generator	Agilent	N5182A	MY49060042	2017.09.22	2018.09.21
vector Signal Generator	Agilent	E4438C	US44271917	2017.09.28	2018.09.27
Power meter	Agilent	E4419B	GB40202122	2017.09.22	2018.09.21
Power Sensor	Agilent	E9300A	MY41496625	2017.09.22	2018.09.21
RF power Amplifier	OPHIR	5225R	1045	N/A	NCR
RF power Amplifier	OPHIR	5273R	1018	N/A	NCR
Antenna	SCHWARZBE CK	STLP9128E-s pecial	STLP9128E s#139	N/A	NCR
Antenna	SCHWARZBE CK	STLP9128E-s pecial	STLP 9149 #456	N/A	NCR
CMW500	R&S	CMW500	1201.0002K50-11 7239-sM	2017.09.22	2018.09.21

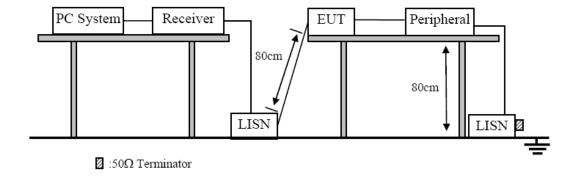
3. Conducted Emission

3.1. Limit for AC Mains Port

Frequency		cy	Quasi-Peak Level dB (μV)	Average Level dB (μV)
150kHz	~	500kHz	66 ~ 56*	56 ~ 46*
500kHz	~	5MHz	56	46
5MHz	~	30MHz	60	50

Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.


3.2. Test Procedure

The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT was power charged from notebook which powered from power mains through a line impedance stabilization network (L.I.S.N. 1#). This provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N.3#). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to the EN55032 regulations during conducted emission test.

The bandwidth of the test receiver (R&S Test Receiver ESCI) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked. The test result are reported on Section 3.6

3.3. Test Setup

3.4. Operation Condition of EUT

- 1, Setup the EUT and the simulators as shown on Section 2.4
- 2, Turned on the power of all equipments.
- 3, EUT transmit though EUT and mobile phone

3.5. Test Result

PASS. (All emissions not reported below are too low against the prescribed limits.)

The EUT with the following test mode was tested and read QP values and average values, the test results are listed in next pages.

Site LAB Phase: L1 Temperature: 24.9

AC 230V/50Hz Limit: EN55032 Class B Conduction(QP) Power: Humidity: 47 %

EUT: WIRELESS SPEAKER SUNGLASSES M/N: P326.981

Mode: Charging Note:

Engineer Signature: **Conducted Emission Measurement** File: Data :#1 Date: 2017-12-7 Time: 21:55:59 80.0 dBuV 70 60 EN55032 Class B Conduction(AVG) 50 40 30 AVG 20 10 0.0 0.150 (MHz) 30.000 Reading Correct Measure

	No.	Mk.	Freq.	Level	Factor	ment	Limit	Margir	1	
			MHz	dBuV	dB	dBuV	dBu∀	dB	Detector	Comment
	1	*	0.1860	43.71	9.74	53.45	64.21	-10.76	peak	
_	2		0.2445	37.63	9.76	47.39	61.94	-14.55	peak	
_	3		0.3345	31.03	9.77	40.80	59.34	-18.54	peak	
_	4		0.5820	24.63	9.79	34.42	56.00	-21.58	peak	
_	5		5.0235	35.48	10.19	45.67	60.00	-14.33	peak	
_	6		27.9645	38.23	10.99	49.22	60.00	-10.78	peak	
_										

^{*:}Maximum data x:Over limit !:over margin

Site LAB Phase: N Temperature: 24.9 Limit: EN55032 Class B Conduction(QP) Power: AC 230V/50Hz Humidity: 47 %

EUT: WIRELESS SPEAKER SUNGLASSES

M/N: P326.981 Mode: Charging

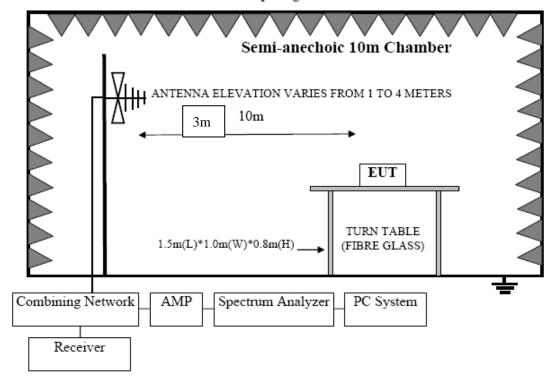
Note:

