

RED-EMC Test Report

For

Bluetooth Speaker

Model No.: A103, A104, A105, A106, A107, A108, A109mini

Prepared For : Address :

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW180412001-01E

Date of Test : Apr. 12~19, 2018

Date of Report : Apr. 19, 2018

Contents

1. General Information	botek Ar	100° Br.	4
1.1. Client Information	Work.	Aupole,	4
1.2. Description of Device (EUT)	V _{Ur}	, hotek	4
1.3. Auxiliary Equipment Used During Test	C- K-55-	h. Hotek	4
1.4. Description of Test Modes			55 مارورد المسلم المس
1.5. Test Equipment List.	o ^t	ek Anbo	6
1.6 Measurement Uncertainty			7
1.7 Description of Test Facility			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2. Summary of Test Results		Anbe	8
3. Emission Test	ek Zoojek	Vupore	9
3.1. Conducted Emission Test at Main Ports			Ann g
3.1.1. Test Standard and Limit	pote, Yun	wwatel	9
3.1.2. Test Setup	"upotek Yupo	br.	,.a/:9
3.1.3. Test Procedure	be. Mark	ote, Aug	10
3.1.4. Test Data	Van.	"botek A	10
3.2. Radiated Emission Test		e.K	15
3.2.1. Test Standard and Limit			
3.2.2. Test Setup		bo	16
3.2.3. Test Procedure 3.2.4. Test Data 4. Immunity Test 4.1. Electrostatic Discharge Test 4.1.1. Test Standard and Specification		k Whole	16
3.2.4. Test Data	Athore An		17
4. Immunity Test	Kipotek Vup	10 N	21
4.1. Electrostatic Discharge Test	aotek	Wpore V	22
4.1.1. Test Standard and Specification	Markey.	Anboten	22
4.1.2. Test Setup	Anb	potek	22
4.1.2. Test Setup	otek Aupor	K PII.	23
4.1.4. Test Data	Hotek Robote	And	23
4.2. Radiated, RF Electromagnetic Fields Test	Yun.	otek Anbo	24
4.2.1. Test Standard and Specification	Anbo An	drek	24
4.2.2. Test Setup	Anbote A	'un	24
4.2.3. Test Procedure	kotek	Anbo	24
4.2.4. Test Data	Notek	Pupo _{fer}	25
APPENDIX I TEST SETUP PHOTOGRAPH	oto Ano		26
APPENDIX II EXTERNAL PHOTOGRAPH	motek Anbo	P. NO	28
APPENDIX III INTERNAL PHOTOGRAPH	tek abr	AUD VIE	32

TEST REPORT

Applicant :

Manufacturer :

Product Name : Bluetooth Speaker

Model No. : A103, A104, A105, A106, A107, A108, A109mini

Trade Mark : N.A.

Rating(s) : Input: DC 5V, 500mA (with DC 3.7V, 530mAh Battery inside)

Test Standard(s) : ETSI EN 301 489-1 V2.2.0 (2017-03)

EN 55032: 2015

EN 55024: 2010+A1: 2015

ETSI EN 301 489-17 V3.2.0 (2017-03)

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the EN 301 489-1, EN 301 489-17, EN 55032 and EN 55024 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test

Prepared By

Apr. 12~19, 2018

(Tested Engineer / Winkey Wang)

Reviewer

(Project Manager / May Lu)

Approved & Authorized Signer

(Manager / Tom Chen)

1. General Information

1.1. Client Information

o',	Applicant	:	101/	botek	Anbotek Anbot At
	Address	:	Mp K Mor	V1.	Anbotek Anbo
1	Manufacturer	:	VU.	32.41	Anboten Anbotek
	Address	:	N As. (II)	y	otek Anbote And

1.2. Description of Device (EUT)

Product Name	:	Bluetooth Speaker	tek Anbotek Anbotek Anbo
Model No.	:	A103, A104, A105, A106, A107, (Note: All samples are the same only.)	A108, A109mini except the name, so we prepare "A103" for test
Trade Mark	:	N.A.	Anbotek Anbote And botek An
Test Power Supply	:	AC 110V, 50Hz for adapter / AC DC 3.7V Battery inside	230V, 50Hz for adapter
		Operation Frequency:	2402~2480MHz
		Transfer Rate:	1/2/3 Mbits/s
Product		Number of Channel:	79 Channels
Description	;	Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK
		Antenna Type:	PCB Antenna
·		Antenna Gain(Peak):	0 dBi

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

74	Adapter	:	Manufacturer: ZTE			hotek
			M/N: STC-A2050I1000USBA-C			Anna
			S/N: 201202102100876			Anbo
			Input: 100-240V~50/60Hz 0.3A			ek Anbore
1			Output: DC 5V, 1000mA	ek Yupo,	Y An.	otek anbot

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

	Pretest Mode	Description				
P	Mode 1	Charge & BT Mode				
İ	Mode 2	Playing Mode				

		For Conducted Emission	
	Final Test Mode	Description	
1	Mode 1	Charge & BT Mode	P ₃

