

Report No:

EMC1712200-02

File reference No:

2017-12-28

Applicant:

Product:

Bluetooth Neckband Earphone

Brand Name:

N/A

Model No:

BTH-30

Test Standards:

ETSI EN 300 328 v2.1.1 (2016-11)

Test result:

The EMC testing has been performed on the submitted samples and found in compliance with council RE Directive 2014/53/EU

Terry Tang

EMC Manager

Dated:

December 28, 2017

Results appearing herein relate only to the sample tested

The technical reports is issued errors and omissions exempt and is subject to withdrawal at

SHENZHEN TIMEWAY TESTING LABORATORIES

Room 512-519, 5/F., East Tower, Building 4, Anhua Industrial Zone, Futian District, Shenzhen, Guangdong, China

Tel (755) 83448688, Fax (755) 83442996, E-Mail:info@timeway-lab.com

Date: 2017-12-28

Page 2 of 48

Special Statement:

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.

The testing quality system of our laboratory meet with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L2292

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of testing Laboratories.

Date: 2017-12-28

Page 3 of 48

Test Report Conclusion

Content

1.0	General Details	4
1.1	Notes	4
1.2	Test Laboratory	4
1.3	Details of Applicant.	4
1.4	Application Details	5
1.5	Test Item.	6
1.6	Test Standards	6
1.7	Configuration of The EUT	7
1.8	EUT Modification.	7
1.9	Test By	7
2.0	Technical Test.	8
2.1	Summary of Test Result	8
2.2	Test Report.	8
	Clause 4.3.1.2RF output power.	9
	Clause 4.3.1.4Accumulated transmit Time, Minimum Frequency Occupation and Hopping	10
	Sequence	
	Clause 4.3.1.5Hopping Frequency Separation.	28
	Clause 4.3.1.8Occupied Channel Bandwidth	30
	Clause 4.3.1.9Transmitter unwanted emissions in the out-of-band domain	33
	Clause 4.3.1.10Transmitter unwanted emissions in the spurious domain	35
	Clause 4.3.1.11Receiver Spurious Emissions.	36
	Clause 4.3.1.12 Receiver Blocking.	37
3.0	CE Label	41
4.0	Test Setup Photos.	42
5.0	Photograph-EUT	43
6.0	Test Equipments	46
7.0	Measurement Uncertainty	48

Date: 2017-12-28

Page 4 of 48

1. General Information

1.1 Notes

The test results of this report relate exclusively to the test item specified in 1.5. The TIMEWAY Lab does not assume Responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the TIMEWAY Lab.

1.2 Testing Laboratory

SHENZHEN TIMEWAY TESTING LABORATORIES

East 5/Block 4, Anhua Industrial Zone, No.8, Tairan Rd. CheGongMiao, FuTian District, Shenzhen, CHINA

Tel: +86 755 83448688 Fax: +86 755 83442996

Internet: www.timeway-lab.com

Site on File With the Federal Communications and Commission – United States

Registration Number: 899988

For 3m & 10 m OATS

Site Listed with Industry Canada of Ottawa, Canada

Registration Number: IC: 5205A-02

For 3m & 10 m OATS

1.3 Test Data

Date of Receipt of Test Item: December 26, 2017 Date of Test: December 26, 2016~ December 28, 2017

Date: 2017-12-28

Page 5 of 48

1.4 Description of EUT

EUT Type:	Bluetooth Neckband Earphon	e
Applicant		
Manufacturer		
Equipment type:	Bluetooth 2.4G	
Modulation Type (Technology):	GFSK, Л/4DQPSK, 8DPSK	for Bluetooth
Operating Frequency Range:	2.402GHz - 2.480GHz	
Modulation used by the equipment.	FHSS	
Maximum e.r.i.p	-7.15 dBm	
	GFSK	986kHz
Maximum OCB:	Л/4DQPSK	1070kHz
Adaptive Mode:	Adaptive/non-adaptive equipment:	Adaptive Equipment without the possibility to switch to a non-adaptive mode
	LBT Base DAA:	Yes
	Non-LBT Base DAA:	No
	Number of transmit chain:	1
	Number of receive chain:	1
	Channel Occupancy Time:	1.162ms (worse case)
Antenna Gain:	Antenna Type:	PCB Antenna
	Antenna Gain:	0dBi
Operating voltage:	Normal:	3.7V
	Lowest:	3.3V
	Highest:	4.2V
Operating temperature	Normal:	25℃
	Lowest:	-20℃
	Highest:	40 ℃

Date: 2017-12-28

Page 6 of 48

1.5 Setting of test system

Setting	Value			
EUT type:	Bluetooth 2.4G			
	Mode Data Rate			
	GFSK 1Mbps			
	Л/4DQPSK, 2Mbps			
	8DPSK 3Mbps			
EUT frequency configurable:	Yes			
Test channel-Low:	2422MHz (GFSK, Л/4DQPSK, 8DPSK)			
Test channel-Middle:	2441MHz (GFSK, Л/4DQPSK, 8DPSK)			
Test channel-High:	2480MHz (GFSK, Л/4DQPSK, 8DPSK)			
Adaptive:	Yes			
With TPC function:	No			
Number of the antenna:	1			
Number of transmission chains:	1			
Beam forming:	No			
Operating frequency range:	2400MHz~2483.5MHz			
Maximum beam forming gain:	N.A			
Antenna gain:	0dBi			

1.6 Test Standards

ETSI EN 300 328 v 2.1.1 (2016-11)

Wideband transmission systems;

Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU

Note: All radiated measurements were made in all three orthogonal planes. The values reported are the maximum values.

Date: 2017-12-28

Page 7 of 48

1.7 Configuration of The EUT

The EUT was configured according to CISPR16. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

A. EUT

Device	Manufacturer	Model	
Bluetooth Neckband Earphone	Richen Industrial Co., Ltd.	BTH-30	

B. Internal Devices

Device	Manufacturer	Model
N/A		

C. Peripherals

D. EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

1.8 EUT Modifications

No modification by SHENZHEN TIMEWAY TESTING LABORATORIES

1.9 Tests or Witness Test Engineering

Test By:

Printing Name: Terry Tang

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Date: 2017-12-28

Page 8 of 48

2. Technical Test

2.1 Summary of Test Results

No deviations from the technical specification(s) were ascertained in the course of the tests Performed			
Final Verdict:	Pass		
(Only "Passed" if all Measurements are "Passed")			