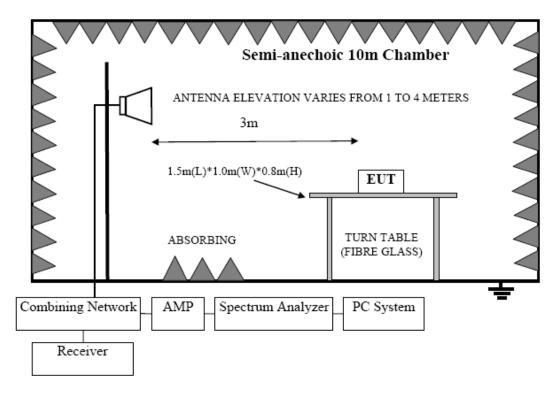
Engineer Signature:

Conducted Emission Measurement File: Data :#2 Date: 2017-12-7 Time: 21:57:38 80.0 dBuV 70 EN55032 Class B Conduction(QP) 60 EN55032 Class B Conduction(AVG) 50 40 30 AVG 20 10 0.0 0.150 (MHz) 30.000 Reading Correct Measure-No. Mk. Freq. Limit Margin Level Factor ment MHz dBuV dB dBuV dBuV dB Detector Comment 1 0.1815 43.68 9.74 53.42 64.42 -11.00 peak 2 0.2445 36.80 9.76 46.56 61.94 -15.38 peak 3 0.3165 32.96 9.77 42.73 59.80 -17.07 peak 0.8925 25.22 4 9.82 35.04 56.00 -20.96 peak 60.00 -15.03 5.1450 34.77 10.20 44.97 5 peak 28.4280 11.03 60.00 -11.34 6 37.63 48.66 peak

^{*:}Maximum data x:Over limit !:over margin

4. Radiated Emission


4.1. Limit


FREQUENCY (MHz)	DISTANCE (Meters)	FIELD STRENGTHS LIMITS (dBμV/m)
30 ~ 230	3	40
230 ~ 1000	3	47
1000-3000	3	Average limit:50 Peak limit:70
3000-6000	3	Average limit:54 Peak limit:74

Note: The lower limit shall apply at the transition frequencies.

4.2. Test Setup

5.2.1. In Anechoic Chamber Test Setup Diagram for 30MHz~1000MHz

5.2.2. In Anechoic (10m) Chamber Test Setup Diagram for 1-6GHz

4.3. Test Procedure

The EUT was placed on a non-metallic table, 80cm above the ground plane inside a semi-anechoic chamber. An antenna was located 10m from the EUT for below 1GHz test and 3m for above 1GHz test on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to EN 55032 Class B on Radiated Disturbance test.

The bandwidth setting on the test receiver (R&S TEST RECEIVER ESR) is 120 kHz for below 1GHz test. For emission above 1GHz, The Spectrum's RWB is set 1MHz and VBW 1MHz to measure Peak Level.

4.4. Operation Condition of EUT

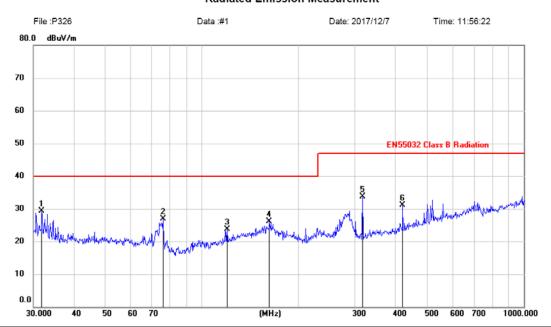
Please refer to Clause 2.3 for details.