	1407	For Radiated Emission	
3	Final Test Mode	Description	
00	Mode 1	Charge & BT Mode	do
Co	Mode 2	Playing Mode	A'

1.5. Test Equipment List

Conducted Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
potek 1.	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 17, 2017	Year N
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 17, 2017	1 Year
× 4.	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A Ando	N/A

Radiated Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Fupo	EMI Test Receiver	Rohde & Schwarz	ESPI NO	101604	Nov. 17, 2017	1 Year
2. A	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 20, 2017	1 Year
3.	Pre-amplifier	SONOMA	310N	186860	Nov. 17, 2017	1 Year
4:ek	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A	N/A

Electrostatic Discharge Measurement

	Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
otis	1.	ESD Simulators	3Ctest	ESD-30T	ES0131505	Nov. 17, 2017	1 Year

R/S Immunity Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
iek 1	RF Power Meter. Dual Channel	BOONTON	4232A	10539	May 20, 2017	1 year
2	50ohm Diode Power Sensor	BOONTON	51011EMC	34236/36164	May 20, 2017	1 year
An3ote	Broad-Band Horn Antenna	SCHWARZBECK	BBHA9120 L3F	Anbotel 332 Anb	May 20, 2017	1 year
4.00	Power Amplifier (0.08-1G)	MILMEGA	80RF1000-175	1059345	May 20, 2017	1 year
5	Power Amplifier (1-2G)	MILMEGA	AS0102-55	1018770	May 20, 2017	1 year
e¥ 6	Power Amplifier (2-6G)	MILMEGA	AS1860-50	1059346	May 20, 2017	1 year
7.	Signal Generator	Agilent	N5181A	MY50145187	May 20, 2017	1 year
8	Field Strength Meter	HOLADAY	HI-6005	N/A	May 20, 2017	1 year
An 90te	RS232 Fiber Optic Modem	HOLADAY	HI-4413P	N/A	May 20, 2017	1 year
10	LogPer. Antenna	SCHWARZBECK	VULP 9118E	N/A	May 20, 2017	1 year

1.6. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Horizontal)	abotek	Anbotek	Anbo Anbot
		Ur = 3.8 dB (Vertical)	abotek	Anbote	And wotek An
		n 11 010	Anbotek	Anbore	k hotek
Conduction Uncertainty		Uc = 3.4 dB	6.11	Anbott	An botek
Disturbance Uncertainty		Ud = 2.6 dB		Ant	tek abotek

1.7. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

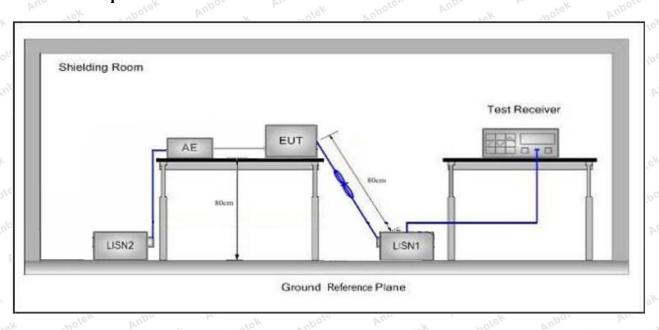
	EMC Ei	mission		
Test Items	Standard -	Basic Standard	Limit	Results
Conducted Emission	ETSI EN 301 489-1 V2.2.0 Clause 8.3 & 8.4	EN 55032: 2015	Class A or B NOTE (2)	PASS
Radiated Emission	ETSI EN 301 489-1 V2.2.0 Clause 8.2	EN 55032: 2015	Class A or B NOTE (2)	PASS
Harmonic Current Emission	ETSI EN 301 489-1 V2.2.0 Clause 8.5	EN 61000-3-2:2014	Class A	N/A
Voltage Fluctuations& Flicker	ETSI EN 301 489-1 V2.2.0 Clause 8.6	EN 6000-3-3:2013	ek Appoten	N/A
	EMC Im	munity		
Fest Items	Standard	Basic Standard	Performance Criteria	Results
Electrostatic Discharge	ETSI EN 301 489-1 V2.2.0 Clause 9.3	EN 61000-4-2:2009	B Botek	PASS
RF Electromagnetic Field	ETSI EN 301 489-1 V2.2.0 Clause 9.2	EN 61000-4-3:2006 +A1:2008+A2:2010	ek Anbotek	PASS
Fast transients, common mode	ETSI EN 301 489-1 V2.2.0 Clause 9.4	EN 61000-4-4:2012	potek B Anbot	N/A
Surges	ETSI EN 301 489-1 V2.2.0 Clause 9.8	EN 61000-4-5:2014	Anb Bk	N/A
Radio frequency, common mode	ETSI EN 301 489-1 V2.2.0 Clause 9.5	EN 61000-4-6:2014	A A NOOLEK	N/A
Volt. Interruptions Volt. Dips	ETSI EN 301 489-1 V2.2.0 Clause 9.7	EN 61000-4-11:2004	B/C/C NOTE (3)	N/A
NOTE:	otek anbotek Anbot	ak hotek	Anbotek Ant	YSY
(1) " N/A" denotes	test is not applicable in this Te	est Report	Anbotek	Aupo.
200	for equipment intended to be tion centre, the class A limits r	DV	industrial envir	ronment or
(3) Voltage dip: 10	0% reduction – Performance C	Criteria B	Aupo	K 700
Voltage dip: 10	00% reduction – Performance C	Criteria B	otek Anbor	Pr.
P (0)	% reduction – Performance Cr	16/	abotek Anb	ore V
Voltage Interrup	otion: 0% Interruption – Perfor	rmance Criteria C	A. Stek	

