

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-EMC161067
Page: 1 of 61

EMC TEST REPORT

Certificate No. : TB180719447

Applicant :

Equipment Under Test (EUT)

EUT Name : Wireless charger Bluetooth speaker

Model No. : SL193

Series Model No. : SL207, SL208, SL209, 2995, P328.091, 128060, 128061, 128062,

128063, LT95092

Brand Name : N/A

Receipt Date : 2018-07-04

Test Date : 2018-07-05 to 2018-07-19

Issue Date : 2018-07-20

Standards : Draft ETSI EN 301 489-1 V2.2.0: 2017

Final draft EN 301 489-3 V2.1.1: 2017 Draft ETSI EN 301 489-17 V3.2.0: 2017

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above. The EUT technically

complies with the Council Directive 2014/53/EU relating to radio equipment.

Test/Witness

Engineer

Jason xu

Engineer Supervisor

<u>Jason Xu</u>

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-075-1. 0

Report No.: TB-EMC161067

2 of 61 Page:

TABLE OF CONTENTS

1.	GEN	ERAL INFORMATION	5
	1.1	Client Information	
	1.2	General Description of EUT (EquipmentUnder Test)	5
	1.3	Block Diagram Showing the Configuration of System Tested	5
	1.4	Description of Support Units	
	1.5	Description of Operating Mode	
	1.6	Test Conditions	
	1.7	Performance Criterion	
	1.8	Measurement Uncertainty	
	1.9	Test Facility	
2		RESULTS SUMMARY	
3	TEST	FEQUIPMENT USED	14
4	CON	DUCTED DISTURBANCE TEST	16
	4.1	Test Standard and Limit	16
	4.2	Test Setup	
	4.3	Test Procedure	
	4.4	Test Data	17
5	CON	DUCTED EMISSIONS(ASYMMETRIC MODE)	18
	5.1	Test Standard and Limit	
	5.2	Test setup	
	5.3	Test Setup and Test Procedure	
	5.4	Test Data	
6	RADI	ATED DISTURBANCE TEST	
1177	6.1	Test Standard and Limit	
	6.2	Test Setup	
	6.3	Test Procedure	
	6.4	Test Data	
7	HAR	MONIC CURRENT EMISSION TEST	
6	7.1	Test Standard and Limit	
	7.2	Test Setup	
	7.3	Test Procedure	
	7.4	Test Data	
8		TAGE FLUCTUATION AND FLICKER TEST	
AA	8.1	Test Standard and Limit	
	8.2	Test Setup	
	8.3	Test Procedure	
	8.4	Test Data	
9		CTROSTATIC DISCHARGE IMMUNITY TEST	
	9.1	Test Requirements	
	9.1	Test Setup	
	9.3	Test Procedure	
	9.4	Test Data	
10		ATED ELECTROMAGNETIC FIELD IMMUNITY TEST	
10			
	10.1	Test Requirements	
	10.2	Test Setup Test Procedure	
	10.3	Test Data	
	10.4	rest Data	31

Report No.: TB-EMC161067
Page: 3 of 61

11	ELECTRICAL FAST TRANSIENT/BURST TEST	32
	11.1 Test Requirements	32
	11.2 Test Setup	
	11.3 Test Procedure	33
	11.4 Test Data	33
12	SURGEIMMUNITY TEST	34
	12.1 Test Requirements	34
	12.2 Test Setup	
	12.3 Test Procedure	35
	12.4 Test Data	35
13	RF COMMON MODE	36
	13.1 Test Requirements	36
	13.2 Test Setup	
	13.3 Test Procedure	37
	13.4 Test Data	37
14	VOLTAGE DIPS AND INTERRUPTIONS IMMUNITY TEST	38
	14.1 Test Requirements	38
	14.2 Test Setup	
	14.3 Test Procedure	38
	14.4 Test Data	38
15	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	39
16	PHOTOGRAPHS -TEST SETUP	45
ATT	ACHMENT ACONDUCTED EMISSION DATA	48
	ACHMENT BRADIATED EMISSIONTEST DATA	
	ACHMENT CELECTROSTATIC DISCHARGE TEST DATA	
	ACHMENT DRF FIELD STRENGTH SUSCEPTIBILITY TEST DATA	
	ACHMENT EELECTRICAL FAST TRANSIENT/BURST TEST DATA	
	ACHMENT FSURGE IMMUNITY TEST DATA	
	ACHMENT GCONDUCTED IMMUNITY TEST DATA	
	ACHMENT HVOLTAGE DIPS AND INTERRUPTIONS TEST DATA	

Report No.: TB-EMC161067
Page: 4 of 61

Revision History

Report No.	Version	Description	Issued Date
TB-EMC161067	Rev.01	Initial issue of report	2018-07-20
MUNIC			TO TO SERVICE OF THE PARTY OF T
			TO SECOND
GILLS OF	W 103		COLDER TO SERVICE STATE OF THE PERSON STATE OF
THE REAL PROPERTY.			
The state of	(III)		
	(D) (D)		WORLD WITH
10:33	O THE		TO TO
	133		The same
A THE COLD	L OBY	The state of the s	
	WORK I		(I)
THE PARTY OF THE P	0 00 20		Die Contraction
	000		TO DE COL

Report No.: TB-EMC161067
Page: 5 of 61

1. General Information

1.1 Client Information

Applicant		
Address	: (1	
Manufacturer	:	Di Tolling Direction
Address	(II)	

1.2 General Description of EUT (EquipmentUnder Test)

EUT Name	1	Wireless charger Bluetooth speaker		
Model No.		SL193, SL207, SL208, SL209, 2995, P328.091, 128060, 128061 128062, 128063, LT95092		
Model Difference		All these models are identical in the same PCB layout and electrical circuit, the only difference is appearance.		
Product	6,0	Radio Parts Supported	Bluetooth 4.2: 2402MHz~2480MHz WPT: 110KHz~205KHz	
Description	1	Modulation Type:	Bluetooth 4.2: GFSK	
Power Rating	DC 3.7V 400mAh by Li-ion Battery. Input: DC 5V by USB Cable. Wireless Output: DC 5V/0.8A			
Software Version		1.0		
Hardware Version : 1.0				
Connecting I/OPort(S)	93	Please refer to the User's Manual		

Note

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) More information about the RF function, please refer the RF test reports.

1.3 Block Diagram Showing the Configuration of System Tested

Adapter	EUT	
	Load	

4

Report No.: TB-EMC161067

Page: 6 of 61

1.4 Description of Support Units

Equipment Information				
Name	Model	FCC ID/VOC	Manufacturer	Used "√"
AC/DC Adapter	TEKA012	VOC	TEKA	√
Load	5V/9V	1000 - 1000 mg	CHIPSVISION	√

1.5 Description of Operating Mode

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	USB Charging+BT Mode+Wireless Charing

The EUT system operated these modes were found to be the worst case during the pre-scanning test as Following:

For EMI Test			
Final Test Mode Description			
Mode 1 USB Charging+BT Mode+Wireless Charing			
For EMS Test			
Final Test Mode Description			
Mode 1	USB Charging+BT Mode+ Wireless Charing		

Report No.: TB-EMC161067 Page: 7 of 61

1.6 Test Conditions

For the purpose of the present document, the test conditions of EN 301 489-1[1], clause 4, shall apply as appropriate. Further product related test conditions for digital cellular mobile and portable radio equipment are specified in the present document.

