

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-EMC161073 Page: 1 of 58

EMC TEST REPORT

Certificate No.	:	TB180719448
Applicant	1.1	
Equipment Under	Test	(EUT)
EUT Name	057	Wireless charger Bluetooth speaker
Model No.		SL240
Series Model No.	-	SL249, P328.031, P328.032, P328.033, SL249, 7198-64
Brand Name	÷	N/A
Receipt Date	10	2018-07-04
Test Date	:	2018-07-05 to 2018-07-19
Issue Date	0B	2018-07-20
Standards	DI.	Draft ETSI EN 301 489-1 V2.2.0: 2017 Final draft EN 301 489-3 V2.1.1: 2017 Draft ETSI EN 301 489-17 V3.2.0: 2017
Conclusions	:	PASS
		In the configuration tested, the EUT complied with the standards specified above. The EUT technicall complies with the Council Directive 2014/53/EU relating to radio equipment.
Test/Witness Engineer		: Jason Xu Jason Xu
Engineer Supervis	or	: Warsh Not Och
Engineer Manager	3	: Lutta Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TABLE OF CONTENTS

 GENERAL INFORMATION	
 General Description of EUT (EquipmentUnder Test) Block Diagram Showing the Configuration of System Tested Description of Support Units Description of Operating Mode	
 Block Diagram Showing the Configuration of System Tested Description of Support Units Description of Operating Mode	
 1.4 Description of Support Units	
 1.6 Test Conditions	
 Performance Criterion	9 12 12 13 14
 Measurement Uncertainty Test Facility TEST RESULTS SUMMARY	12 12 13 14
 1.9 Test Facility 2 TEST RESULTS SUMMARY 3 TEST EQUIPMENT USED 	12 13 14
2 TEST RESULTS SUMMARY	13 14
3 TEST EQUIPMENT USED	14
4 CONDUCTED DISTURBANCE TEST	16
4.1 Test Standard and Limit	16
4.2 Test Setup	16
4.3 Test Procedure	17
4.4 Test Data	17
5 CONDUCTED EMISSIONS(ASYMMETRIC MODE)	
5.1 Test Standard and Limit	
5.2 Test setup	
5.3 Test Setup and Test Procedure	
5.4 Test Data	21
6 RADIATED DISTURBANCE TEST	22
6.1 Test Standard and Limit	22
6.2 Test Setup	
6.3 Test Procedure	
6.4 Test Data	23
7 HARMONIC CURRENT EMISSION TEST	24
7.1 Test Standard and Limit	24
7.2 Test Setup	
7.3 Test Procedure	
7.4 Test Data	25
8 VOLTAGE FLUCTUATION AND FLICKER TEST	26
8.1 Test Standard and Limit	
8.2 Test Setup	
8.3 Test Procedure	
8.4 Test Data	27
9 ELECTROSTATIC DISCHARGE IMMUNITY TEST	
9.1 Test Requirements	
9.2 Test Setup	
9.3 Test Procedure	
9.4 Test Data	
10 RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST	
10.1 Test Requirements	
10.2 Test Setup	
10.3 Test Procedure	
10.4 Test Data	

DE AVAILABLE BY THE DOC

TOBY

11	ELECTRICAL FAST TRANSIENT/BURST TEST	
	11.1 Test Requirements	
	11.2 Test Setup	
	11.3 Test Procedure	
	11.4 Test Data	
12	SURGEIMMUNITY TEST	
	12.1 Test Requirements	
	12.2 Test Setup	
	12.3 Test Procedure	
	12.4 Test Data	
13	RF COMMON MODE	
	13.1 Test Requirements	
	13.2 Test Setup	
	13.3 Test Procedure	
	13.4 Test Data	
14	VOLTAGE DIPS AND INTERRUPTIONS IMMUNITY TEST	
	14.1 Test Requirements	
	14.2 Test Setup	
	14.3 Test Procedure	
	14.4 Test Data	
15	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	
16	PHOTOGRAPHS –TEST SETUP	43
ATT	ACHMENT ACONDUCTED EMISSION DATA	46
ATT	ACHMENT BRADIATED EMISSIONTEST DATA	
	ACHMENT CELECTROSTATIC DISCHARGE TEST DATA	
	ACHMENT DRF FIELD STRENGTH SUSCEPTIBILITY TEST DATA	
	ACHMENT EELECTRICAL FAST TRANSIENT/BURST TEST DATA	
	ACHMENT FSURGE IMMUNITY TEST DATA	
	ACHMENT GCONDUCTED IMMUNITY TEST DATA	
	ACHMENT GCONDUCTED IMMONITY TEST DATA	
ATT	ACTIVIENT A-VULTAGE DIPS AND INTERKUPTIONS TEST DATA	