3. Emission Test

3.1. Conducted Emission Test at Main Ports

3.1.1. Test Standard and Limit

Test Standard	ETSI EN 301 489-1 V2	2.2.0 Clause	8.3 & 8.4	W 7.V.	6	Anbotek	Aupor ek
Basic Standard	EN 55032: 2015	70.	NV.	h.	otek	Anbotek	Anbo


Limits for conducted emissions

	F	Maximum RF Line Voltage (dBuV)						
	Frequency	Quasi-peak Level	Average Level					
Test Limit	150kHz~500kHz	66~56*	56 ~ 46 *					
	500kHz~5MHz	56 Ango	And 46					
	5MHz~30MHz	60	NOTE - 150					

Limits for conducted emissions of equipment intended to be used in telecommunication centres and industrial environment

	Eraguanay	Maximum RF Line Voltage (dBuV)						
T4 I ::4	Frequency	Quasi-peak Level	Average Level					
Test Limit	150kHz~500kHz	Anbour 79	66					
8	500kHz~30MHz	Anbore 73 Am	Anbotek 60 Anbo otek					

3.1.2. Test Setup

3.1.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ETSI EN 301 489-1 V2.2.0& EN55032: 2015 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

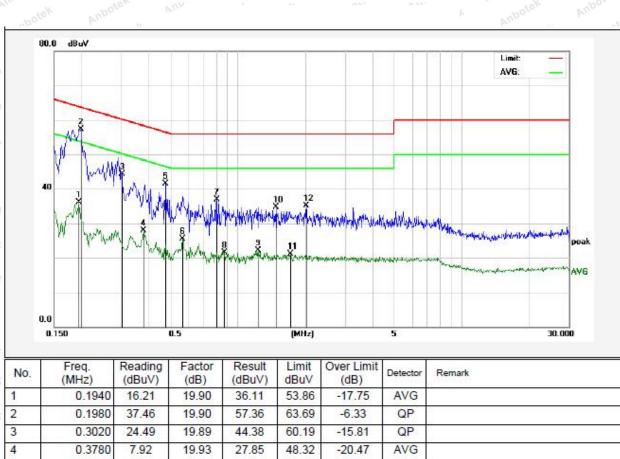
For the actual test configuration, please refer to the related Item EUT Test Photos.

3.1.4. Test Data

PASS

The EUT should be compliance to the limit of Class B

Only the worst case data was showed in the report, please to see the following pages



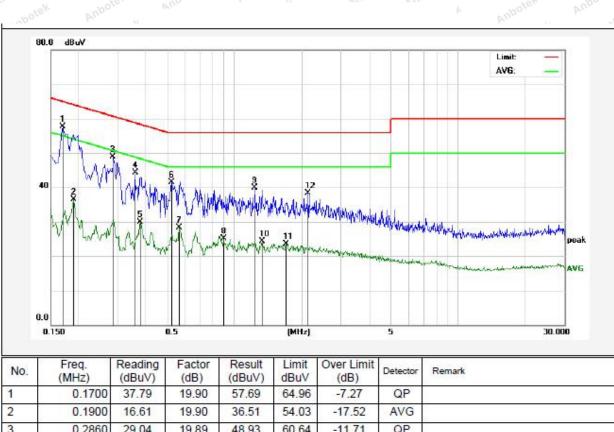
Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 110V, 50Hz for adapter

Comment: Live Line

No.	(MHz)	(dBuV)	(dB)	(dBuV)	dBuV	(dB)	Detector	Remark
1	0.1940	16.21	19.90	36.11	53.86	-17.75	AVG	
2	0.1980	37.46	19.90	57.36	63.69	-6.33	QP	
3	0.3020	24.49	19.89	44.38	60.19	-15.81	QP	9)
4	0.3780	7.92	19.93	27.85	48.32	-20.47	AVG	
5	0.4740	21.58	19.97	41.55	56.44	-14.89	QP	59 50
6	0.5660	5.56	20.00	25.56	46.00	-20.44	AVG	
7	0.8020	16.78	20.07	36.85	56.00	-19.15	QP	2
8	0.8700	1.49	20.09	21.58	46.00	-24.42	AVG	0
9	1.2300	1.90	20.12	22.02	46.00	-23.98	AVG	
10	1.4780	14.59	20.13	34.72	56.00	-21.28	QP	59 60
11	1.7140	0.88	20.13	21.01	46.00	-24.99	AVG	
12	2.0220	14.89	20.14	35.03	56.00	-20.97	QP	2