2.2 Test Report

Test Report Reference

1	easurements					
Parameter to be measured	Clause	Result				
Transmitter Parameters						
RF output power	Clause 4.3.1.2	Pass				
Duty Cycle, Tx-sequence, Tx-gap	Clause 4.3.1.3	N/A				
Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Clause 4.3.1.4	Pass				
Hopping Frequency Separation	Clause 4.3.1.5	Pass				
Medium Utilisation (MU) Factpr	Clause 4.3.1.6	N/A				
Adaptivity (Adaptive Frequency Hopping)	Clause 4.3.1.7	N/A				
Occupied Channel Bandwidth	Clause 4.3.1.8	Pass				
Transmitter unwanted emissions in the out-of-band domain	Clause 4.3.1.9	Pass				
Transmitter unwanted emissions in the spurious domain	Clause 4.3.1.10	Pass				
Receiver l	Parameters					
Receiver Spurious Emissions	Clause 4.3.1.11	Pass				
Receiver Blocking	Clause 4.3.1.12	Pass				
Geo-location capability	Clause 4.3.1.13	N/A*				

Note: The clause numbers are referenced to ETSI EN 300 328 v2.1.1 (2016-11)

Note: 1.N/A= Not applicable. Because these requirements do not apply for equipment with a maximum declared RF Output power of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. For the EUT, the RF output power less than 10dBm.

2. N/A*: EUT without Geo-location capability

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Date: 2017-12-28

Page 9 of 48

Clause 4.3.1.2 RF output Power (Conducted)

Test Method according to clause 5.4.2.2.1

GFSK Mode

	Transmitter Power (dBm) EIRP							
Test Conditions	T _{nom} (25 °C)	T _{min} (-20℃)		T _{max} (40°C)				
	DC3.7V	DC3.3V	DC4.2V	DC3.3V	DC4.2V			
Low Freq.2402MHz	-7.15	-7.26	-7.20	-7.17	-7.30			
Mid Freq.2441MHz	-7.23	-7.31	-7.28	-7.24	-7.35			
High Freq.2480MHz	-7.52	-7.65	-7.49	-7.53	-7.61			

Л/4DQPSK Mode

	Transmitter Power (dBm) EIRP					
Test Conditions	T _{nom} (25℃)	T _{min} (-20℃)		T_{max} (40°C)		
	DC3.7V	DC3.3V	DC4.2V	DC3.3V	DC4.2V	
Low Freq.2402MHz	-8.23	-8.40	-8.34	-8.29	-8.31	
Mid Freq.2441MHz	-8.38	-8.55	-8.49	-8.43	-8.50	
High Freq.2480MHz	-8.41	-8.62	-8.53	-8.47	-8.55	

8DPSK Mode

	Transmitter Power (dBm) EIRP					
Test Conditions	T _{nom} (25℃)	T _{min} (-20℃)		T _{max} (55℃)		
	DC3.7V	DC3.3V	DC4.2V	DC3.3V	DC4.2V	
Low Freq.2402MHz	-8.52	-8.47	-8.71	-8.63	-8.58	
Mid Freq.2441MHz	-8.62	-8.59	-8.83	-8.75	-8.72	
High Freq.2480MHz	-8.67	-8.64	-8.90	-8.82	-8.79	

Limits: Clause 4.3.1.2.3

The maximum RF output power for adaptive Frequency Hopping equipment shall be equal to or less than 20 dBm.

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Date: 2017-12-28

Page 10 of 48

Clause 4.3.1.4 Accumulated Transmit Time, Minimum Frequency Occupation and Hopping Sequence

For Adaptive frequency hopping system

Test method according to Clause 5.4.4.2.1

2402 MHz

GFSK Mode

	Accumulated Transmit Time								
Mode	Number of	Number o	of transmission in	a period (Channe	el Number *	Length of	Result	Limit	
	Hopping		0.4	4sec)		transmissions	(ms)	(ms)	
	Channel	Period	Sweep Time	Times in a	Times in a	Time (ms)			
		(Sec)	(Sec)	sweep	period				
DH1	79	31.6	6	60	316.0	0.581	34.86	400	
DH3	79	31.6	6	32	168.3	1.824	58.37	400	
DH5	79	31.6	6	22	115.9	3.066	67.45	400	

Л/4DQPSK Mode

			Accu	ımulated Trans	mit Time			
Mode	Mode Number of Number of transmission in a period (Channel Number *					Length of	Result	Limit
	Hopping		0.4	4sec)	transmissions	(ms)	(ms)	
	Channel	Period	Sweep Time	Times in a	Times in a	Time (ms)		
		(Sec)	(Sec)	sweep	period			
DH1	79	31.6	6	60	316.0	0.581	34.86	400
DH3	79	31.6	6	31	163.3	1.844	57.16	400
DH5	79	31.6	6	21	110.6	3.106	65.23	400

Date: 2017-12-28

Page 11 of 48

GFSK Mode

	Minimum Frequency Occupation Time										
Mode	Number of Hopping Channel	Number of transmission in a period of 4* Dwell * number of hopping channel	Length of transmissions Time (ms)	Result (ms)	Minimum Limit (ms)						
DH1	79	2	0.581	1.162	0.581						
DH3	79	2	1.824	3.648	1.824						
DH5	79	2	3.066	6.132	3.066						

Л/4DOPSK Mode

	- I D GI SIL Mode										
	Minimum Frequency Occupation Time										
Mode	Number of	Result	Minimum								
	Hopping	number of hopping channel	transmissions	(ms)	Limit						
	Channel		Time (ms)		(ms)						
DH1	79	2	0.581	1.162	0.581						
DH3	79	2	1.844	3.688	1.844						
DH5	79	2	3.106	6.212	3.106						

Date: 2017-12-28

Page 12 of 48

2480 MHz

GFSK Mode

	Accumulated Transmit Time											
Mode	Number of Hopping	Number o	of transmission in	a period (Channo 4sec)	Length of transmissions	Result (ms)	Limit (ms)					
	Channel	Period	Sweep Time	Times in a	Times in a	Time (ms)						
		(Sec)	(Sec)	sweep	period							
DH1	79	31.6	6	59	310.7	0.581	34.28	400				
DH3	79	31.6	6	33	173.8	1.844	60.85	400				
DH5	79	31.6	6	26	136.9	3.066	79.72	400				

Л/4DQPSK Mode

	Accumulated Transmit Time											
Mode	Number of	Number o	of transmission in	a period (Channe	el Number *	Length of	Result	Limit				
	Hopping		0.4	4sec)	transmissions	(ms)	(ms)					
	Channel	Period	Sweep Time	Times in a	Times in a	Time (ms)						
		(Sec)	(Sec)	sweep	period							
DH1	79	31.6	6	58	305.5	0.601	34.86	400				
DH3	79	31.6	6	26	136.9	1.824	47.42	400				
DH5	79	31.6	6	21	110.6	3.086	64.81	400				