4.5. Test Result

PASS

See below original test data

Site LAB Polarization: Vertical Temperature: 23.9


Limit: EN55032 Class B Radiation Power: AC 230V/50Hz Humidity: 46 % EUT: WIRELESS SPEAKER SUNGLASSES Distance: 3m

M/N: P326.981 Mode:Charging

Note:

Engineer Signature:

Radiated Emission Measurement

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	31.8427	16.00	13.38	29.38	40.00	-10.62	peak			
2		75.7114	16.69	10.15	26.84	40.00	-13.16	peak			
3		119.8556	11.15	12.58	23.73	40.00	-16.27	peak			
4		162.6106	11.82	14.37	26.19	40.00	-13.81	peak			
5		316.5890	19.82	13.79	33.61	47.00	-13.39	peak			
6		420.5803	15.15	16.05	31.20	47.00	-15.80	peak			

Note:1. *:Maximum data; x:Over limit; !:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Site LAB Polarization: Horizontal Temperature: 23.9

Distance: 3m

Limit: EN55032 Class B Radiation Power: AC 230V/50Hz Humidity: 46 %

M/N: P326.981 Mode:Charging

EUT: WIRELESS SPEAKER SUNGLASSES

Note:

70

60

50

40

30

20

10

30.000

40

50 60

70 80

Engineer Signature:

File:P326

80.0 dBuV/m

Radiated Emission Measurement Data :#2 Date: 2017/12/7 Time: 12:01:30 EN55032 Class B Radiation

300

400

500 600 700

1000.000

No. IV	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	31.8427	16.00	13.38	29.38	40.00	-10.62	peak			
2	75.7114	16.69	10.15	26.84	40.00	-13.16	peak			
3	119.8556	11.15	12.58	23.73	40.00	-16.27	peak			
4	162.0414	15.24	14.41	29.65	40.00	-10.35	peak			
5 *	265.6757	24.23	12.59	36.82	47.00	-10.18	peak			
6	520.8882	14.74	17.92	32.66	47.00	-14.34	peak			

(MHz)

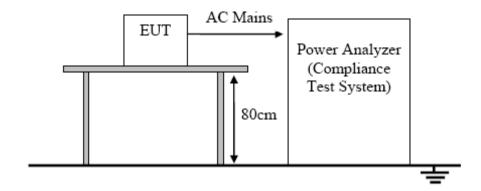
Note:1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Remark: The test data above 1GHz is too lower than the limit, so not show in this report.

5. Harmonic Current Emissions

5.1. Test Procedure


The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT was powered from notebook which's power was connected to the power mains through a power Analyzer, let EUT worked in test mode then measure Harmonic current emissions by power analyzer and recorded data.

5.2. Limit

Limits for Class A equipment				
Harmonic order	Maximum permissible Harmonic current			
n	A			
Odd ha	rmonics			
3	2,30			
5	1,14			
7	0,77			
9	0,40			
11	0,33			
13	0,21			
15≤n≤39	$0.15 \frac{15}{n}$			
Even ha	armonics			
2	1,08			
4	0,43			
6	0,30			
8≤n≤40	$0.23 \frac{8}{n}$			

Remark: if the EUT Power level is below 75 Watts and therefore has no defined limits.

5.3. Test Setup

Report No.: T1872164 01

5.4. Operation Condition of EUT

- 1, Setup the EUT and the simulators as shown on Section 2.4
- 2, Turned on the power of all equipments.
- 3, EUT transmit data with mobile phone

5.5. Test Result

Report No.: T1872164 01

6. Voltage Fluctuations and Flicker

6.1. Test Procedure

The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT was powered from notebook which's power through a power Analyzer, let EUT worked in test mode then measure voltage fluctuations and flicker by power analyzer and recorded data.

6.2. Limit

Test Item	Limit	Note
P _{st}	1.0	P _{st} means Short-term flicker indicator
P _{lt}	0.65	P _{lt} means long-term flicker indicator
T _{dt}	0.2	T _{dt} means maximum time that dt exceeds 3%
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
d _e (%)	3%	d _e means relative steady-state voltage change.