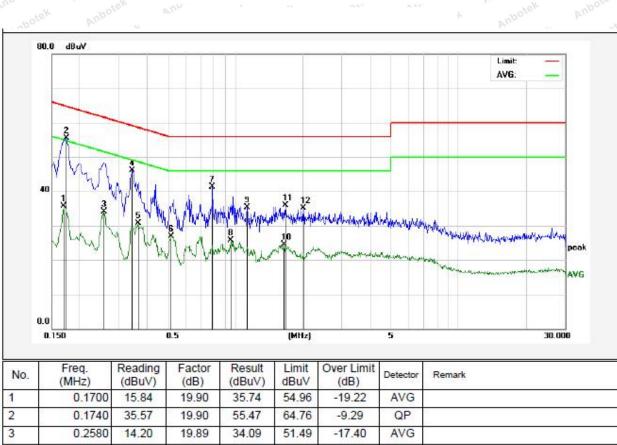


Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 110V, 50Hz for adapter

Comment: Neutral Line



Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 230V, 50Hz for adapter

Comment: Live Line

Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 230V, 50Hz for adapter

Comment: Neutral Line

No.	Freq. (MHz)	(dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Over Limit (dB)	Detector	Remark
1	0.1700	34.07	19.90	53.97	64.96	-10.99	QP	
2	0.1700	14.90	19.90	34.80	54.96	-20.16	AVG	
3	0.2540	13.77	19.89	33.66	51.62	-17.96	AVG	
4	0.2620	29.81	19.89	49.70	61.36	-11.66	QP	
5	0.3420	25.93	19.91	45.84	59.15	-13.31	QP	
6	0.3580	11.41	19.92	31.33	48.77	-17.44	AVG	
7	0.5180	21.25	19.99	41.24	56.00	-14.76	QP	
8	0.5260	8.01	19.99	28.00	46.00	-18.00	AVG	
9	0.9540	7.27	20.11	27.38	46.00	-18.62	AVG	
10	1.1539	18.86	20.12	38.98	56.00	-17.02	QP	
11	1.5740	5.03	20.13	25.16	46.00	-20.84	AVG	
12	1.8100	17.86	20.14	38.00	56.00	-18.00	QP	

3.2. Radiated Emission Test

3.2.1. Test Standard and Limit

Test Standard	ETSI EN 301 489-1	V2.2.0 Cla	use 8.2	hotek	Anbotek	Anbor	ber
Basic Standard	EN 55032: 2015		note	VII.	Anbotek	Anbo	6

Radiated Emission Test Limit (Below 1000MHz)

Quasi-peak Level						
Class A						
0 Anb						
7ek Anboro						
5 5						

Radiated Emission Test Limit (Above 1000MHz)

T.		Limit (dBµV/m)							
Frequency (MHz)	Clas	s B	Class A						
(МПZ)	Peak	Average	Peak	Average					
1000 MHz -3000 MHz	70	50	An 76	hotek 56 Anbore					
3000 MHz -6000 MHz	Anbote 74 And	54 00 ^{teX}	80	60					

Radiated Emission Test Limit for FM Receivers

Frequency	Limit (dBμV/m) Quasi-peak Level						
(MHz)	Fundamental	Harmonics					
30MHz~230MHz	Model A 60	ev Anbotes 52 nb					
230MHz~300MHz	60°000 AM	tek hipotek 52 Ambour					
300MHz~1000MHz	otek 60 mbotes An	bore 56 Anbore					

Frequency Range of Radiated Measurement

	8, 46, 46,		
Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)		
Below 108	1000		
108 – 500	2000		
500 – 1000	5000		
Above 1000	5th harmonic of the highest frequency or 6 GHz, whichever is lower		

3.2.2. Test Setup

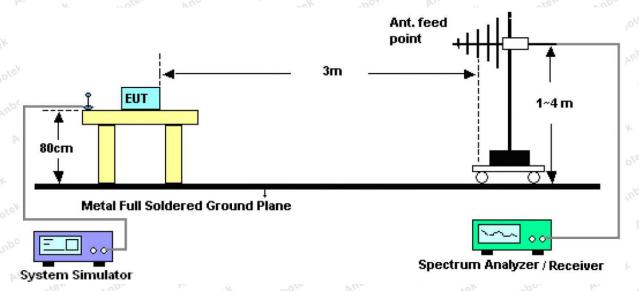


Figure 1. 30MHz to 1GHz

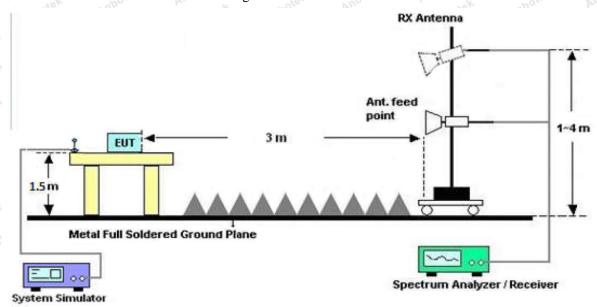


Figure 2. Above 1 GHz

3.2.3. Test Procedure

- 1) The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- 2) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 3) The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 5) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold

mode when the test frequency is below 1GHz.