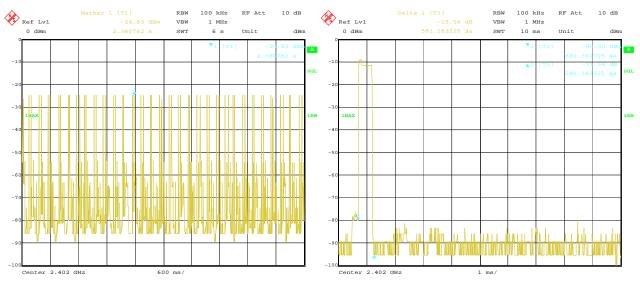
Date: 2017-12-28

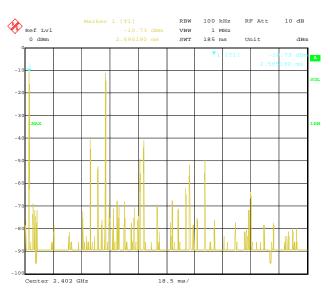
Page 13 of 48

GFSK Mode

	Minimum Frequency Occupation Time										
Mode	Number of Hopping Channel	Number of transmission in a period of 4* Dwell * number of hopping channel	Length of transmissions Time (ms)	Result (ms)	Minimum Limit (ms)						
DH1	79	2	0.581	1.162	0.581						
DH3	79	3	1.844	5.532	1.844						
DH5	79	2	3.066	6.132	3.066						

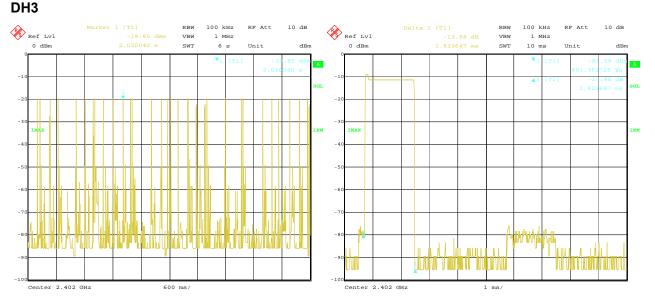
Л/4DOPSK Mode

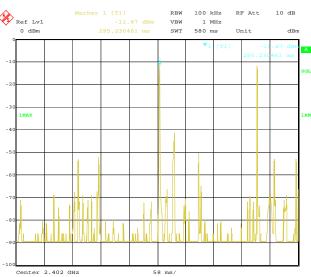

	Minimum Frequency Occupation Time										
Mode	Number of Hopping Channel	Number of transmission in a period of 4* Dwell * number of hopping channel	Length of transmissions Time (ms)	Result (ms)	Minimum Limit (ms)						
DH1	79	2	0.601	1.202	0.601						
DH3	79	2	1.824	3.648	1.824						
DH5	79	2	3.086	6.172	3.086						