THIS DOCUN

Revision History

Report No.	Version	Description	Issued Date
TB-EMC161073	Rev.01	Initial issue of report	2018-07-20
a top	3 000	The second second	THE HULL MODE
and the	mail	TOP TO THE TOP TO	
	The second	The second second	A RULL
TOB1	and and a	TON TONS	Burne
THE LET	DI L	Di Tana ang	mil no
FOR		a manual participation	TODI T
		TOP - TOP - I	and the
3 100000	1000	The state of the s	
TOBI -	TOBS	The second second second second	a Paul
The Carbo	mil L		B
	TOB		TOBI

HH HH

CTED WI

1. General Information

1.1 Client Information

Applicant			1	N. V.S.	and	3	3
Address	: <						
Manufacturer	:		4	5	MORE	-	Charles -
Address	5						

1.2 General Description of EUT (EquipmentUnder Test)

EUT Name	:	Wireless charger Bluetooth speaker		
Model No.		SL240, SL249, P328.031, P328.032, P328.033, SL249, 7198		
Model Difference	2		ntical in the same PCB layout and difference is appearance.	
Product	201	Radio Parts Supported	Bluetooth 4.2: 2402MHz~2480MHz WPT: 110KHz~205KHz	
Description	-	Modulation Type:	Bluetooth 4.2: GFSK	
Power Rating		DC 3.7V 400mAh by Li-io Input: DC 5V by USB Ca Wireless Output: DC 5V/	ble.	
Software Version		1.0	Dub and the set of the	
Hardware Version		1.0		
Connecting I/OPort(S)	50	Please refer to the User's Manual		

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) More information about the RF function, please refer the RF test reports.

1.3 Block Diagram Showing the Configuration of System Tested

Adapter	EUT	
	Load	

Control Room

1.4 Description of Support Units

	Equipment Information							
Name	Model	FCC ID/VOC	Manufacturer	Used "√"				
AC/DC Adapter	TEKA012	VOC	ТЕКА	100				
Load	5V/9V		CHIPSVISION	\checkmark				

1.5 Description of Operating Mode

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	USB Charging+BT Mode+ Wireless Charing

The EUT system operated these modes were found to be the worst case during the pre-scanning test as Following:

	For EMI Test				
	Final Test Mode Description				
	Mode 1	USB Charging+BT Mode+ Wireless Charing			
1		For EMS Test			
	Final Test Mode Description				
	Mode 1	USB Charging+BT Mode+ Wireless Charing			

1.6 Test Conditions

For the purpose of the present document, the test conditions of EN 301 489-1[1], clause 4, shall apply as appropriate. Further product related test conditions for digital cellular mobile and portable radio equipment are specified in the present document.

(1) General

For emission and immunity tests the test modulation, test arrangements, etc., as specified in the present document, clauses 4.1 to 4.5, shall apply.

Whenever the Equipment Under Test (EUT) is provided with a detachable antenna, the EUT shall be tested with the antenna fitted in a manner typical of normal intended use, unless specified otherwise.

(2) Arrangements for test signals

The provisions of EN 301 489-1, clause 4.2 shall apply.

a. Arrangements for establishing a communications link The nominal frequency of the wanted RF input signal (for the receivers) shall be selected by setting the Absolute Radio Frequency Channel Number (ARFCN) to an appropriate number(e.g. in case of GSM 900 MHz this is 60 to 65, and in case of GSM 1 800 MHz this is 690 to 706).

A communication link shall be set up with a suitable base station simulator.

When the EUT is required to be in the transmit/receive mode, the following conditions shall be met:

- the EUT shall be commanded to operate at maximum transmit power;
- the downlink RXQUAL shall be monitored.
- b. Arrangements for test signals at the input of transmitters

The provisions of EN 301 489-1, clause 4.2.1 shall apply with the following modifications.