(1) General

For emission and immunity tests the test modulation, test arrangements, etc., as specified in the present document, clauses 4.1 to 4.5, shall apply.

Whenever the Equipment Under Test (EUT) is provided with a detachable antenna, the EUT shall be tested with the antenna fitted in a manner typical of normal intended use, unless specified otherwise.

(2) Arrangements for test signals

The provisions of EN 301 489-1, clause 4.2 shall apply.

a. Arrangements for establishing a communications link

The nominal frequency of the wanted RF input signal (for the receivers) shall be selected by setting the Absolute Radio Frequency Channel Number (ARFCN) to an appropriate number(e.g. in case of GSM 900 MHz this is 60 to 65, and in case of GSM 1 800 MHz this is 690 to 706).

A communication link shall be set up with a suitable base station simulator.

When the EUT is required to be in the transmit/receive mode, the following conditions shall be met:

- the EUT shall be commanded to operate at maximum transmit power;
- the downlink RXQUAL shall be monitored.
- b. Arrangements for test signals at the input of transmitters

The provisions of EN 301 489-1, clause 4.2.1shall apply with the following modifications.

The test system shall command the EUT to disable Discontinuous Transmission (DTX).

A communication link shall be set up between the EUT and the test system.

c. Arrangements for test signals at the output of transmitters

The provisions of EN 301 489-1, clause 4.2.2 shall apply with the following modifications.

Where the equipment incorporates an external 50Ω RF antenna connector that is normally connected via a coaxial cable, then the wanted signal to establish a communication link shall be delivered from that connector by a coaxial cable.

Where the equipment incorporates an external 50Ω RF antenna connector, but this port is not normally connected via a coaxial cable, and where the equipment does not incorporate an external 50Ω RF connector (integral antenna equipment), then the wanted signal, to establish a communication link, shall be delivered from the equipment to an antenna located within the test environment.

Report No.: TB-EMC161067
Page: 8 of 61

TB-RF-075-1.0

d. Arrangements for test signals at the input of receivers

The provisions of EN 301 489-1, clause 4.2.3 shall apply with the following modifications.

Where the equipment incorporates an external 50Ω RF antenna connector that is normally connected via a coaxial cable, then the wanted signal to establish a communication link shall be delivered to that connector by a coaxial cable.

Where the equipment incorporates an external 50Ω RF antenna connector, but this port is not normally connected via a coaxial cable, and where the equipment does not incorporate an external 50Ω RF connector (integral antenna equipment), then the wanted signal, to establish a communication link, shall be presented to the equipment from an antenna located within the test environment.

The wanted RF input signal level shall be set to 40 dB above the reference sensitivity level.

e. Arrangements for test signals at the output of receivers The provisions of EN 301 489-1, clause 4.2.4 shall apply.

f. Idle mode

When the EUT is required to be in the idle mode, the test system shall simulate a Base Station(BS) with Broadcast Control Channel/Common Control Channel (BCCH/CCCH) on one carrier. The EUT shall be synchronized to the BCCH, listening to the CCCH and able to respond to paging messages. Periodic Location Updating shall be disabled.

Report No.: TB-EMC161067
Page: 9 of 61

1.7 Performance Criterion

(1) Draft ETSI EN 301 489-17

Performance Criteria

According to ETSI EN 301 489-17 standard, the general performance criteria as following:

Criterion	During Test	After test
A	Shall operate as intended. (see note 1). Shall be no loss of function. Shall be no unintentional transmissions.	Shall operate as intended. Shall be no degradation of performance (see note 3). Shall be no loss of function. Shall be no loss of stored data or user programmable functions.
B	May show loss of function (one or more). May show degradation of performance(see note 2). Shall be no unintentional transmissions.	Functions shall be self-recoverable. Shall operate as intended after recovering. Shall be no degradation of performance (see note 3). Shall be no loss of stored data or user programmable functions.
C TI	May be loss of function (one or more).	Functions shall be recoverable by the operator. Shall operate as intended after recovering. Shall be no degradation of performance (see note 3).

NOTE 1: Operate as intended during the test allows a level of degradation not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 3:No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

Report No.: TB-EMC161067 10 of 61 Page:

Performance Table

	Phenomena	Performance Criteria	
Continuous phenomena applied to Transmitters (CT)	Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an AC Knowledgement (ACK) or Not ACKnowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.	A	
Transient phenomena applied toTransmitters (TT)	Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.	B (except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply.)	
Continuous phenomena applied toReceivers (CR)	Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.	A	
Transient phenomena applied toReceivers (TR)	Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.	B (except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply.)	

Report No.: TB-EMC161067
Page: 11 of 61

(2) Final draft EN 301 489-3

According to Final draft EN 301 489-3 standard, the general performance criteria as following:

- performance criterion A applies for immunity tests with phenomena of a continuous nature;
- performance criterion B applies for immunity tests with phenomena of a transient nature.

NOTE: Whether a phenomenon is considered transient, continuous or otherwise is indicated in the test procedures for the phenomenon in ETSI EN 301 489-1 [1], clause 9.

Performance Requirements

Criterion	During test	After test
A	Operate as intended No loss of function No unintentional responses	Operate as intended No loss of function No degradation of performance No loss of stored data or user programmable functions
В	May show loss of function No unintentional responses	Operate as intended Lost function(s) shall be self-recoverable No degradation of performance No loss of stored data or user programmable functions

The Requirement of Performance Criteria

1	Performance criteria for continuous phenomena applied to transmitters (CT)	Criterion A of the applicable class shall apply
2	Performance criteria for transient phenomena applied to transmitters (TT)	Criterion B of the applicable class shall apply
3	Performance criteria for continuous phenomena applied to receivers (CR)	Criterion A of the applicable class shall apply
4	Performance criteria for transient phenomena applied to transmitters (TR)	Criterion B of the applicable class shall apply

Report No.: TB-EMC161067
Page: 12 of 61

1.8 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test	Parameters	Expanded Uncertainty (U _{Lab})	Expanded Uncertainty (U _{Cispr})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB	\pm 4.0 dB \pm 3.6 dB
Electromagnetic Radiated Emission(3-loop)	Level Accuracy: 9kHz to 30 MHz	±3.60 dB	N/A
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB	N/A
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB	\pm 5.2 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB	N/A
Mains Harmonic	Voltage	±3.11%	N/A
Voltage Fluctuations & Flicker	Voltage	±3.25%	N/A

1.9 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

TB-RF-075-1.0

Report No.: TB-EMC161067

Page: 13 of 61

2 Test Results Summary

Test procedures according to the technical standards:

	Draft E	TSI EI	N 301	489-1	V2.2.0:	2017
Requirement Standard:	Final d	raft El	N 301	489-3	V2.1.1:	2017
	Draft E	TSI EI	N 301	489-1	7 V3.2.0	: 2017

EMC Emission

Test Standard	Test Item	Limit	Judgment	Remark
EN 55022,2045	Conducted Emission	Class B	PASS	1
EN 55032:2015	Radiated Emission	Class B	PASS	
EN61000-3-2:2014	Harmonic Current Emission	Class A or D NOTE(2)	N/A	TO
EN 6000-3-3:2013	Voltage Fluctuations& Flicker	0000	N/A	