Date: 2017-12-28

Page 14 of 48

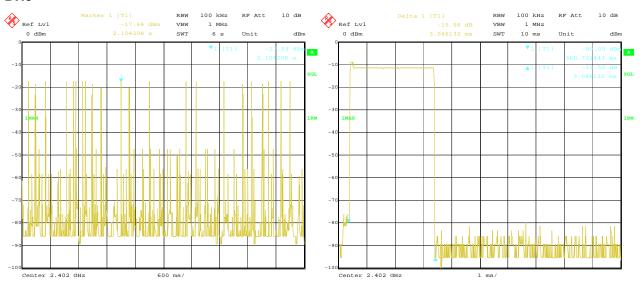
2402 MHz GFSK Mode

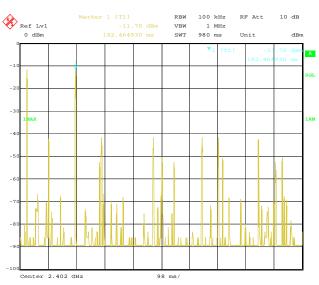



Date: 2017-12-28

Page 15 of 48

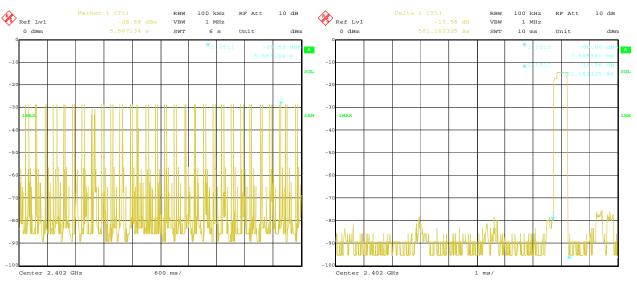
_

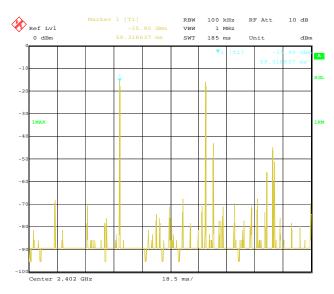




Date: 2017-12-28

Page 16 of 48

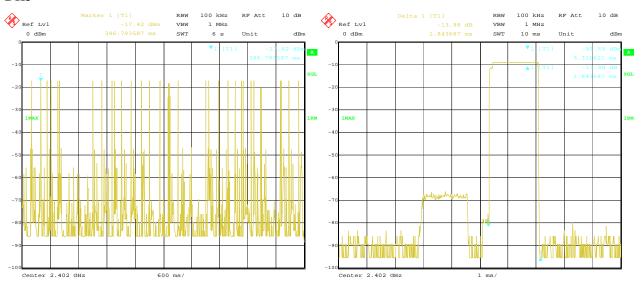

Date: 2017-12-28

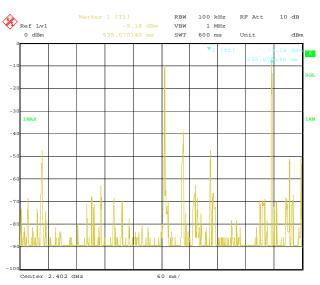


Page 17 of 48

Aug. 2017-12-20

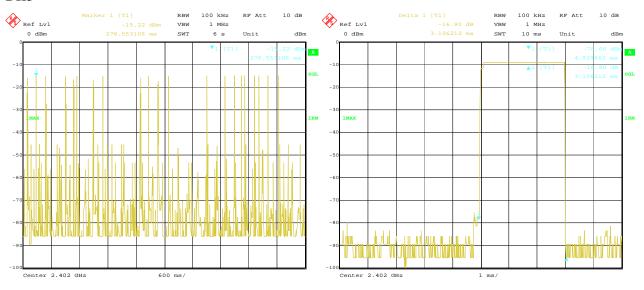
Л/4DQPSK Mode

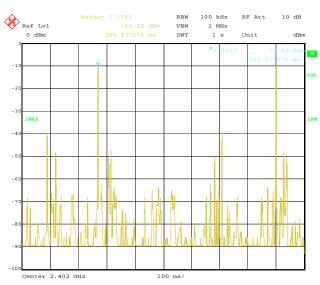



Date: 2017-12-28

Page 18 of 48

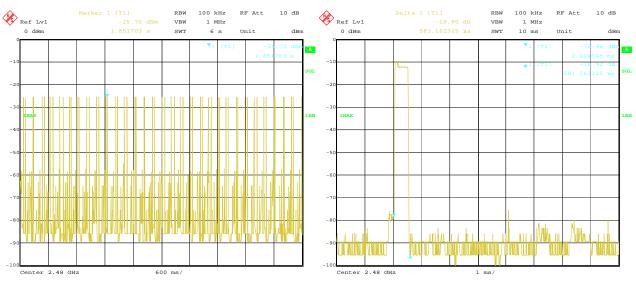
ate. 2017-12-28

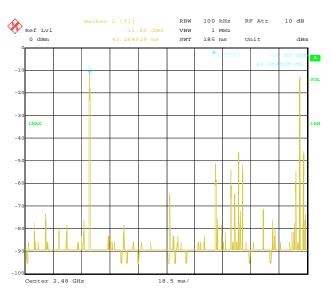




Date: 2017-12-28

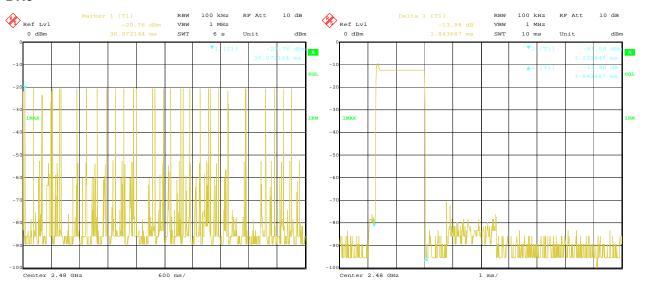
Page 19 of 48

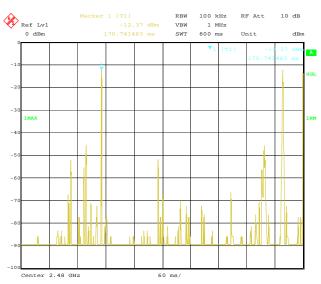



Date: 2017-12-28

Page 20 of 48

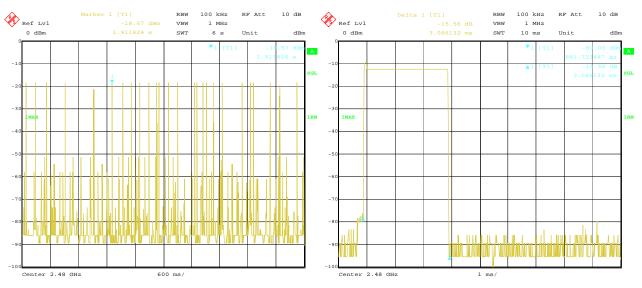
2480 MHz GFSK Mode

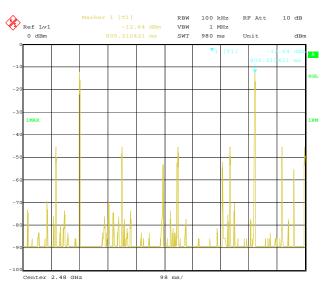




Date: 2017-12-28

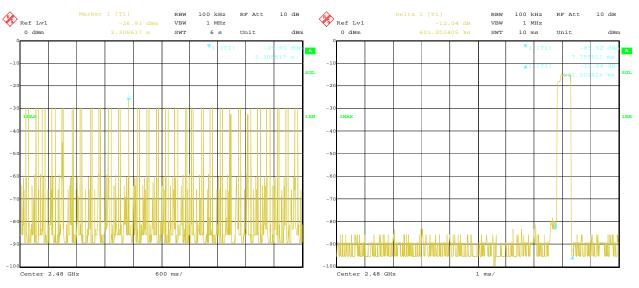
Page 21 of 48

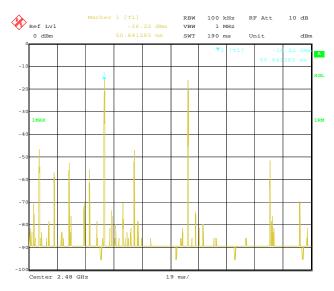




Date: 2017-12-28

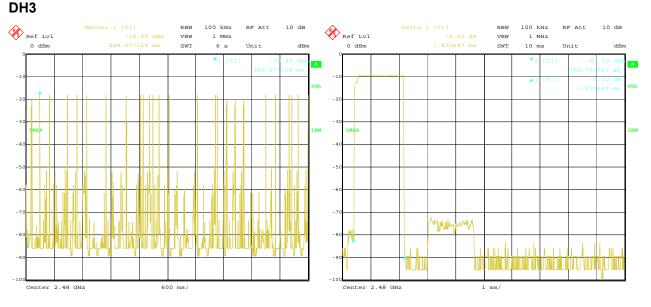
Page 22 of 48

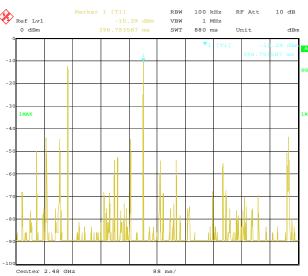



Date: 2017-12-28

Page 23 of 48

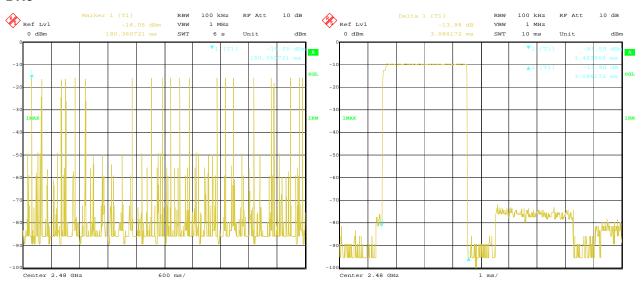
Л/4DQPSK Mode

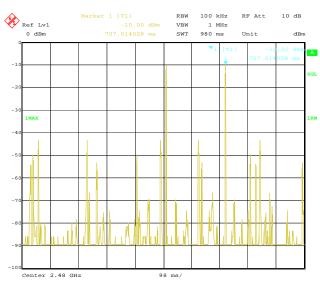




Date: 2017-12-28

Page 24 of 48

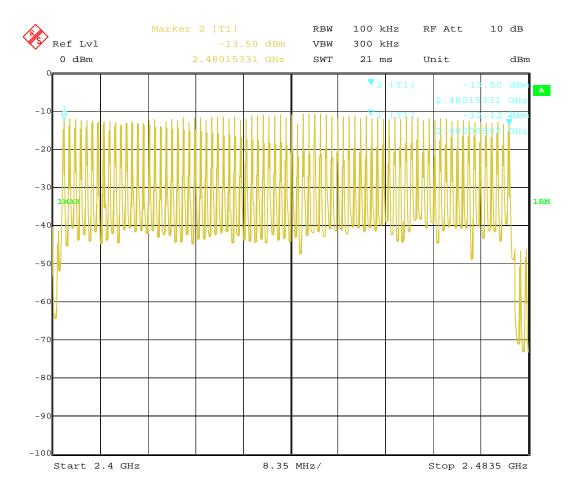




Date: 2017-12-28

Page 25 of 48

Date: 2017-12-28

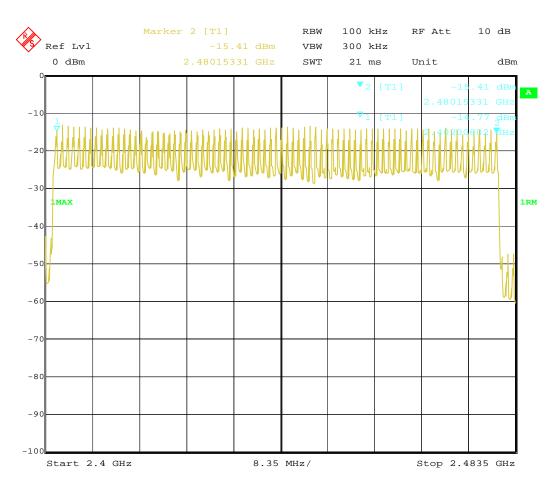


Page 26 of 48

Hopping sequence