6.3. Test Setup

6.4. Operation Condition of EUT

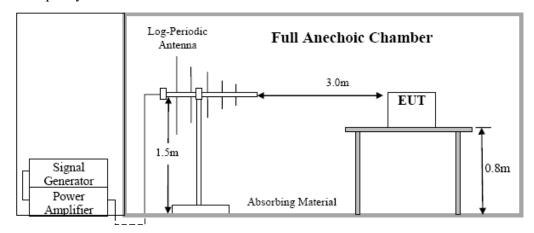
- 1, Setup the EUT and the simulators as shown on Section 2.4
- 2, Turned on the power of all equipments.
- 3, EUT transmit data with mobile phone

6.5. Test Result

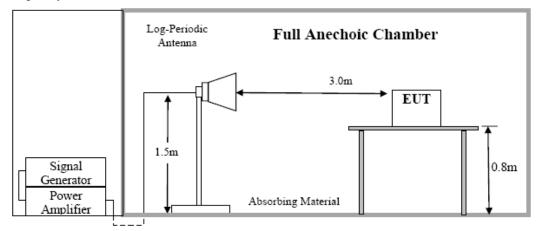
7. RF Electromagnetic Field

7.1. Lest Levels and Performance Criteria

	Performance Criteria	
Frequency	80MHz-6000MHz	
Field Strength	3V/m measured unmodulated	
Modulation	AM modulated to a depth of 80% by a sinusoidal audio signal of 1KHz(Note)	A
Step Size	1% increments	
Dwell time	3 Sec.	


7.2. Test Procedure

The field sensor is placed on the EUT table (0.8 meter above the ground) which is 3 meters away from the transmitting antenna. Through the signal generator, power amplifier and transmitting antenna to produce a uniformity field strength (3V/m measured by field sensor) around the EUT table from frequency range specified and records the signal generator's output level at the same time for whole measured frequency range. Then, put EUT and its simulators on the EUT turn table and keep them 3 meters away from the transmitting antenna which is mounted on an antenna tower and fixes at 1 meter height above the ground. Using the recorded signal generator's output level to measure the EUT from frequency range specified and both horizontal & vertical polarization of antenna must be set and measured. Each of the four sides of EUT must be faced this transmitting antenna and measures individually.


Set EUT in idle mode and repeated test with a receive antenna connected to a spectrum analyzer to see if there was unintentional transmissions happened.

7.3. Test Setup

For frequency from 80MHz to 1GHz

Frequency For 1-6GHz

7.4. Operation Condition of EUT

- 1, Setup the EUT and the simulators as shown on Section 2.4
- 2, Turned on the power of all equipments.
- 3, EUT transmit data with mobile phone

7.5. Test Result

EUT Position	Antenna	R.F. Field Strength	Observation	Perform. Criteria	Conclusion
Front	H/V			A	PASS
Right	H/V	3 V/m (rms)	CT CD	A	PASS
Rear	H/V	AM Modulated 1000Hz, 80%	CT, CR	A	PASS
Left	H/V			A	PASS

8. Electrostatic Discharge

8.1. Test Level and Performance Criteria

Test Le	Performance Criteria	
Air Discharge	±2kV, ±4kV and ±8kV	n.
Contact Discharge	±2kV and ±4kV	В

8.2. Test Procedure

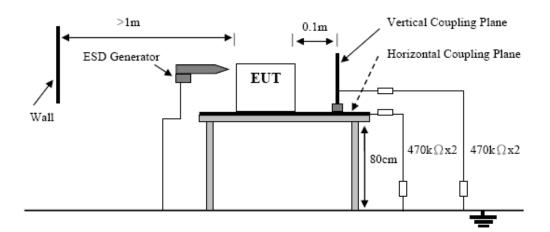
Air discharge:

The test was applied on non-conductive surfaces of EUT. The round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT. After each discharge, the discharge electrode was removed from the EUT. The generator was re-triggered for a new single discharge and repeated 20 times for each pre-selected test point. This procedure was repeated until all the air discharge completed

Contact Discharge:

All the procedure was same as air discharge. except that the generator was re-triggered for a new single discharge and repeated 50 times for each pre-selected test point. The tip of the discharge electrode was touching the EUT before the discharge switch was operated.

Indirect discharge for horizontal coupling plane


At least 20 single discharges were applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

Indirect discharge for vertical coupling plane

At least 20 single discharges were applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, was placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges were applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

Set EUT in idle mode and repeated test with a receive antenna connected to a spectrum analyzer to see if there was unintentional transmissions happened.