The test system shall command the EUT to disable Discontinuous Transmission (DTX).

A communication link shall be set up between the EUT and the test system.

c. Arrangements for test signals at the output of transmitters

The provisions of EN 301 489-1, clause 4.2.2 shall apply with the following modifications.

Where the equipment incorporates an external 50Ω RF antenna connector that is normally connected via a coaxial cable, then the wanted signal to establish a communication link shall be delivered from that connector by a coaxial cable.

Where the equipment incorporates an external 50Ω RF antenna connector, but this port is not normally connected via a coaxial cable, and where the equipment does not incorporate an external 50Ω RF connector (integral antenna equipment), then the wanted signal, to establish a communication link, shall be delivered from the equipment to an antenna located within the test environment.

d. Arrangements for test signals at the input of receivers

The provisions of EN 301 489-1, clause 4.2.3 shall apply with the following modifications.

Where the equipment incorporates an external 50Ω RF antenna connector that is normally connected via a coaxial cable, then the wanted signal to establish a communication link shall be delivered to that connector by a coaxial cable.

Where the equipment incorporates an external 50 Ω RF antenna connector, but this port is not normally connected via a coaxial cable, and where the equipment does not incorporate an external 50 Ω RF connector (integral antenna equipment), then the wanted signal, to establish a communication link, shall be presented to the equipment from an antenna located within the test environment.

The wanted RF input signal level shall be set to 40 dB above the reference sensitivity level.

e. Arrangements for test signals at the output of receivers The provisions of EN 301 489-1, clause 4.2.4 shall apply.

f. Idle mode

When the EUT is required to be in the idle mode, the test system shall simulate a Base Station(BS) with Broadcast Control Channel/Common Control Channel (BCCH/CCCH) on one carrier. The EUT shall be synchronized to the BCCH, listening to the CCCH and able to respond to paging messages. Periodic Location Updating shall be disabled.

TOBY

1.7 Performance Criterion

(1) Draft ETSI EN 301 489-17 Performance Criteria

According to ETSI EN 301 489-17 standard, the general performance criteria as following:

Criterion	During Test	After test
A	Shall operate as intended. (see note 1). Shall be no loss of function. Shall be no unintentional transmissions.	Shall operate as intended. Shall be no degradation of performance (see note 3). Shall be no loss of function. Shall be no loss of stored data or user programmable functions.
В	May show loss of function (one or more). May show degradation of performance(see note 2). Shall be no unintentional transmissions.	Functions shall be self-recoverable. Shall operate as intended after recovering. Shall be no degradation of performance (see note 3). Shall be no loss of stored data or user programmable functions.
С	May be loss of function (one or more).	Functions shall be recoverable by the operator. Shall operate as intended after recovering. Shall be no degradation of performance (see note 3).

NOTE 1: Operate as intended during the test allows a level of degradation not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 3:No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation(including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

Performance Table

AVAILABLE BY THE DOCI

BE M

AL CAN

AILABLE ALSO.

UMENT THE OR

THE TIME OF GENERATING

10N TOOL ON 2018-0

WAS REDACTED WITH THE PRODUCTIP

	Phenomena	Performance Criteria
Continuous phenomena applied to Transmitters (CT)	Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an AC Knowledgement (ACK) or Not ACKnowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.	A
Transient phenomena applied toTransmitters (TT)	Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.	B (except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply.)
Continuous phenomena applied toReceivers (CR)	Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.	A
Transient phenomena applied toReceivers (TR)	Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.	B (except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply.)

TOBY

(2) Final draft EN 301 489-3

According to Final draft EN 301 489-3 standard, the general performance criteria as following:

• performance criterion A applies for immunity tests with phenomena of a continuous nature;

• performance criterion B applies for immunity tests with phenomena of a transient nature.

NOTE: Whether a phenomenon is considered transient, continuous or otherwise is indicated in the test procedures for the phenomenon in ETSI EN 301 489-1 [1], clause 9.