GFSK

EUT	Blueto	Bluetooth Neckband Earphone		Model		BTH-30
Mode	Hopping On		Input Voltage		DC3.7V	
Temperature		24 deg. C,	Humidi	Humidity		56% RH
Operating Frequency		Number of hopping channels		Limit		Pass/ Fail
2402-2480MHz		79		≥ 15		Pass


Date: 2017-12-28

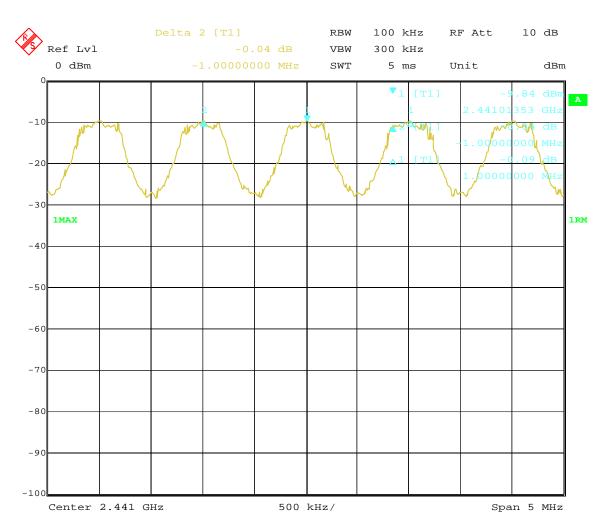
Page 27 of 48

Л/4DQPSK Mode

EUT	Blueto	Bluetooth Neckband Earphone		Model		BTH-30
Mode	Hopping On		Input Voltage		DC3.7V	
Temperature		24 deg. C,	Humidi	Humidity		56% RH
Operating Frequency		Number of hopping channels		Li	mit	Pass/ Fail
2402-2480MHz		79		≥ 15		Pass

Note: Note: GFSK and JI/4DQPSK Mode was the worse case

Date: 2017-12-28


Page 28 of 48

Clause 4.3.1.5 Hopping Frequency Separation

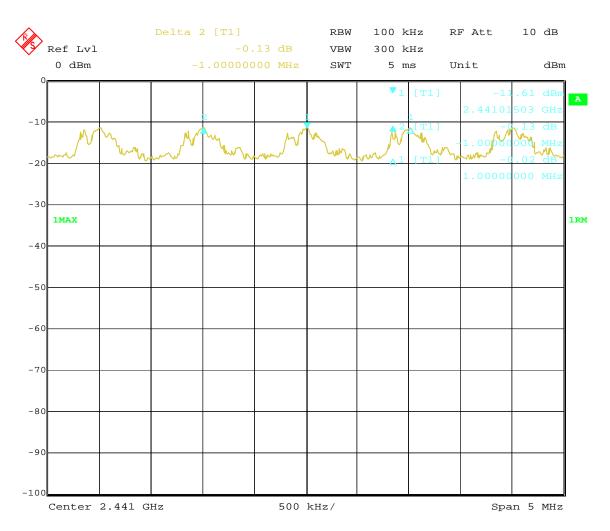
Test method according to Clause 5.4.5.2.1.3

GFSK Mode

EUT		Bluetooth Neckband Earphone		Model		BTH-30	
Mode		Hopping On		Input Voltage		DC3.7V	
Temperature	e	24 deg. C,		Humidity		56% RH	
Channel	Ch	annel Frequency (MHz)	Carrier Frequ Separatio	-	L	imit	Pass/ Fail
Middle	Middle 2441		1.000MHz		≥100kHz		Pass

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.


Date: 2017-12-28

Page 29 of 48

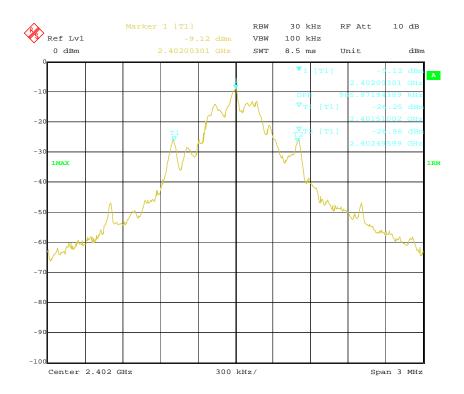
Л/4DQPSK Mode

EUT		Bluetooth Neckl	luetooth Neckband Earphone		Model		BTH-30	
Mode		Hoppin	Hopping On		Input Voltage		DC3.7V	
Temperature		24 deg	g. C,	Humidity		56% RH		
Channel	Ch	annel Frequency (MHz)	Carrier Frequ Separatio	-	Lin	nit	Pass/ Fail	
Middle 2441		1.000MHz		≥100kHz		Pass		