The test receiver/spectrum was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.

6) For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.

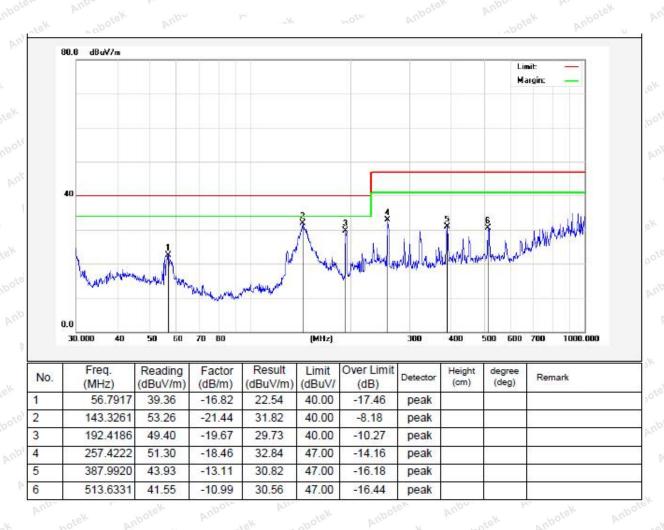
The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak/Average detection at frequency above 1GHz.

3.2.4. Test Data

PASS

The EUT should be compliance to the limit of Class B

Only the worst case data was showed in the report, please to see the following pages

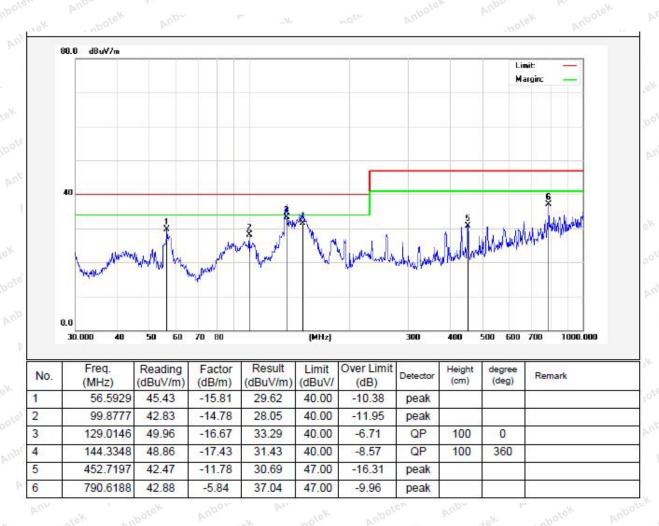


Test Results (30~1000MHz)

Job No.: SZAWW180412001 Temp.(°C)/Hum.(%RH): 24.3°C/55%RH

Standard: EN301489_Class B_3m Power Source: DC 3.7V Battery inside

Test Mode: Mode 2 Polarization: Vertical



Test Results (30~1000MHz)

Job No.: SZAWW180412001 Temp.(°C)/Hum.(%RH): 24.3 °C/55%RH

Standard: EN301489_Class B_3m Power Source: DC 3.7V Battery inside

Test Mode: Mode 2 Polarization: Horizontal

Test Results (1GHz~6GHz)

lest Results (1G11	z -ogiiz)						
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Detector
1635.58	50.14	-2.29	47.85	70.00	-22.15	Hipor	PEAK
2140.67	55.87	-3.26	52.62	70.00	-17.38	H Anh	PEAK
2262.37	47.55	-4.44	43.11	70.00	-26.89	vo ^k H	PEAK
3842.81	45.88	-5.06	40.81	74.00	-33.19	H ^t oot,	PEAK
4423.53	51.00	-4.57	46.43	74.00	-27.57	Hick	PEAK
4961.12	46.73	-5.58	41.15	74.00	-32.85	Hoote	PEAK
1635.58	41.96	-2.29	39.67	50.00	-10.33	H	AVG
2140.67	42.25	-3.26	38.99	50.00	-11.01	H H	AVG
2262.37	40.65	10 -4.44 M	36.21	50.00	-13.79	Н	AVG
3842.81	39.49	-5.06	34.42	54.00	-19.58	H	AVG
4423.53	42.76	-4.57	38.19	54.00	-15.81	Anbota H	AVG
4961.12	43.08	-5.58	37.50	54.00	-16.50	H	AVG
1698.26	54.60	-2.82	51.78	70.00	-18.22	VAnb	PEAK
1858.10	46.63	-3.39	43.24	70.00	-26.76	e ^V V	PEAK
2114.67	50.71	-4.37	46.33	70.00	-23.67	ooteV	PEAK
3842.57	46.09	-5.25	40.84	74.00	-33.16	$\mathbf{V}^{b}\mathbf{V}^{k}$	PEAK
4528.29	54.67	-5.27	49.40	74.00	-24.60	Vote	PEAK
4991.30	50.67	-5.96	44.72	74.00	-29.28	V	PEAK
1698.26	41.61	-2.82	38.79	50.00	-11.21	V	AVG
1858.10	43.37	-3.39 M	39.98	50.00	-10.02	V	AVG
2114.67	39.69	-4.37	35.31	50.00	-14.69	V	AVG
3842.57	40.67	-5.25	35.42	54.00	-18.58	Yuporg	AVG
4528.29	40.86	-5.27	35.59	54.00	-18.41	V	AVG
4991.30	41.07	-5.96	35.12	54.00	-18.88	Vanbo	AVG

Remark:

1. Level =Receiver Read level + Antenna Factor

4. Immunity Test

General Performance Criteria

◆ Performance criteria for continuous phenomena applied to transmitters and receivers (CT/CR)

During and after the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by themanufacturer when the apparatus is used as intended. In some cases this permissible performancelevel may be replaced by a permissible loss of performance.