EMC Immunity

Test Standard	Test Item	Performance Criteria	Judgment	Remark
EN61000-4-2: 2009	Electrostatic Discharge	В	PASS	E EID
EN 61000-4-3:2006 +A1:2008+A2:2010	RF electromagnetic field	Α	PASS	min in
EN 61000-4-4:2012	Fast transients	В	PASS	
EN 61000-4-5:2014	Surges	В	PASS	En 173
EN 61000-4-6: 2014	Injected Current	Α	PASS	mil Em
EN 61000-4-11: 2004	Volt. Interruptions Volt. Dips	B /B/ C / C NOTE (3)	PASS	

NOTE:

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) The power consumption of EUT is less than 75W and no Limits apply.
- (3) Voltage dip: 0% residual 0.5 cycle- Performance Criteria B

Voltage dip: 0% residual 1 cycle- Performance Criteria B

Voltage dip: 70% residual 25 cycles - Performance Criteria C

Voltage Interruption: 0% residual votage 250 cycles - Performance Criteria C

Report No.: TB-EMC161067 14 of 61 Page:

Test Equipment Used

Conducted Er	nission Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Em	ission Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP	11909A	185903	Mar.17, 2018	Mar. 16, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.17, 2018	Mar. 16, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.17, 2018	Mar. 16, 2019
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Mar.17, 2018	Mar. 16, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Harmonic Cur	rent and Voltag	e Fluctuatio	n and Flicke	er Test	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Harmonic Flicker Test System	CI	5001ix-CTS- 400	100321	Jul. 18, 2018	Jul. 17, 2019
5K VA	CI	500liX	59468	Jul. 18, 2018	Jul. 17, 2019

Report No.: TB-EMC161067
Page: 15 of 61

Discharge Im	munity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
ESD Tester	TESEQ	NSG437	304	Jul. 21, 2017	Jul. 20, 2018
Radiated Imm	unity Test	<u> </u>		·	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Signal Generator	Rohde & Schwarz	SMT03	200754	Mar. 22, 2018	Mar. 21, 2019
Power Meter	Rohde & Schwarz	NRVD	110562	Feb. 12, 2018	Feb. 11, 2019
Voltage Probe	Rohde & Schwarz	URV5-Z2	12056	Feb. 12, 2018	Feb. 11, 2019
Voltage Probe	Rohde & Schwarz	URV5-Z2	12074	Feb. 12, 2018	Feb. 11, 2019
RF Amplifier	AR	50S1G4A	326720	Feb. 12, 2018	Feb. 11, 2019
Bilog Antenna	ETS	3142C	00047662	Feb. 12, 2018	Feb. 11, 2019
Horn Antenna	ARA	DRG-118A	16554	Feb. 12, 2018	Feb. 11, 2019
Electrical Fas	t Transient/ Sur	ge/ Voltage	Dip and Inte	rruption Test	<u> </u>
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Simulator	EMTEST	UCS500N5	V0948105575	Jul. 18, 2018	Jul. 17, 2019
Auto-transformer	EMTEST	V4780S2	0109-41	Jul. 18, 2018	Jul. 17, 2019
Coupling Clamp	EMTEST	HFK	1109-04	Jul. 18, 2018	Jul. 17, 2019
Conducted In	nmunity Test	•			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
RF Generator	FRANKONIA	CIT-10/75	126B1126	Jul. 18, 2018	Jul. 17, 2019
Attenuator	FRANKONIA	59-6-33	A413	Jul. 18, 2018	Jul. 17, 2019
M-CDN	LUTHI	L-801 M2/M3	2599	Jul. 18, 2018	Jul. 17, 2019
AF2-CDN	LUTHI	L-801:AF2	2538	Mar.17, 2018	Mar. 16, 2019
EM Injection Clamp	LUTHI	EM101	35958	Jul. 18, 2018	Jul. 17, 2019

Report No.: TB-EMC161067
Page: 16 of 61

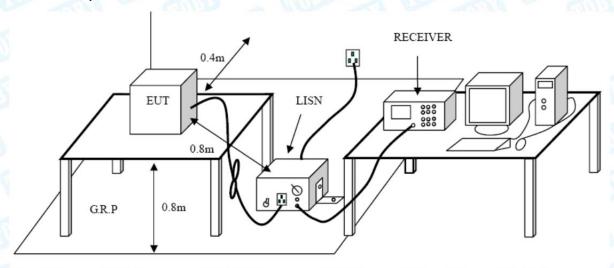
4 Conducted Disturbance Test

4.1 Test Standard and Limit

4.1.1 Test Standard

Draft ETSI EN 301 489-1 Clause 8.4

Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17


EN 55032: 2015 Class B

4.1.2 Test Limit

Conducted Disturbance Test Limit

	Maximum RF Line Voltage (DbμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

4.2 Test Setup

Report No.: TB-EMC161067
Page: 17 of 61

TB-RF-075-1.0

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from the nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 Test Data

Please refer to the Attachment A.

Report No.: TB-EMC161067 Page: 18 of 61

5 Conducted Emissions(Asymmetric Mode)

5.1 Test Standard and Limit

5.1.1. Test Standard

Draft ETSI EN 301 489-1 Clause 8.4

Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17

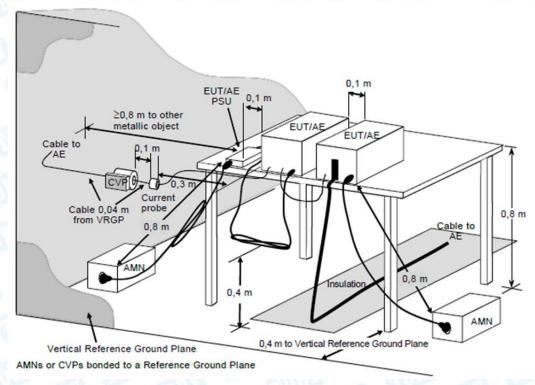
EN 55032: 2015 Class B

5.1.2. Limits

Limits for class A equipment

Frequency range	Voltage Limits dB(μV)		Current limits	s dB(μA)
(MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 ~ 0.5	97 ~ 87	84 ~ 74	53 ~ 43	40 ~ 30
0.5 ~ 30	87	74	43	30

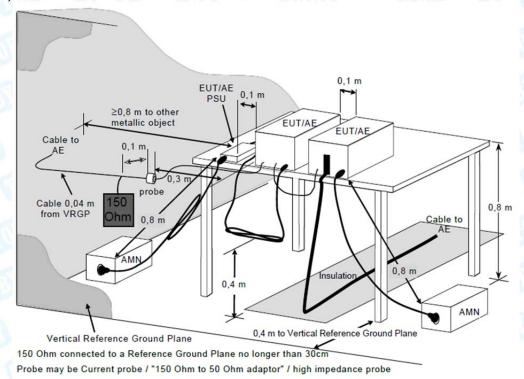
Note: if " 150Ω to 50Ω adaptor" applied, correction factor of 9.5dB should be added to the test data.