Note: Note: GFSK and JI/4DQPSK Mode was the worse case

Date: 2017-12-28

Page 30 of 48


Clause 4.3.1.8 Occupied Channel Bandwidth

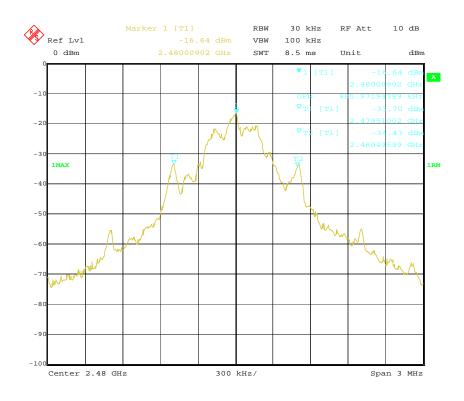
Test method according to Clause 5.4.7.2.1

GFSK Mode

K Wood								
EU'	Γ	Bluetooth N	eckband Earphone	Model	ВТ	BTH-30		
Mod	le	Но	pping On	Input Voltage	nput Voltage D			
Temper	ature	24	l deg. C,	Humidity	56	% RH		
Channel		el Frequency (MHz)	99% Channel Bandwidth (kHz)	Measured F (MH	1 2	Limit(MHz)		
Low		2402	986	2401.	.51	≥2400		
High		2480	986	2480.	2480.50			
Result: Pa	iss							

Low Channel

The report refers only to the sample tested and does not apply to the bulk.

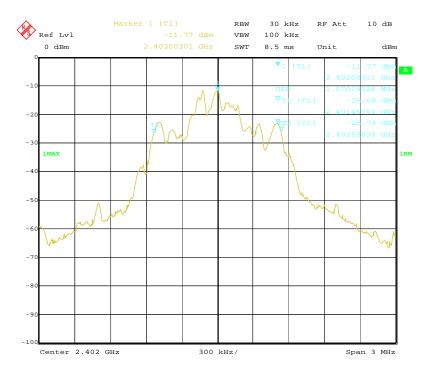

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Date: 2017-12-28

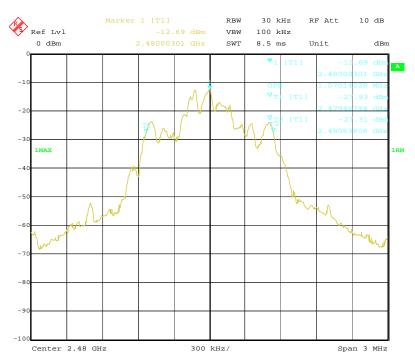
Page 31 of 48

High Channel

Л/4DQPSK Mode


EUT Bluetooth		Bluetooth N	eckband Earphone	Model	BTH-30	
Mode		Hopping On		Input Voltage Do		C3.7V
Temperature		24	l deg. C,	Humidity	Humidity 56	
Channel		el Frequency (MHz)	99% Channel Bandwidth (kHz)		Measured Frequency (MHz)	
Low	2402		1070	2401.	2401.47	
High	2480		1070	2480.	2480.54	
Result: Pass						

Date: 2017-12-28



Page 32 of 48

Low Channel

High Channel

Note: Note: GFSK and $\Pi/4DQPSK$ Mode was the worse case

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Date: 2017-12-28

Page 33 of 48

Clause 4.3.1.9 Transmitter unwanted emissions in the out-of-band domain

Test method according to Clause 5.4.8.2.1

EUT	Bluetooth Neckband Earphone	Model	BTH-30
Mode	Hopping On	Input Voltage	DC3.7V
Temperature	24 deg. C,	Humidity	56% RH

GFSK Mode

OTBIX Mout					
Chan	nel	2402MHz		2480MHz	
Frequency		(OCB:0.986MHz)		(OCB: 0.986MHz)	
Test Cor	ndition	OOB Emission (MHz)		OOB Emission (MHz)	
		2399.014-2400	2398.028-2399.014	2483.5-2484.486	2484.486-2485.472
		Max. Power	Max. Power	Max. Power	Max. Power
		(dBm/MHz	(dBm/MHz	(dBm/MHz	(dBm/MHz
T _{nor} 25℃	V _{nor} (V)	-46.23	-48.56	-46.61	-48.35
T _{min} -20°C	$V_L(V)$	-46.12	-48.71	-46.53	-48.26
T _{max} 40℃	$V_L(V)$	-46.40	-48.63	-46.68	-48.42
T _{min} -20°C	$V_{H}(V)$	-46.36	-48.48	-46.74	-48.39
T _{max} 40°C	$V_{H}(V)$	-46.31	-48.52	-46.80	-48.34
Limit (dBm)	-10	-20	-10	-20
Pass/Fail		Pass	Pass	Pass	Pass

Date: 2017-12-28

Page 34 of 48

Л/4DQPSK Mode

CI 1 2 2 100 CI					
Channel		2402MHz		2480MHz	
Frequency		(OCB:1.070MHz)		(OCB: 1.070MHz)	
Test Cor	ndition	OOB Emission (MHz)		OOB Emission (MHz)	
		2398.93-2400	2397.86-2398.93	2483.5-2484.57	2484.57-2485.64
		Max. Power	Max. Power	Max. Power	Max. Power
		(dBm/MHz)	(dBm/MHz)	(dBm/MHz)	(dBm/MHz)
T _{nor} 25℃	V _{nor} (V)	-47.42	-49.33	-47.64	-49.73
T _{min} -20°C	$V_L(V)$	-47.65	-49.26	-47.67	-49.82
T _{max} 40℃	$V_L(V)$	-47.38	-49.19	-47.73	-49.69
T _{min} -20°C	V _H (V)	-47.51	-49.22	-47.71	-49.77
T _{max} 40°C	V _H (V)	-47.57	-49.31	-47.64	-49.86
Limit (dBm)		-10	-20	-10	-20
Pass/Fail		Pass	Pass	Pass	Pass

Note: Note: GFSK and II/4DQPSK Mode was the worse case

Date: 2017-12-28

Page 35 of 48

Clause 4.3.1.10 Transmitter unwanted emissions in the spurious domain

(Radiated)

Transmitter Operating

Note:

- 1. Measurements were done on low & high channels, but depicting the worst case are submitted in the report.
- 2. The spurious emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges.
- 3. The test frequency range is from 30M-12.75G and please see clause 5.4.9.2.2 of EN 300 328 for the test method.

Lowest Frequency (2402MHz)			Highest Frequency (2480MHz)		
f(MHz)	Band-Width (kHz)	Level (dBm)	f(MHz)	Band-Width (kHz)	Level (dBm)
192.04	120	-60.3	192.04	120	-60.6
480.04	120	-59.3	480.04	120	-59.7
4804	1000	-50.1	4960	1000	-49.3
Measurement Uncertainty		±6dB			

Limits Clause 4.3.1.10.3

Table 4: Transmitter limits for spurious emissions

Frequency range	Maximum power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 862 MHz	-54 dBm	100 kHz
862 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 GHz	-30 dBm	1 MHz

Note: GFSK was the worse case

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

Date: 2017-12-28

Page 36 of 48

Clause 4.3.1.11 Receiver Spurious Emissions (Radiated)

Note:

- 1. Measurements were done on low & high channels, but depicting the worst case are submitted in the report.
- 2. The receiver spurious emissions were done with different settings, using the relevant and pre-amplifiers for the relevant frequency ranges.
- 3. The test frequency range is from 30M-12.75G and please see clause 5.4.10.2.2 of EN 300 328 for the test method.