8.3. Test Setup

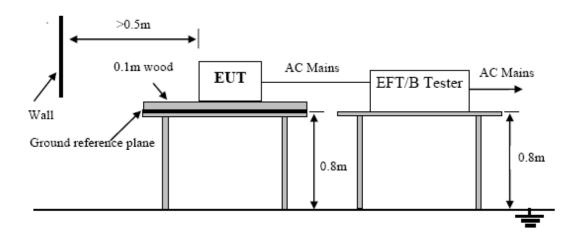
8.4. Test Result

Discharge Voltage (kV)	Type of discharge	Dischargeable Points	Observation	Perform. Criteria	Conclusion	
±2	Contact	1,2	TT,TR	В	PASS	
±4	Contact	1,2	TT,TR	В	PASS	
±2	Air	3,4	TT,TR	В	PASS	
±4	Air	3,4	TT,TR	В	PASS	
±8	Air	3,4	TT,TR	В	PASS	
±2	HCP-Bottom	Edge of the HCP	TT,TR	В	PASS	
±2	VCP-Front	Center of the VCP	TT,TR	В	PASS	
±2	VCP-Left	Center of the VCP	TT,TR	В	PASS	
±2	VCP-Back	Center of the VCP	TT,TR	В	PASS	
±2	VCP-Right	Center of the VCP	TT,TR	В	PASS	
±4	HCP-Bottom	Edge of the HCP	TT,TR	В	PASS	
±4	VCP-Front	Center of the VCP	TT,TR	В	PASS	
±4	VCP-Left	Center of the VCP	TT,TR	В	PASS	
±4	VCP-Back	Center of the VCP	TT,TR	В	PASS	
±4	VCP-Right	Center of the VCP	TT,TR	В	PASS	
Discharge Points	Description					
1	So	crew	3	But	ton	
2	F	Port	4	Slot		
2 POIL 4 SIOL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 2						

9. Fast Transients Test

9.1. Lest Levels and Performance Criteria

	Performance Criteria			
Test violtage	1KV For AC mains Port			
Test voltage	0.5KV for wired network ports			
Repetition Frequency	5KHz			
Burst Duration	15ms			
Burst Period	300ms	В		
Inject Time(s)	120s			
Inject Method	Direct For AC mains port			
Inject Method	Couple for wired network ports			
Inject Line	AC Mains of adapter and wired network ports			


9.2. Test Procedure

The EUT and its simulators were placed on the ground reference plane and were insulated from it by a wood support $0.1m \pm 0.01m$ thick. The ground reference plane was 1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane was project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane was more than 0.5m. All cables to the EUT was placed on the wood support, cables not subject to EFT/B was routed as far as possible from the cable under test to minimize the coupling between the cables.

The EUT was powered from notebook which powered from power mains by using a coupling device that couples the EFT interference signal to AC power lines. Both positive transients and negative transients of test voltage were applied during compliance test and the duration of the test can't less than 1min.

Set EUT in idle mode and repeated test with a receive antenna connected to a spectrum analyzer to see if there was unintentional transmissions happened.

9.3. Test Setup

9.4. Test Result

10. Injection Current Test

10.1. Test Level and Performance Criteria

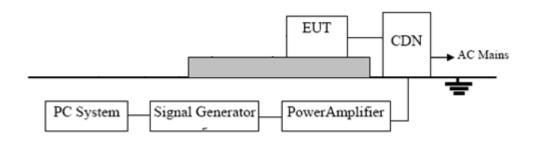
	Performance Criteria	
Frequency	0.15MHz to 80MHz	
Field Strength	3V/m measured unmodulated	
Modulation	AM modulated to a depth of 80% by a sinusoidal audio signal of 1KHz(Note)	A
Step Size	1% increments	
Dwell time	3 Sec.	

10.2. Test Procedure

The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).

The disturbance signal described below is injected to EUT through CDN.

The EUT operates within its operational mode(s) under intended climatic conditions after power on.


The frequency range is swept from 0.150MHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 400Hz sine wave.

The rate of sweep shall not exceed 1.5*10⁻³decades/s. Where the frequency is swept incrementally; the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.

Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

Set EUT in idle mode and repeated test with a receive antenna connected to a spectrum analyzer to see if there was unintentional transmissions happened.