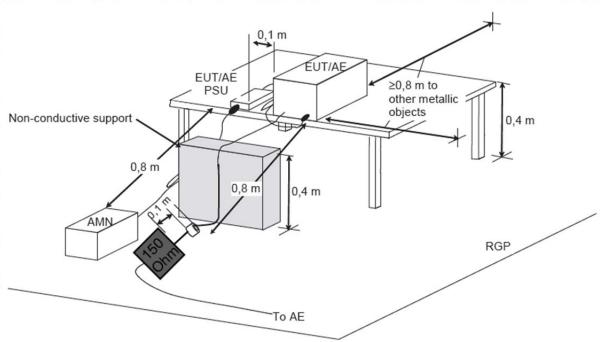

Limits for class B equipment

		Voltage Limits dB(μV)		s dB(μA)
(MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 ~ 0.5	84 ~ 74	74 ~ 64	40 ~ 30	30 ~ 20
0.5 ~ 30	74	64	30	20

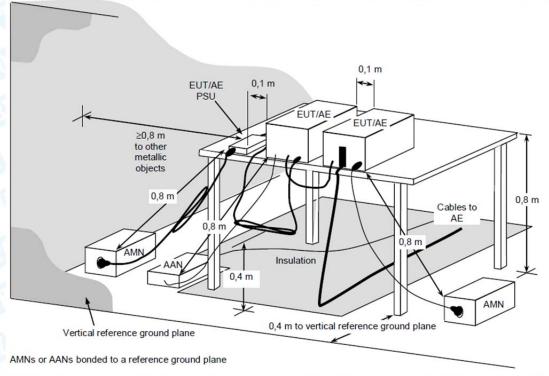
Note: if " 150Ω to 50Ω adaptor" applied, correction factor of 9.5dB should be added to the test data.

5.2 Test setup


⊠Coupling device: CVP and Current probe (alternative method 1)


Coupling device: CVP and Current probe (alternative method 2) 0,1 m EUT/AE EUT/AÉ ≥0,8 m to **PSU** other metallic objects Non-conductive support -0,4 m 0,8 m 0,8 m 0,4 m AMN RGP To AE CVP bonded to horizontal RGP

 \Box Coupling device: Current probe / "150Ω to50Ω adaptor" / high impedance probe (alternative method 1)



\Box Coupling device: Current probe / "150Ω to50Ω adaptor" / high impedance probe (alternative method 2)

150 Ohm connected to a Reference Ground Plane no longer than 30cm Probe may be Current probe / "150 Ohm to 50 Ohm adaptor" / high impedance probe

Coupling device: AAN

Report No.: TB-EMC161067
Page: 21 of 61

5.3 Test Setup and Test Procedure

Detailed test procedurewas following clause C.4.1 of EN 55032.

Frequency range 150kHz - 30MHz was checked and EMI receiver measurement bandwidth was set to 9 kHz.

DataPort	Measurementtype	Coupling device	No. of Pairs
BalancedUnscreened	Voltage	AAN	≤ 4
BalancedUnscreened	Voltage andCurrent	CVP& Current probe	>4 or unable to AAN
Screenedor Coaxial	Voltage	AAN	N/A
Screenedor Coaxial	Voltage orCurrent	Current probe / "150Ω to50Ω adaptor" / high impedance probe	N/A
Unbalancedcables	Voltage and Current	CVP& Current probe	N/A

5.4 Test Data

No requirement for this test item

Report No.: TB-EMC161067

Page: 22 of 61

6 Radiated Disturbance Test

6.1 Test Standard and Limit

6.1.1 Test Standard

DraftETSI EN 301 489-1 Clause 8.2

Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17

EN55032: 2015 Class B

6.1.2 Test Limit

Radiated Disturbance Test Limit

FREQUENCY (MHz)	Class A (at 10m)	Class B (at 10m)
FREQUENCT (WITZ)	dBuV/m	dBuV/m
30 – 230	40	30
230 – 1000	47	37

Notes:

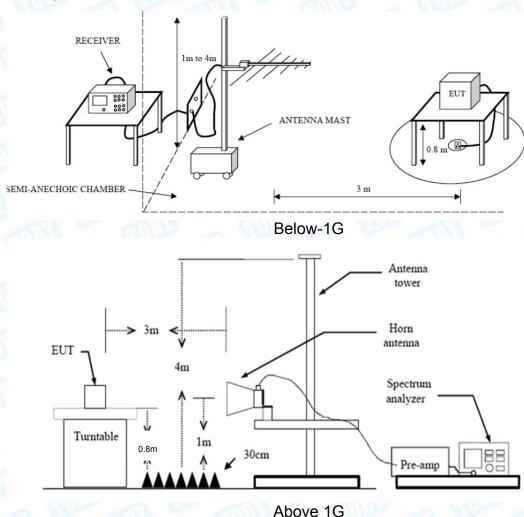
- (1) The limit for radiated test was performed according to as following: EN55032
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Limits of Radiated Emission Measurement (Above 1000MHz)

FREQUENCY	Class A (dBuV/m) (at 3m)		Class B (dBuV/m) (at 3m)	
(MHz)	PEAK	AVERAGE	PEAK	AVERAGE
1000-3000	76	56	70	50
3000-6000	80	60	74	54

Notes:

(1) The lower limit applies at the transition frequency.


Frequency Rangeof Radiated Measurement

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5th harmonic of the highest frequency or 6 GHz, whichever is lower

TB-RF-075-1.0

Report No.: TB-EMC161067 Page: 23 of 61

6.2 Test Setup

6.3 Test Procedure

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m. The table was rotated 360 degrees to determine the position of the highest radiation.

The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

The initial step in collecting radiated emission data is a spectrum QuasiPeak detector mode scanning the measurement frequency range.

If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

6.4 Test Data

Please refer to the Attachment B.

Report No.: TB-EMC161067
Page: 24 of 61

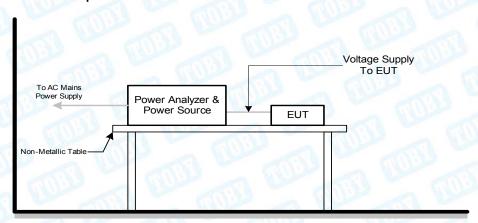
7 Harmonic Current Emission Test

7.1 Test Standard and Limit

7.1.1 Test Standard

Draft ETSI EN 301 489-1 Clause 8.5 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-3-2

7.1.2 Limits


COURT OF	1033 E	IEC 555-2	COURT OF THE PARTY	TO DE	
Table- I			Table- II		
Equipment Category	Harmonic order n	Max. permissible harmonic current (in Ampers)	Equipment Category	Harmonic order n	Max. permissible harmonic current (in Ampers)
THE PARTY OF THE P	odd I	narmonics	a min	odd ha	armonics
DE LEGIS	3	2.30		3	0.8
NonPortableTo olsorTVReceive rs	5	1.14		5	0.65
	7	0.77		7	0.45
	9	0.40		9	0.30
	11	0.33		11	0.17
	13	0.21	TV Receivers	13	0.12
	15≤n≤39	0.15·15/n	TRECEIVEIS	15≤n≤39	0.10·15/n
	even harmonics			even harmonics	
	2	1.08	THE PERSON NAMED IN	2	0.30
	4	0.43	THE PERSON NAMED IN	4	0.15
THE PARTY OF	8	0.30	THE STATE OF	3 -	1000
The same	8≤n≤40	0.23·8/n		DC	0.05

Report No.: TB-EMC161067 Page: 25 of 61

The second	E	N 61000-3-2	a we		
Equipment Category	Max. permissible harmonic current (in Ampers)	Equipment Category	Harmonic order n	Max. pern harmonic (in A)	
		Class D	3	2.30	3.4
	Same as Limits Specified in		5	1.14	1.9
			7	0.77	1.0
Class A	Table I		9	0.40	0.5
	But onlyodd Harmonics required		11	0.33	0.35
	Trainionics required		8≤n≤40	See Tabel I	3.4 1.9 1.0 0.5 0.35 3.85/n
			Only o	dd harmonics re	quired

7.2 Test Setup

7.3 Test Procedure

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.

The classification of EUT is according to section 5 of EN 61000-3-2. The EUT is classified as follows:

Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.