During the test the EUT shall not unintentionally transmit or change its actual operating state and stored data.

If the minimum performance level or the permissible performance loss is not specified by themanufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

◆ Performance criteria for transient phenomena applied to transmitters and receivers (TT/TR)

After the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

During the EMC exposure to an electromagnetic phenomenon, a degradation of performance is, however, allowed. No change of the actual mode of operation (e.g. unintended transmission) orstored data is allowed.

If the minimum performance level or the permissible performance loss is not specified by themanufacturer, then either of these may be deduced from the product description anddocumentation and what the user may reasonably expect from the apparatus if used as intended.

• Performance criteria for equipment which does not provide a continuous communication link

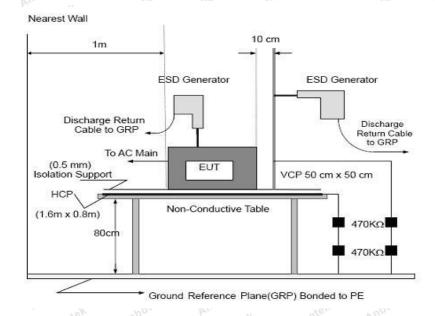
For radio equipment which does not provide a continuous communication link, the performancecriteria described in CT/CR and TT/TR are not appropriate, then the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance ordegradation of performance during and/or after the

The performance criteria specified by the manufacturer shall give the same degree of immunityprotection as called for in CT/CR and TT/TR.

Performance criteria for ancillary equipment tested on a stand alone basis

If ancillary equipment is intended to be tested on a stand alone basis, the performance criteriadescribed in CT/CR and TT/TR are not appropriate, then the manufacturer shall declare, for inclusionin the test report, his own specification for an acceptable level of performance or degradation ofperformance during and/or after the immunity tests.

The performance criteria specified by the manufacturer shall give the same degree of immunityprotection as called for in CT/CR and TT/TR.



4.1. Electrostatic Discharge Test

4.1.1. Test Standard and Specification

Pr.	not All ter
Test Standard	ETSI EN 301 489-1 V2.2.0 Clause 9.3
Basic Standard	EN 61000-4-2:2009
Discharge Impedance:	330 ohm / 150 pF
Performance Criterion:	CT/CR
Discharge Voltage:	Air Discharge: 2kV/4kV/8kV
Polarity:	Positive & Negative
Number of Discharge:	Air Discharge: min. 20 times at each test point
Discharge Mode:	Single Discharge
Discharge Period:	1 second minimum

4.1.2. Test Setup

Note:

TABLE-TOP EQUIPMENT:

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940kohm total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC /EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT:

The equipment under test was installed in a representative system as described in section 7 of IEC/EN 61000-4-2,

and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

4.1.3. Test Procedure

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

1) Contact discharge was applied to conductive surfaces and coupling planes of the EUT.

During the test, it was performed with single discharges. For the single discharge timebetween successive single discharges was at least 1 second.

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions $0.5m \times 0.5m$, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

2) Air discharges at insulation surfaces of the EUT.

It was at least ten single discharges with positive and negative at the same selected point.

3) For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.4. Test Data

Job No.: SZAWW180412001 Temp.(°C)/Hum.(%RH): 24.3°C/55%RH

Standard: EN61000-4-2 Power Source: AC 230V, 50Hz for adapter/

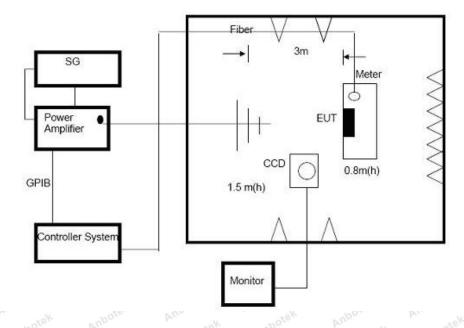
DC 3.7V Battery inside

Test Mode: Mode 1, Mode 2

Item	Contact Discharge to coupl	Air Discharge at insulating			
ak Aupor	Direct Contact Discharge	Indirect Contact Discharge	surfaces		
Test Voltage	Reaction of EUT / Result	Reaction of EUT / Result	Reaction of EUT / Result		
+2kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS		
-2kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS		
+4kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS		
-4kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS		
+6kV	And stek - nbotek	Anbot An sotek	n.r.r. PASS		
-6kV	Anbo kek botek	Anbore - And stek	n.r.r. PASS		
+8kV	rek Anbore Am	K Anboten Anbo	n.r.r. PASS		
-8kV	hotek Anhotek Anh	rek nbotek Anbote	n.r.r. PASS		

Remarks: n.r.r. = no reaction recognized

Performance Criteria A observed and No any function degraded during the tests.