Criterion	During test	After test
A	Operate as intended No loss of function No unintentional responses	Operate as intended No loss of function No degradation of performance No loss of stored data or user programmable functions
В	May show loss of function No unintentional responses	Operate as intended Lost function(s) shall be self-recoverable No degradation of performance No loss of stored data or user programmable functions

Performance Requirements

The Requirement of Performance Criteria

	Performance criteria for continuous phenomena applied to transmitters (CT)	Criterion A of the applicable class shall apply
2	Performance criteria for transient phenomena applied to transmitters (TT)	Criterion B of the applicable class shall apply
3	Performance criteria for continuous phenomena applied to receivers (CR)	Criterion A of the applicable class shall apply
4	Performance criteria for transient phenomena applied to transmitters (TR)	Criterion B of the applicable class shall apply

1.8 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test	Parameters	Expanded Uncertainty (U _{Lab})	Expanded Uncertainty (U _{Cispr})	
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	\pm 3.42 dB \pm 3.42 dB	\pm 4.0 dB \pm 3.6 dB	
Electromagnetic Radiated Emission(3-loop)	Level Accuracy: 9kHz to 30 MHz	±3.60 dB	N/A	
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB	N/A	
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB	\pm 5.2 dB	
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB	N/A	
Mains Harmonic	Voltage	±3.11%	N/A	
Voltage Fluctuations & Voltage Flicker		±3.25%	N/A	

1.9 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Test Results Summary 2

according to the technical standards

Draft ETSI EN 301 489-1 V2.2.0: 2017 Requirement Standard: Final draft EN 301 489-3 V2.1.1: 2017 Draft ETSI EN 301 489-17 V3.2.0: 2017							
	EMC Emiss	ion					
Test Standard	est Standard Test Item Limit		Judgment	Remark			
	Conducted Emission	Class B	PASS	018			
EN 55032:2015	Radiated Emission	Class B	PASS				
EN61000-3-2:2014	014 Harmonic Current Class A or D Emission NOTE(2)		N/A	ROB			
EN 6000-3-3:2013	Voltage Fluctuations& Flicker	ns&					
	EMC Immu	nity					
Tost Standard Tost Itom		Performance Criteria	Judgment	Remark			
EN61000-4-2: 2009	Electrostatic Discharge	В	PASS	2 0			
EN 61000-4-3:2006 +A1:2008+A2:2010	RF electromagnetic field	RF electromagnetic field A		mas			
EN 61000-4-4:2012	Fast transients	В	PASS				
EN 61000-4-5:2014	Surges	В	PASS	TOPP			
EN 61000-4-6: 2014	Injected Current	A	PASS	(Com			
EN 61000-4-11 [.] 2004	Volt Interruptions Volt Dips	B /B/ C / C	PASS	-			

NOTE:

EN 61000-4-11: 2004

- (1)" N/A" denotes test is not applicable in this Test Report
- (2) The power consumption of EUT is less than 75W and no Limits apply.
- (3)Voltage dip: 0% residual0.5 cycle- Performance Criteria B

Volt. Interruptions Volt. Dips

- Voltage dip: 0% residual 1 cycle- Performance Criteria B
 - Voltage dip: 70% residual 25 cycles Performance Criteria C
 - Voltage Interruption: 0% residual votage 250 cycles Performance Criteria C

PASS

NOTE (3)

CTED WI

3 Test Equipment Used

Conducted Er	nission Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019
Radiation Emi	ission Test	-	-	-	-
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Jul. 18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP N	11909A	185903	Mar.17, 2018	Mar. 16, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.17, 2018	Mar. 16, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.17, 2018	Mar. 16, 2019
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Mar.17, 2018	Mar. 16, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Harmonic Cur	rent and Voltag	e Fluctuatio	n and Flicke	er Test	-
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Harmonic Flicker Test System	CI	5001ix-CTS- 400	100321	Jul. 18, 2018	Jul. 17, 2019
5K VA	CI	500liX	59468	Jul. 18, 2018	Jul. 17, 2019