Low Channel			High Channel		
f(MHz)	Band-Width (kHz)	Level (dBm)	f(MHz)	Band-Width (kHz)	Level (dBm)
288	120	58.9	288	120	-59.2
Measurement Uncertainty		±6dB			

Limits Clause 4.3.1.11.3

Table 5: Spurious emission limits for receivers

Frequency range	Maximum power	Bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12,75 GHz	-47 dBm	1 MHz

Date: 2017-12-28

Page 37 of 48

Clause 4.3.1.12 Receiver Blocking

Definition

Receiver blocking is a measure of the ability of the equipment to receive a wanted signal on its operating channel without exceeding a given degradation in the presence of an unwanted signal (blocking signal) on frequencies other than those of the operating band provided in table 1.

Performance Criteria

The minimum performance criterion shall be a PER less than or equal to 10 %. The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment (see clause 5.4.1.t)).

Limits

While maintaining the minimum performance criteria as defined in clause 4.3.1.12.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 6, table 7 or table 8.

Receiver Category 1

Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal
P _{min} + 6 dB	2 380 2 503,5	-53	CW
P _{min} + 6 dB	2 300 2 330 2 360	-47	CW
P _{min} + 6 dB	2 523,5 2 553,5 2 583,5 2 613,5 2 643,5 2 673,5	-47	CW

NOTE 1: P_{min} is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain.

The report refers only to the sample tested and does not apply to the bulk.

Date: 2017-12-28

Page 38 of 48

Receiver Category 2

Table 7: Receiver Blocking parameters receiver category 2 equipment

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal
P _{min} + 6 dB	2 380 2 503,5	-57	CW
P _{min} + 6 dB	2 300 2 583,5	-47	CW

NOTE 1: P_{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain.

Receiver Category 3

Table 8: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal
P _{min} + 12 dB	2 380 2 503,5	-57	CW
P _{min} + 12 dB	2 300 2 583,5	-47	CW

NOTE 1: P_{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain.

Date: 2017-12-28

Page 39 of 48

Test Configuration

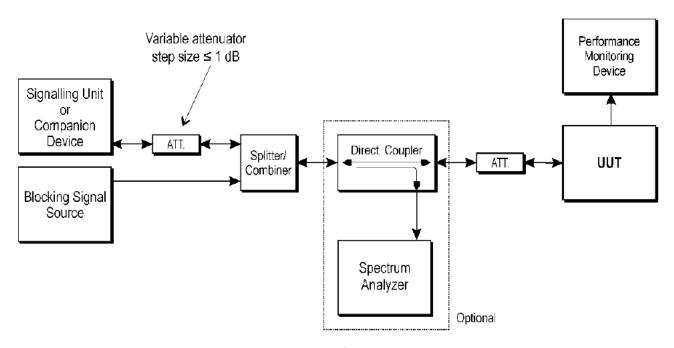


Figure 6: Test Set-up for receiver blocking

Test Method

For systems using multiple receive chains only one chain (antenna port) need to be tested. All other receiver inputs shall be terminated.

The procedure in step 1 to step 6 below shall be used to verify the receiver blocking requirement as described in clause 4.3.1.12 or clause 4.3.2.11.

Table 6, table 7 and table 8 in clause 4.3.1.12.4 contain the applicable blocking frequencies and blocking levels for each of the receiver categories for testing Receiver Blocking on frequency hopping equipment.

Table 14, table 15 and table 16 in clause 4.3.2.11.4 contain the applicable blocking frequencies and blocking levels for each of the receiver categories for testing Receiver Blocking on equipment using wide band modulations other than FHSS.

Step1:

• For non-frequency hopping equipment, the UUT shall be set to the lowest operating channel.

Step 2:

• The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. SHENZHEN TIMEWAY TESTING LABORATORIES reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Date: 2017-12-28

Page 40 of 48

Step 3:

- With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device using the test setup shown in figure 6. The attenuation of the variable attenuator shall be increased in 1 dB steps to a value at which the minimum performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still met. The resulting level for the wanted signal at the input of the UUT is P_{min} .
- This signal level (P_{min}) is increased by the value provided in the table corresponding to the receiver category and type of equipment.

Step 4:

• The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment. It shall be verified and recorded in the test report that the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is met.

Step 5:

• Repeat step 4 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment.

Step 6:

• For non-frequency hopping equipment, repeat step 2 to step 5 with the UUT operating at the highest operating channel.

Test Result

The EUT is regarded as category 3 Receiver

Hopping Mode

Wanted signal mean power	Blocking signal	Blocking signal	PER	Result
from companion	frequency(MHz)	power(dBm)		
device(dBm)				
-83.1dBm (Pmin) +12 dB	2380	-57	0%	Pass
-83.1dBm (Pmin) +12 dB	2503.5	-57	0%	Pass
-83.1dBm (Pmin) +12 dB	2300	-47	0%	Pass
-83.1dBm (Pmin) +12 dB	2583.5	-47	0%	Pass

Date: 2017-12-28

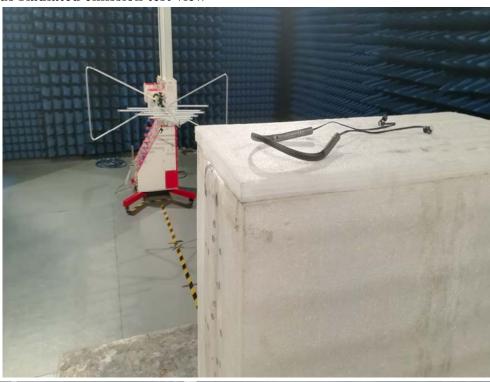
Page 41 of 48

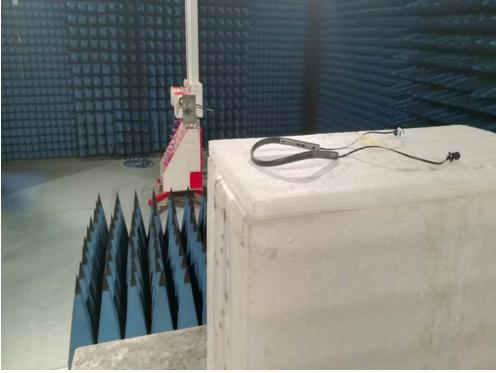
3.0 Product Labelling

CE Mark label specification

Text of the mark is black or white in color and is left justified. Labels are printed in indelible ink on permanent adhesive backing and shall be affixed at a conspicuous location on the EUT or silk-screened onto the EUT.