10.3. Test Setup

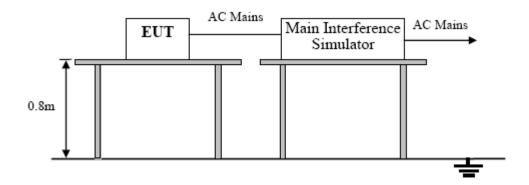
10.4. Test Result

11. Voltage Dips and Interruptions

11.1. Test level and Performance Criteria

Test Level	Duration	Performance
%UT	(in period)	Criterion
0	0.5P	В
0	1P	В
70	25P	В
0	250P	С

11.2. Test Procedure


The EUT and test generator were setup as shown on Section 10.3

The interruptions are introduced at selected phase angles with specified duration.

Record any degradation of performance.

Set EUT in idle mode and repeated test with a receive antenna connected to a spectrum analyzer to see if there was unintentional transmissions happened.

11.3. Test Setup

11.4. Test Result

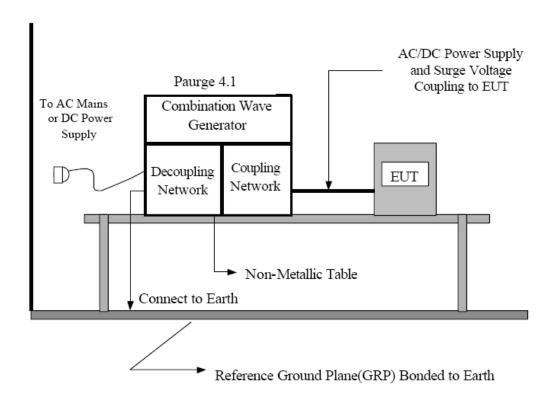
12. Surge Test

12.1. Test Level and Performance Criteria

Test level for AC mains ports		Performance Criterion
Line to Line	1KV	В
Line to ground	2KV	В
Test level for wired network ports		Performance Criterion
Line to ground	0.5KV	В

12.2. Test Procedure

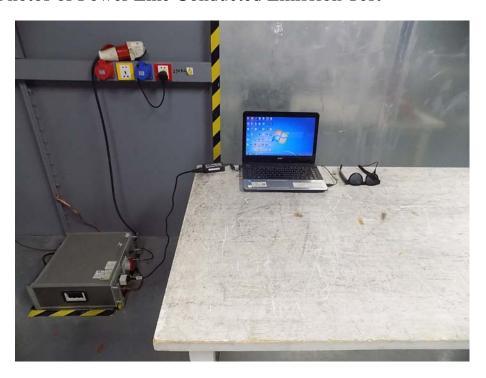
Set up the EUT and test generator as shown on Section 11.2.2.

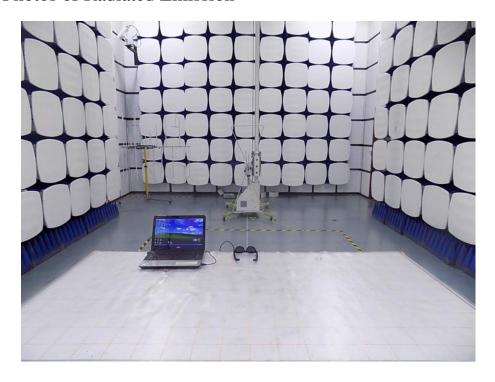

For line-to-line coupling mode, provide a 1kV 1.2/50us voltage surge (at pen-circuit condition) and 8/20us current surge to EUT selected points, and for active line / neutral lines to ground are same except test level is 2kV.

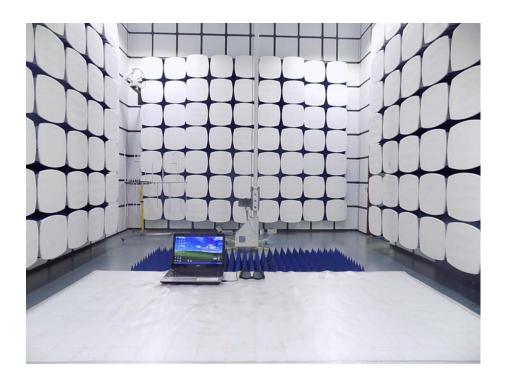
At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are applied during test.