Class B: Portable tools. Arc welding equipment which is not professional equipment.

Class C: Lighting equipment.

Class D: Equipment having a specified power less than or equal to 600 W of the following types: Personal computers and personal computer monitors and television receivers.

7.4 Test Data

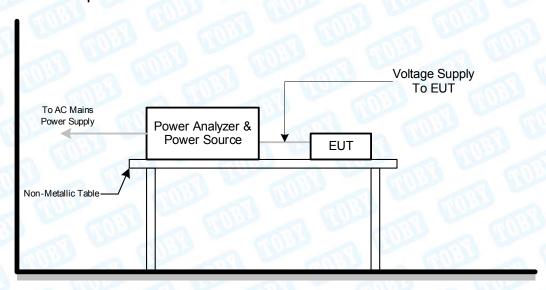
No requirement for this test item

Report No.: TB-EMC161067 Page: 26 of 61

8 Voltage Fluctuation and Flicker Test

8.1 Test Standard and Limit

8.1.1 Test Standard


Draft ETSI EN 301 489-1 Clause 8.4 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-3-3

8.1.2 Limit

Flicker Test Limit

1	Limits		a live and a second
Tests IEC555-3	IEC 61000-3-3	Descriptions	
Pst	≤ 1.0, Tp= 10 min.	≤ 1.0, Tp= 10 min.	Short Term Flicker Indicator
Plt	N/A	≤ 0.65, Tp=2 hr.	Long Term Flicker Indicator
dc	≤ 3 %	≤ 3 %	Relative Steady-State V-Chang
dmax	≤ 4 %	≤ 4 %	Maximum Relative V-change
d (t)	N/A	≤ 3% for > 200 ms	RelativeV-change characteristic

8.2 Test Setup

Report No.: TB-EMC161067
Page: 27 of 61

8.3 Test Procedure

8.3.1 Fluctuation and Flickers Test:

Testswas performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in Clause 5.0/6.0 of IEC555-3 and/or Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.

- 8.3.2 All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.
- 8.3.3 For the actual test configuration, please refer to the related Item –Block Diagram of system tested.

8.4 Test Data

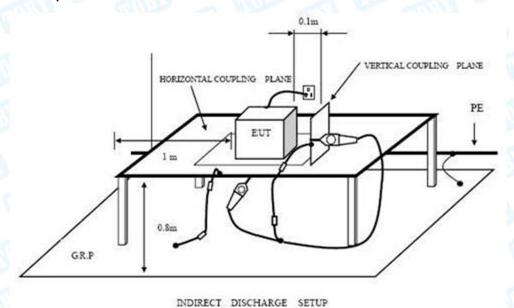
No requirement for this test item

Report No.: TB-EMC161067 Page: 28 of 61

9 Electrostatic Discharge Immunity Test

9.1 Test Requirements

9.1.1 Test Standard


Draft ETSI EN 301 489-1 Clause 9.3 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-4-2

9.1.2 Test Level

Discharge Impedance:	330 ohm/ 150pF	
Discharge Voltage:	Air Discharge: 2kV/4kV/8kV(Direct) Contact Discharge: 2kV/4kV (Direct /Indirect)	
Polarity:	Positive& Negative	
Number of Discharge:	Air Discharge: min.20 times at each test point Contact Discharge: min.200 times in total	
Discharge Mode:	Single Discharge	
Discharge Period:	1 second minimum	

9.1.3 4Performance criterion: B

9.2 Test Setup

Report No.: TB-EMC161067 Page: 29 of 61

9.3 Test Procedure

9.3.1 Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shallbe removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

9.3.2 Contact Discharge:

All the procedure shall be same as air discharge. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

9.3.3 Indirect discharge for horizontal coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

9.3.4 Indirect discharge for vertical coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

9.4 Test Data

Please refer to the Attachment C.

TB-RF-075-1.0

Report No.: TB-EMC161067

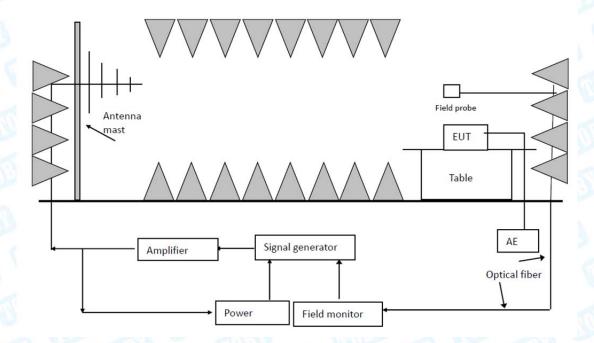
Page: 30 of 61

10Radiated Electromagnetic Field Immunity test

10.1 Test Requirements

10.1.1 Test Standard

Draft ETSI EN 301 489-1 Clause 9.2 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-4-3


10.1.2 Test Level

Test Level for Radiated Electromagnetic Field Immunity Test

Port	Test Specification
EnclosurePort	80-6000MHz
	3 V/m
COLUMN TO THE REAL PROPERTY OF THE PARTY OF	80 % AM (1kHz)

10.1.3 Performance criterion: A

10.2 Test Setup

Report No.: TB-EMC161067 Page: 31 of 61

10.3 Test Procedure

The EUT are placed on a table, which is 0.8 meter high above the ground. The EUT is set 3 meters away from the transmitting antenna, which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna is set on test. Each of the four sides of the EUT must be faced this transmitting antenna and measured individually.

In order to judge the EUT performance, a camera is used to monitor its screen.

All the scanning conditions are as following:

Condition of Test	Remark	
Fielded Strength	3V/m	
Radiated Signal	80%AM,1kHz Since Wave	
Scanning Frequency	80-6000MHz	
Sweep time of radiated	0.0015 Decade/s	
Dwell Time	3 Sec.	

10.4 Test Data

Please refer to the Attachment D.

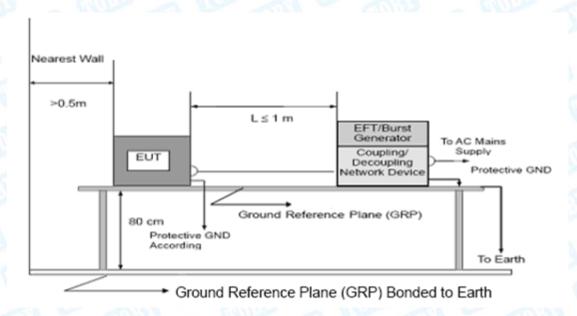
Report No.: TB-EMC161067 Page: 32 of 61

11Electrical Fast Transient/Burst Test

11.1 Test Requirements

11.1.1 Test Standard

Draft ETSI EN 301 489-1 Clause 9.4 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-4-4


11.1.2 Test Level

Test Level for Electrical Fast Transient Test

	On Switching Adapter Lines	On I/O (Input/Output) Signal data and control lines	
Test Voltage:	1 KV	0.5 KV	
Polarity:	Positive&Negative		
Impulse Wave Shape:	5/50ns		
Burst Duration:	15ms		
Burst Period:	300ms		
Test Duration:	Not less than 1 min		

11.1.3 Performance criterion: B

11.2 Test Setup

Report No.: TB-EMC161067 Page: 33 of 61

11.3 Test Procedure

11.3.1 For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 1minute.

11.3.2 For signal lines and control lines ports:

A coupling clamp is use to couple the EFT interference signal to the signal and control lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 1 minute.

11.3.3 For DC input and DC output power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to DC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 1 minute.