4.2. Radiated, RF Electromagnetic Fields Test

4.2.1. Test Standard and Specification

No. W. The state of the state o
ETSI EN 301 489-1 V2.2.0 Clause 9.2
EN 61000-4-3: 2006+A1:2008+A2:2010
Anborem Anborem
80MHz to 6GHz
3 V/m Anbotek Anbotek Anbotek Anbotek Anbotek
1kHz Sine Wave, 80%, AM Modulation
1 % of preceding frequency value
Horizontal and Vertical
3 m. nbotek Anbotek Anbotek Anbotek Anbotek Anbotek
1.5 mAnbot tek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
at least 3 seconds

4.2.2. Test Setup

4.2.3. Test Procedure

The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber. The testing distance from antenna to the EUT was 3 meters.

- 1) The field strength level was 3V/m
- 2) The frequency range is swept from 80 MHz to 6000 MHz with the signal 80%amplitude modulated with a 1kHz sine wave.
- 3) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond, but shall in no case be less than 0.5s.

4) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

4.2.4. Test Data

Job No.: SZAWW180412001 Temp.(°C)/Hum.(%RH): 24.3°C/55%RH

Standard: EN61000-4-3 Power Source: AC 230V, 50Hz for adapter/

DC 3.7V Battery inside

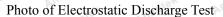
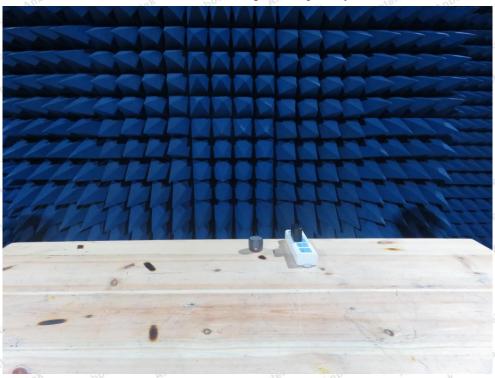
Test Mode: Mode 1, Mode 2

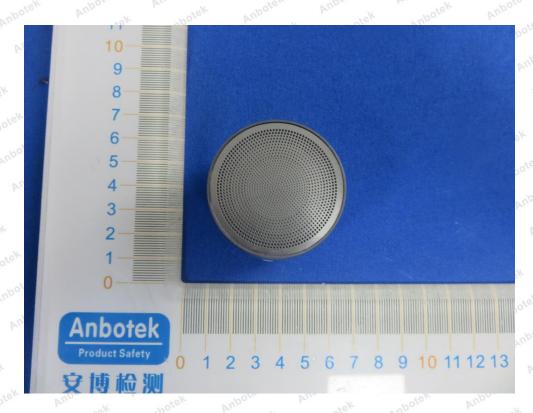
1	4	VI.	704		92	- 10	
0	Frequency Range (MHz)	RF Field Position	R.F. Field Strength	Azimuth	Observation	Perform. Criteria	Results
2	nbotek Ant	otek An	potek Anbotel	Front	ek Anbotek	Anbotek	Anbotek
	80~6000	H/V	3 V/m (rms) AM Modulated	Rear	CT,CR	otek A Anbote	PASS
00	tek Anbotek	k V	1000Hz, 80%	Left	C1,CR	ek A	nbotek
	hotek Anbor	otek An	otek mbotek	Right	An-	Anbotek	Anbotek