Different phase angles are done individually.

Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

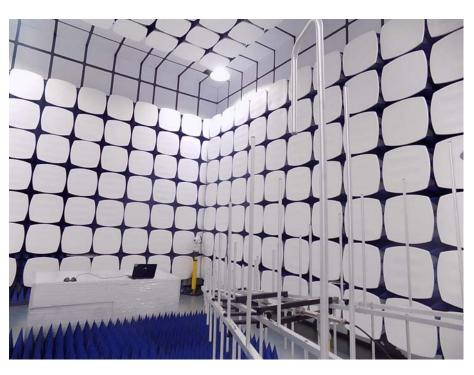

Set EUT in idle mode and repeated test with a receive antenna connected to a spectrum analyzer to see if there was unintentional transmissions happened.


12.4. Test Result


13. Photos of Test Setup

13.1. Photos of Power Line Conducted Emission Test

13.2. Photos of Radiated Emission

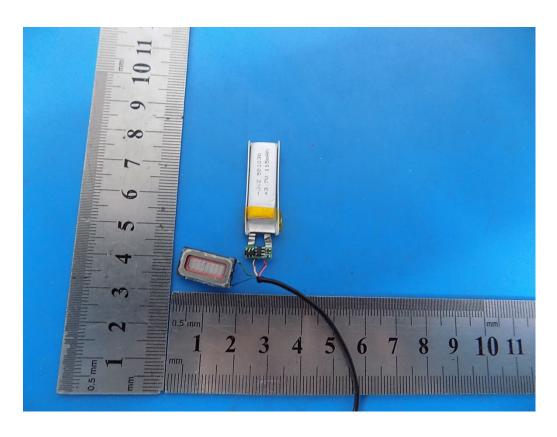


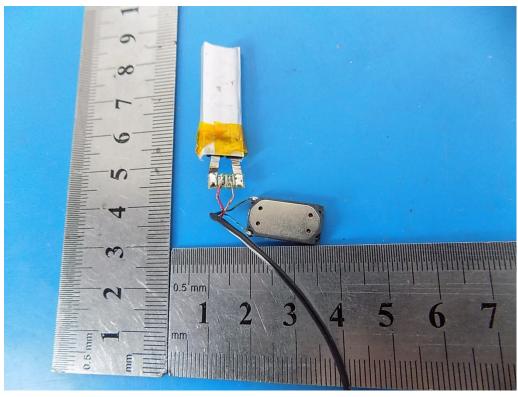
13.3. Photos of Electrostatic Discharge Immunity Test

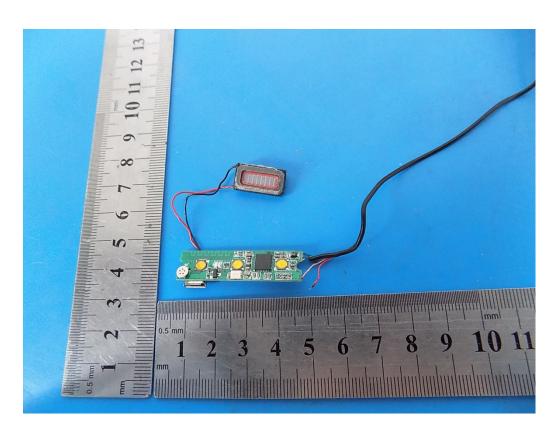
13.4. Photo of RF Test

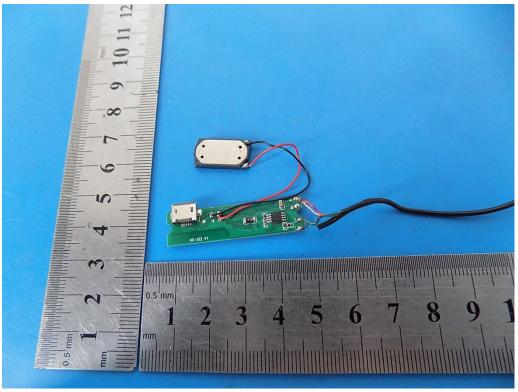
14. Photos of EUT

Report No.: T1872164 01




Page 43 of 47





Report No.: T1872164 01

-----THE END OF REPORT-----