11.4 Test Data

Please refer to the Attachment E.

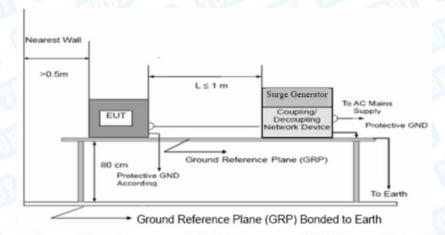
Report No.: TB-EMC161067 Page: 34 of 61

12Surgelmmunity Test

12.1 Test Requirements

12.1.1 Test Standard

Draft ETSI EN 301 489-1 Clause 9.8 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-4-5


12.1.2 Level

Test Level for Surge Immunity Test

Basic Standard:	EN 61000-4-5	
Wave-Shape:	Combination Wave 1.2/50us Open Circuit Voltage 8/20us Short Circuit Current	
Test Voltage	Power Line:0.5kV,1kV,2kV	
Surge Input/Output:	L1-I2,I1-PE,L2-PE	
Generator Source:	2 ohm between networks	
Impedance:	12ohm between network and ground	
Polarity:	Positive/Negative	
Phase Angle:	0/90/180/270	
Pulse Repetition Rate:	1 time/min.(maximum)	
Number of Tests:	5 positive and 5 negative at selected points	

12.1.3 Performance criterion: B

12.2 Test Setup

Report No.: TB-EMC161067 Page: 35 of 61

12.3 Test Procedure

- 12.3.1 Set up the EUT and test generator.
- 12.3.2 For line to line coupling mode, provide a 1.0 KV 1.2/50us voltage surge
- 12.3.3 (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 12.3.4 At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 12.3.5 Different phase angles are done individually.
- 12.3.6 Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

12.4 Test Data

Please refer to the Attachment F.

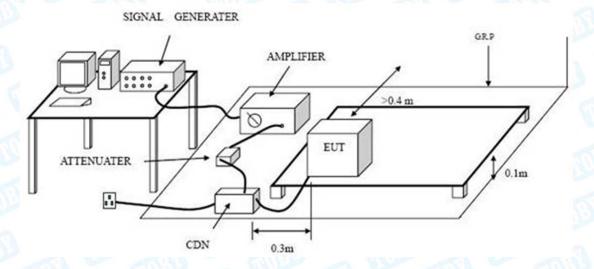
Report No.: TB-EMC161067 Page: 36 of 61

13RF Common Mode

13.1 Test Requirements

13.1.1 Test Standard

Draft ETSI EN 301 489-1 Clause 9.5 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-4-6


13.1.2 Test Level

Test Level for RF Common Mode

Port	Test Specification	
Input AC power port	0.15MHz~80MHz	
	3V(r.m.s.) (unmodulated)	

13.1.3 Performance criterion: A

13.2 Test Setup

Report No.: TB-EMC161067 Page: 37 of 61

13.3 Test Procedure

- 13.3.1 Set up the EUT, CDN and test generators.
- 13.3.2 Let the EUT work in test mode and test it.
- 13.3.3 The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 13.3.4 The disturbance signal description below is injected to EUT through CDN.
- 13.3.5 The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 13.3.6 The frequency range is swept from 0.150MHz to 230MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave.
- 13.3.7 The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 13.3.8 Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

13.4 Test Data

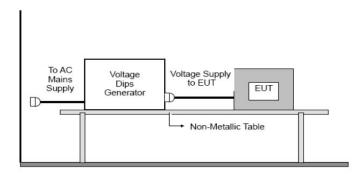
Please refer to the Attachment G.

Report No.: TB-EMC161067 Page: 38 of 61

14Voltage Dips and Interruptions Immunity Test

14.1 Test Requirements

14.1.1 Test Standard


Draft ETSI EN 301 489-1 Clause 9.7 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-4-11

14.1.2 Level

Test Level for Voltage Dips and Interruptions

Basic Standard:	EN 61000-4-11			
Required Performance:	B(For 100% Voltage Dips) B(For 100% Voltage Dips) C(For 30% Voltage Dips) C(For 100% Voltage Interruptions)			
Test Duration Time:	Minimum three test events in sequence			
Interval Between Event:	Minimum ten seconds			
Phase Angle:	0°/45°/90°/135°/180°/225°/270°/315°/360°			
Test Cycle:	3 times			

14.2 Test Setup

14.3 Test Procedure

The EUT shall be tested for each selected combination of test levels and duration witha sequence of three dips/interruptions with intervals of 10 s minimum (between eachtest event). Each representative mode of operation shall be tested. Abrupt changes insupply voltage shall occur at zero crossings of the voltage waveform.

14.4 Test Data

Please refer to the Attachment H.

TOBY

15Photographs - Constructional Details

Photo 1 Appearance of EUT

Photo 2 Appearance of EUT

Photo 3 Appearance of EUT

Photo 4 Appearance of EUT

Photo 5 Appearance of EUT

Photo 6 Appearance of EUT

Photo 7 Internal of EUT

Photo 8 Internal of EUT

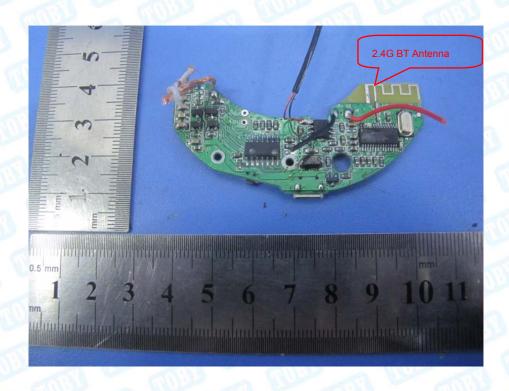
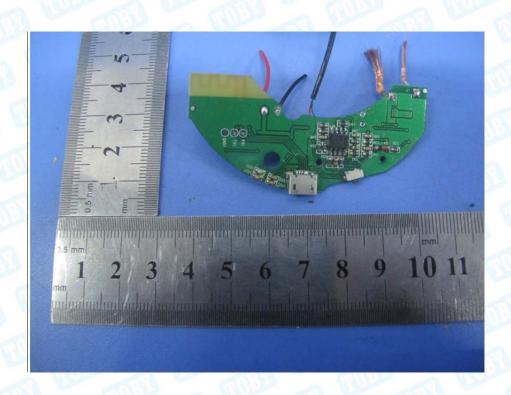