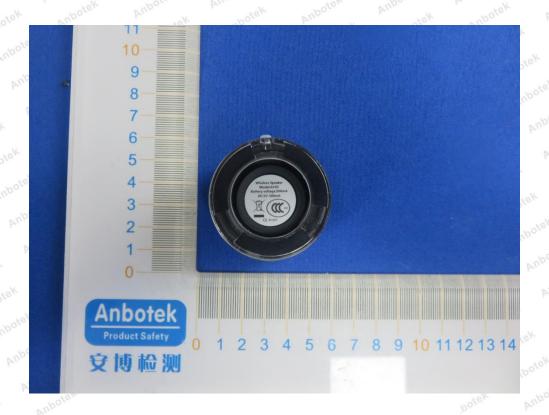
APPENDIX I -- TEST SETUP PHOTOGRAPH

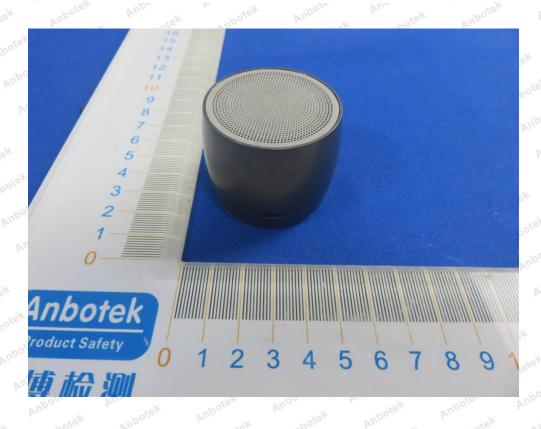
Photo of Conducted Emission Test

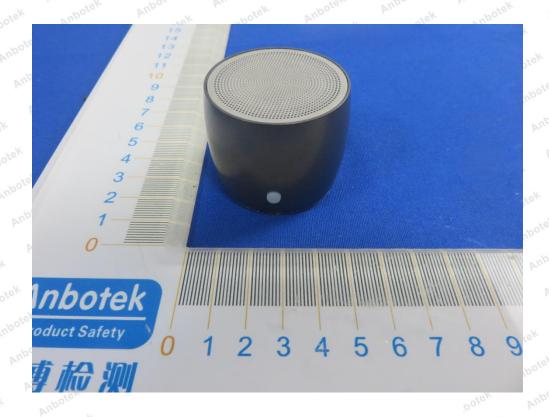
Photo of Radiation Emission Test

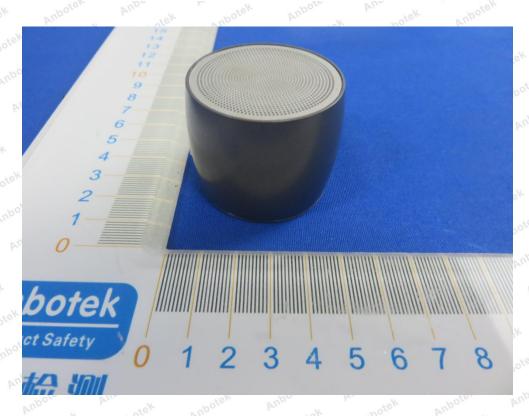



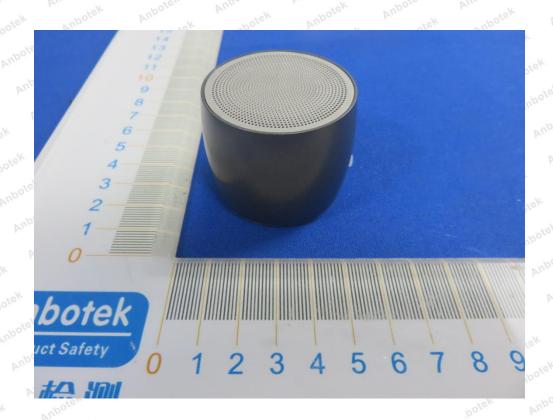

Photo of RF Field Strength Susceptibility Test



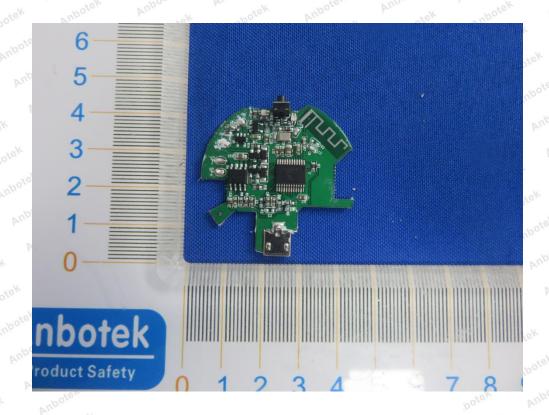

APPENDIX II -- EXTERNAL PHOTOGRAPH

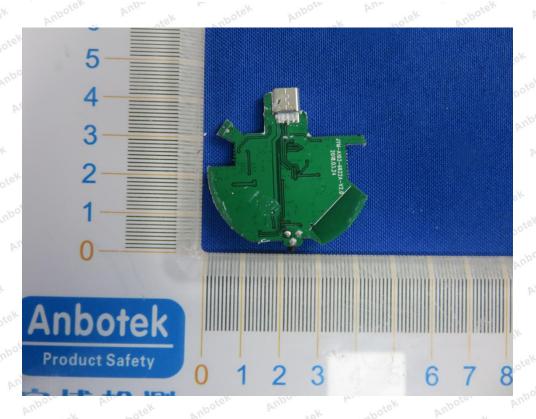


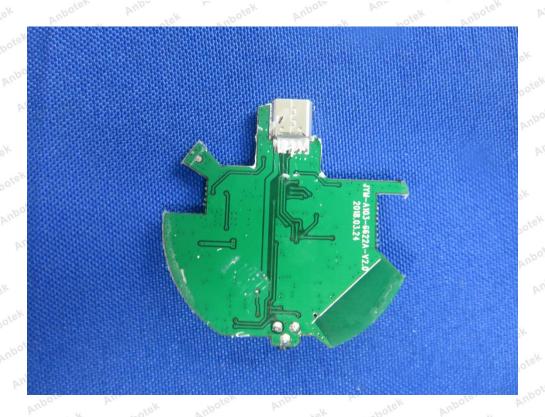









APPENDIX III -- INTERNAL PHOTOGRAPH



---- End of Report-----