Mark Location: Rear enclosure


Date: 2017-12-28



Page 42 of 48

4. 0 Photographs – Test Setup

Spurious Radiated emission test view

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. SHENZHEN TIMEWAY TESTING LABORATORIES reserves the rights to withdraw it and to adopt

any other remedies which may be appropriate.

Date: 2017-12-28

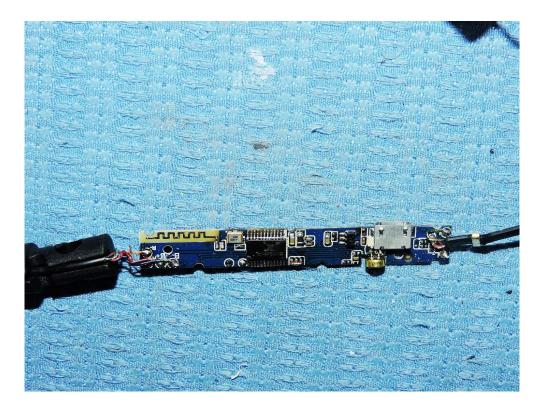
Page 43 of 48

5.0 Photographs - EUT

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. SHENZHEN TIMEWAY TESTING LABORATORIES reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.


Date: 2017-12-28

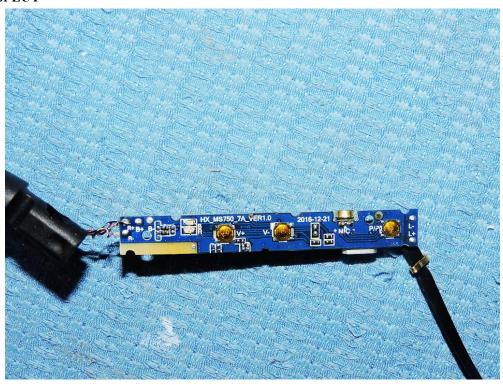
Page 44 of 48

Photos of EUT

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. SHENZHEN TIMEWAY TESTING LABORATORIES reserves the rights to withdraw it and to adopt


any other remedies which may be appropriate.

Date: 2017-12-28

Page 45 of 48

Photos of EUT

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. SHENZHEN TIMEWAY TESTING LABORATORIES reserves the rights to withdraw it and to adopt

any other remedies which may be appropriate.

Date: 2017-12-28

Page 46 of 48

6.0 Test Equipments					
Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
ESPI Test Receiver	ROHDE&SCHWARZ	ESPI 3	100379	2017-06-02	2018-06-01
TWO Line-V-NETW	ROHDE&SCHWARZ	EZH3-Z5	100294	2017-06-02	2018-06-01
TWO Line-V-NETW	ROHDE&SCHWARZ	EZH3-Z5	100253	2017-06-02	2018-06-01
Ultra Broadband ANT	ROHDE&SCHWARZ	HL562	100157	2017-06-02	2018-06-01
ESDV Test Receiver	ROHDE&SCHWARZ	ESDV	100008	2017-06-02	2018-06-01
Impuls-Begrenzer	ROHDE&SCHWARZ	ESH3-Z2	100281	2017-06-02	2018-06-01
System Controller	СТ	SC100	-	2017-08-22	2018-08-21
Oscillator	KENWOOD	AG-203D	3070002	2017-08-22	2018-08-21
Spectrum Analyzer	HAMEG	HM5012	-	2017-08-22	2018-08-21
Power Supply	LW	APS1502	-	2017-08-22	2018-08-21
5K VA AC Power Source	California Instruments	5001iX	56060	2017-06-02	2018-06-01
CDN	EM TEST	CDN M2/M3	-	2017-06-02	2018-06-01
Attenuation	EM TEST	ATT6/75	-	2017-06-02	2018-06-01
Resistance	EM TEST	R100	-	2017-06-02	2018-06-01
Electromagnetic Injection Clamp	LITTHI	EM101	35708	2017-06-02	2018-06-01
Inductive Components	EM TEST	MC2630	-	2017-06-02	2018-06-01
Antenna	EM TEST	MS100	-	2017-06-02	2018-06-01
Signal Generator	ROHDE&SCHWARZ	SMT03	100029	2017-08-23	2018-08-22
Power Amplifier	AR	150W1000	300999	2017-08-23	2018-08-22
Field probe	Holaday	HI-6005	105152	2017-08-23	2018-08-22
Bilog Antenna	Chase	CBL6111C	2576	2017-08-23	2018-08-22
Loop Antenna	EMCO	6502	00042960	2017-08-23	2018-08-22
ESPI Test Receiver	ROHDE&SCHWARZ	ESI26	838786/013	2017-08-22	2018-08-21
3m OATS			N/A	2017-08-24	2018-08-23
Vector Signal Generator	AGILENT	E4438C	MY49070163	2017.01.20	2018.01.19

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. SHENZHEN TIMEWAY TESTING LABORATORIES reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Date: 2017-12-28

Page 47 of 48

Splitter	Mini-Circuits	ZAP-50W	NN256400424	2017.01.20	2018.01.19
Directional Coupler	AGILENT	87300C	MY44300299	2017.01.20	2018.01.19
vector Signal Generator	AGILENT	E4438C	US44271917	2017.01.20	2018.01.19
4 Ch.Simultaneous Sampling 14 Bits 2 MS/s	AGILENT	U2531A	TW54063507	2017.01.20	2018.01.19
4 Ch.Simultaneous Sampling 14 Bits 2 MS/s	AGILENT	U2531A	TW54063513	2017.01.20	2018.01.19
Splitter	Mini	PS3-7	4463	2017.01.20	2018.01.19
Spectrum Analyzer	AGILENT	E7405A	US44210471	2017.01.20	2018.01.19
Attenuator	Resnet	20dB	(n.a)	2017.01.20	2018.01.19
Signal Analyzer	AGILENT	N9010A	MY48030494	2017.01.20	2018.01.19
Horn Antenna	ROHDE&SCHWARZ	BBHA 9120D	9120D-631	2017-08-24	2018-08-23

Date: 2017-12-28

Page 48 of 48

7.0 Measurement Uncertainty

Test Item	Uncertainty
Occupied Channel Bandwidth	±5%
RF output power, conducted	±5%
Power Spectral Density, conducted	±3dB
Unwanted Emissions, conducted	±3dB
All emissions, radiated	±6dB
Temperature	±3°C
Humidity	±5%
DC and low frequency voltages	±3%
Time	±5%
Duty Cycle	±5%

End of the Report