Photo 9 Internal of EUT


Photo 10 Appearance of PCB

TOBY

Report No.: TB-EMC161067
Page: 44 of 61

Photo 11 Appearance of PCB

16Photographs -Test Setup

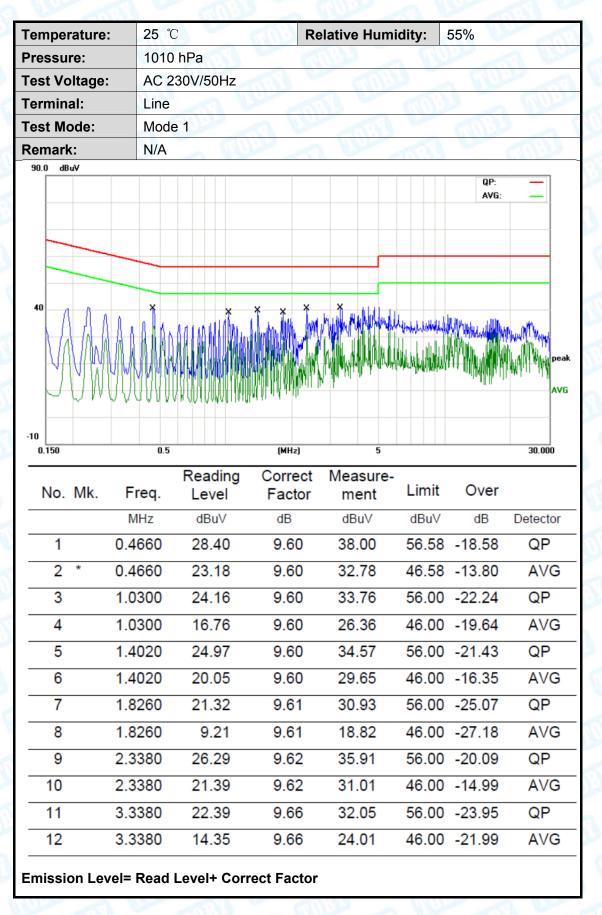
Conducted Emission Test Setup



Radiation Test Setup

Injection Current Test Setup

Electrostatic Discharge Test Setup


Report No.: TB-EMC161067
Page: 47 of 61

EFT, Surge, Voltage Dips Test Setup

Attachment A--Conducted Emission Data

Report No.: TB-EMC161067 Page: 49 of 61

25 ℃ Temperature: **Relative Humidity:** 55% Pressure: 1010 hPa **Test Voltage:** AC 230V/50Hz Terminal: Neutral **Test Mode:** Mode 1 Remark: N/A dBuV QP: AVG: -10 (MHz) 30.000 0.150 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector 0.4660 32.49 9.58 42.07 56.58 -14.51 QP 1 0.4660 27.73 9.58 37.31 46.58 -9.27 AVG 2 3 1.8260 30.45 9.61 40.06 56.00 -15.94 QP 1.8260 21.26 9.61 30.87 46.00 -15.13 AVG 4 5 23.60 33.23 56.00 -22.77 QP 2.3140 9.63 2.3140 11.30 9.63 20.93 46.00 -25.07 AVG 6 QP 7 3.2420 16.92 9.68 26.60 56.00 -29.40 3.2420 5.83 15.51 46.00 -30.49 AVG 8 9.68 56.00 -27.13 QP 9 4.4699 19.06 9.81 28.87 10 4.4699 10.14 9.81 19.95 46.00 -26.05 AVG QP 56.00 -23.94 11 4.7260 22.20 9.86 32.06 12 4.7260 11.89 21.75 46.00 -24.25 AVG 9.86 **Emission Level= Read Level+ Correct Factor**

Report No.: TB-EMC161067

Page: 50 of 61

Report No.: TB-EMC161067 Page:

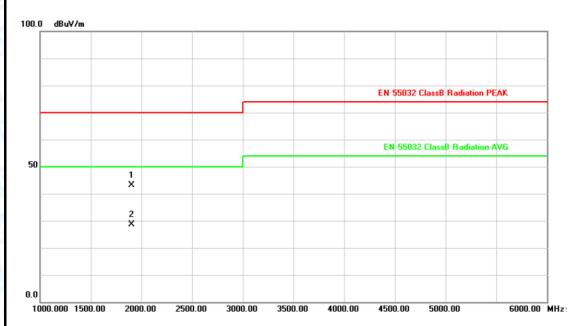
51 of 61

Attachment B--Radiated EmissionTest Data

----Below 1G

Temperature:	25 ℃	Re	lative Humid	lity: 55°	%	(10)
Pressure:	1010 hPa	O V			CHIEF !	
Test Voltage:	DC 5V		7	100		COLD !
Ant. Pol.	Horizontal	THE PERSON NAMED IN			Com.	
Test Mode:	Mode 1	The same	THE	10 N	وسندق	CHIEF CONTRACTOR
Remark:	Only the worst of	case is report	ed	0.55	O V	
80.0 dBuV/m						
30	2	3 4 X	6	N55032 ClassB	3M Radiation Margin -6	dB MMM_Q
-20 30.000 40 5	0 60 70 80	(MHz)	300	400 500	600 700	1000.000
	Reading req. Level		Measure- ment	Limit	Over	
N	MHz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 32.	1795 37.96	-14.64	23.32	40.00	-16.68	peak
2 55.	2207 47.08	-23.83	23.25	40.00	-16.75	peak
3 134	.5592 49.76	-22.46	27.30	40.00	-12.70	peak
4 173	.2051 48.20	-20.40	27.80	40.00	-12.20	peak
	.0738 51.06	-19.82	31.24	40.00	-8.76	peak
	.3204 47.66	-15.45	32.21	47.00	-14.79	peak
	= Read Level+ Co					

Report No.: TB-EMC161067 Page: 52 of 61

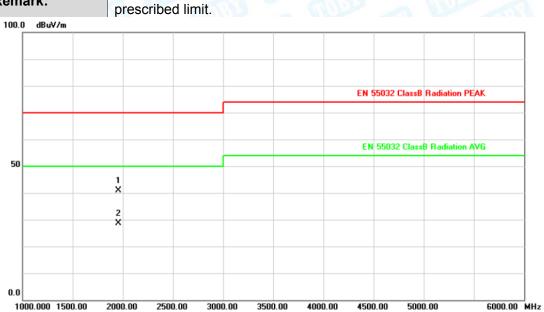

25 ℃ Temperature: **Relative Humidity:** 55% Pressure: 1010 hPa **Test Voltage:** DC 5V Ant. Pol. Vertical **Test Mode:** Mode 1 Remark: Only the worst case is reported 80.0 dBuV/m Margin -6 dB 1000.000 70 (MHz) 600 700 30.000 60 400 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dΒ MHz dBuV/m dBuV/m Detector dB/m 32.8637 49.86 -15.16 34.70 -5.3040.00 peak 2 49.3594 59.56 -23.02 36.54 40.00 -3.46peak 3 66.2662 53.91 -23.83 30.08 40.00 -9.92 peak 4 147.4036 56.70 -21.71 34.99 -5.01 40.00 peak 5 164.9075 54.61 -20.7033.91 40.00 -6.09 peak 6 195.1365 52.73 -19.8832.85 40.00 -7.15peak

Emission Level= Read Level+ Correct Factor

Report No.: TB-EMC161067 Page: 53 of 61

----Above 1G

Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010 hPa		
Test Voltage:	DC 5V	The state of the s	of Black
Ant. Pol.	Horizontal	The state of the s	
Test Mode:	Mode 1		
Remark:	No report for the emissio prescribed limit.	n which more than 10 o	dB below the


N	lo.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			1906.051	45.53	-2.43	43.10	70.00	-26.90	peak
2		*	1906.051	30.96	-2.43	28.53	50.00	-21.47	AVG

Emission Level= Read Level+ Correct Factor

Report No.: TB-EMC161067 Page: 54 of 61

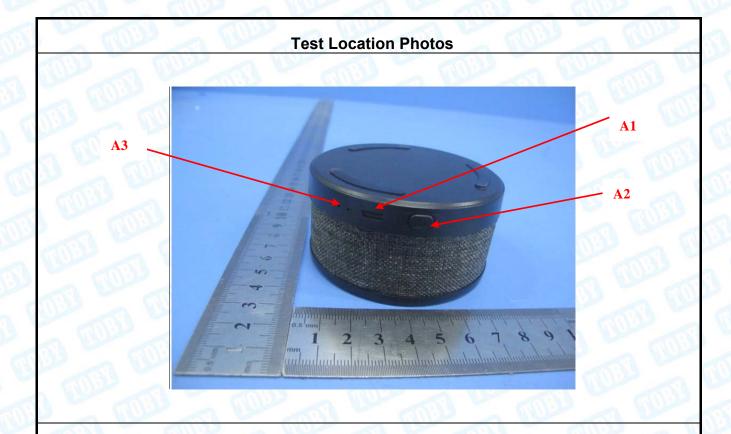
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010 hPa	WILLIAM TO THE PARTY OF THE PAR	
Test Voltage:	DC 5V		
Ant. Pol.	Vertical		
Test Mode:	Mode 1	The state of the s	
Remark:	No report for th	ne emission which more than 10 o	dB below the

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1954.468	42.68	-1.92	40.76	70.00	-29.24	peak
2	*	1954.468	30.60	-1.92	28.68	50.00	-21.32	AVG

Emission Level= Read Level+ Correct Factor

Report No.: TB-EMC161067 Page: 55 of 61

Attachment C--Electrostatic Discharge Test Data


Temperature:	24 ℃	Humidity:	50%
PowerSupply:	DC 5V	Test Mode :	Mode 1
Test Engineer:	Jason		

Air Discharge: $\pm 2kV/\pm 4kV/\pm 8kV$ Contact Discharge: $\pm 2kV/\pm 4kV$ For each point positive 10 times and negative 10 times discharge.

		CHILLIAN TO	
Location	Test Level (kV)	No. of Discharge	Result
A1		20	Α
A2	± 2 kV	20	Α
A3	± 4 kV	20	A
A4	± 8 kV	20	A
1 6081	TO TO THE OWNER OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OW		man 1
	±2kV		mus /
	±4kV		
7000			181
НСР	±4kV	40	А
VCP	±4kV	40	A A

Note: "/" Representative the test not applicable.

Report No.: TB-EMC161067
Page: 56 of 61

Note:

Criteria A: There was no change operated with initial operating during the test.

Criteria B: The EUT function loss during the test, but self-recoverable after the test.

Criteria C: The system shut down during the test.

Report No.: TB-EMC161067 Page: 57 of 61

Attachment D--RF Field Strength Susceptibility Test Data

Temperature : 25° C Humidity : 50°

Powersupply : AC 230V/50Hz Test Mode : Mode 1

Required Performance Criteria: A

Modulation: AM 80%

Pulse: 1 kHz

	Ac	Actual Performance Criteria					
EUT Position	FrequencyRange 1: 80~1000MHz		FrequencyRange2: 1000~6000MHz		Judgment		
	Horizontal	Vertical	Horizontal	Vertical	WIND TO DE		
Front	Α	A	A	A	PASS		
Right	A	A	A	Α	PASS		
Rear	A	Α	A	A	PASS		
Left	Α	A	Α	Α	PASS		

Note:

Criteria A: There was no change operated with initial operating during the test.

Criteria B: The EUT function loss during the test, but self-recoverable after the test.

Criteria C: The system shut down during the test.

Report No.: TB-EMC161067 Page: 58 of 61

Attachment E--Electrical Fast Transient/Burst Test Data

	11			Call 199				
Temperature : 2		25 ℃		Humidity	: 50%	50%		
Power supply		AC 230V/50H	z	Test Mode	e : Mode	1 1000	Will Line	
Requi	red Perfo	ormance Criter	ia: B	THE PARTY OF		TOBY .	EL LOST	
Line :	⊠ A	C Mains Cou	pling : 🖂	Direct				
Line :	☐ Sig	ınal 🗌 I/O	Cable Co	oupling :	Capacitiv	е		
Line	THE PARTY OF			Performance teria	Actual Per Crit		Judgment	
		Tonago(NT)	(+)	(-)	(+)	(-)	oudginon.	
		1.0	В	В	Α	Α	PASS	
3 15	N	1.0	В	В	Α	Α	PASS	
AC	L-N	1.0	В	В	Α	A	PASS	
LINE	L-PE	1.0			1	BELL	TUPE	
	N-PE	1.0	I		1	100	T BAI	

1

1

1

1

Remark:

DC LINE

Signal Line

L-N-PE

Criteria A: There was no change operated with initial operating during the test.

1

1

Criteria B: The EUT function loss during the test, but self-recoverable after the test.

Criteria C: The system shut down during the test.

1.0

1

1

1

Report No.: TB-EMC161067

Page: 59 of 61

Attachment F--Surge Immunity Test Data

Temperature : 24°C Humidity : 50%

Power

supply : AC 230V/50Hz Test Mode : Mode 1

Required Performance Criteria: B

Injected Line	Voltage	Phase	Actual Performance Criteria		Result	
mjeotea Eme	(kV)	1 Huse	(+)	(-)	(+)	(-)
The same	1	0°	Α	Α	PASS	PASS
LALLN	1.0	90°	Α	Α	PASS	PASS
L, N, L-N	1.0	180°	A	Α	PASS	PASS
	THE PERSON NAMED IN	270°	Α	Α	PASS	PASS
1000	2.0	0°	CONTRACTOR OF THE PARTY OF THE	MAR	1	1
L /NL DE		90°	Jan Jan	1	١٧٧١	1
L/N-PE		180°	1	1	MAG	- 1
	0.007	270°		1		4021
J. Comments	13 6	0°	1	1		10
LNDE	2.0	90°	I IN W	1	1	TO I
L-N-PE	2.0	180°	WOA.	1	1	1
	THE WAY	270°	100)) I	T	1
Signal Line	1.0	+/-		1		1

Remark:

Criteria A: There was no change operated with initial operating during the test.

Criteria B: The EUT function loss during the test, but self-recoverable after the test.

Criteria C: The system shut down during the test.

Report No.: TB-EMC161067
Page: 60 of 61

Attachment G--Conducted Immunity Test Data

Temperature : 24°C Humidity : 50%

Power supply : AC 230V/50Hz Test Mode : Mode 1

Required Performance Criteria: A

Frequency Range (MHz)	Injected Position	Voltage Level (e.m.f.)	Required Performance Criteria	Actual Performance Criteria	Result
0.15 ~ 80	AC Mains	3V(rms), AM 80% Modulated with 1 kHz	A	Α	PASS
0.15 ~ 80	DC Mains	3V(rms), AM 80% Modulated with 1 kHz	A		TY
0.15 ~ 80	Signal Line	3V(rms), AM 80% Modulated with 1 kHz	A		TOBY

Remark:

Criteria A: There was no change operated with initial operating during the test.

Criteria B: The EUT function loss during the test, but self-recoverable after the test.

Criteria C: The system shut down during the test.

Report No.: TB-EMC161067 Page: 61 of 61

Attachment H--Voltage Dips and Interruptions Test Data

Temperature :	25℃	Humidity:	50 %
Power Supply :	AC 230V/50Hz	Test Mode :	Mode 1

Required Performance Criteria: B&C

Test Results Description

Voltage Reduction	Cycles	Perform Criteria	Results	Judgment
Voltage dip 100%	0.5	В	Α	PASS
Voltage dip 100%	1000	В	A	PASS
Voltage dip 30%	25	С	С	PASS
Voltage Interruption100%	250	C	С	PASS

Remark:

Criteria A: There was no change operated with initial operating during the test.

Criteria B: The EUT function loss during the test, but self-recoverable after the test.

Criteria C: The system shut down during the test.

----END OF REPORT----