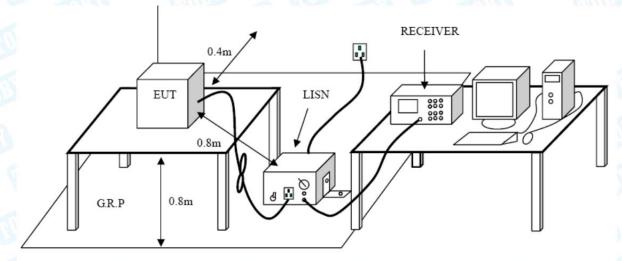
		ALL AND	Les a		TOB	
Discharge Immunity Test						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
ESD Tester	TESEQ	NSG437	304	Jul. 21, 2017	Jul. 20, 2018	
Radiated Imm	unity Test	-	-	-	-	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Signal Generator	Rohde & Schwarz	SMT03	200754	Mar. 22, 2018	Mar. 21, 2019	
Power Meter	Rohde & Schwarz	NRVD	110562	Feb. 12, 2018	Feb. 11, 2019	
Voltage Probe	Rohde & Schwarz	URV5-Z2	12056	Feb. 12, 2018	Feb. 11, 2019	
Voltage Probe	Rohde & Schwarz	URV5-Z2	12074	Feb. 12, 2018	Feb. 11, 2019	
RF Amplifier	AR	50S1G4A	326720	Feb. 12, 2018	Feb. 11, 2019	
Bilog Antenna	ETS	3142C	00047662	Feb. 12, 2018	Feb. 11, 2019	
Horn Antenna	ARA	DRG-118A	16554	Feb. 12, 2018	Feb. 11, 2019	
Electrical Fast	t Transient/ Surg	ge/ Voltage	Dip and Inter	ruption Test	-	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Simulator	EMTEST	UCS500N5	V0948105575	Jul. 18, 2018	Jul. 17, 2019	
Auto-transformer	EMTEST	V4780S2	0109-41	Jul. 18, 2018	Jul. 17, 2019	
Coupling Clamp	EMTEST	HFK	1109-04	Jul. 18, 2018	Jul. 17, 2019	
Conducted Im	munity Test	-	-		-	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
RF Generator	FRANKONIA	CIT-10/75	126B1126	Jul. 18, 2018	Jul. 17, 2019	
Attenuator	FRANKONIA	59-6-33	A413	Jul. 18, 2018	Jul. 17, 2019	
M-CDN	LUTHI	L-801 M2/M3	2599	Jul. 18, 2018	Jul. 17, 2019	
AF2-CDN	LUTHI	L-801:AF2	2538	Mar.17, 2018	Mar. 16, 2019	
EM Injection Clamp	LUTHI	EM101	35958	Jul. 18, 2018	Jul. 17, 2019	

CTED WITH THE

TOBY

4 Conducted Disturbance Test

- 4.1 Test Standard and Limit
- 4.1.1 Test Standard


Draft ETSI EN 301 489-1 Clause 8.4 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 55032: 2015 Class B

4.1.2 Test Limit

Conducted Disturbance Test Limit

asi-peak Level	Average Level
66 ~ 56 *	56 ~ 46 *
56	46
60	50
	56

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from the nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 Test Data

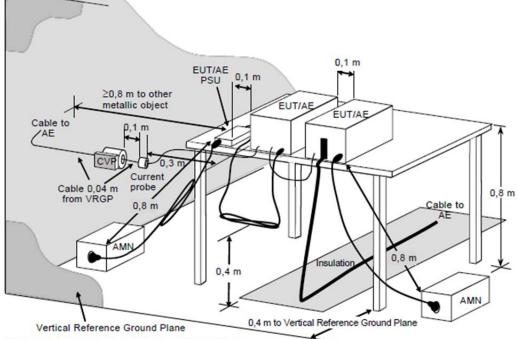
Please refer to the Attachment A.

5 Conducted Emissions(Asymmetric Mode)

- 5.1 Test Standard and Limit
- 5.1.1. Test Standard

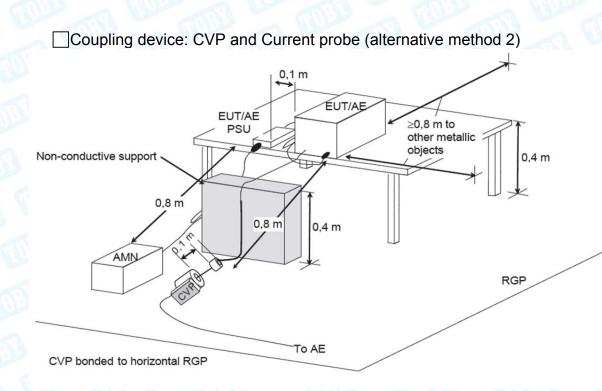
Draft ETSI EN 301 489-1 Clause 8.4 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 55032: 2015 Class B

5.1.2. Limits

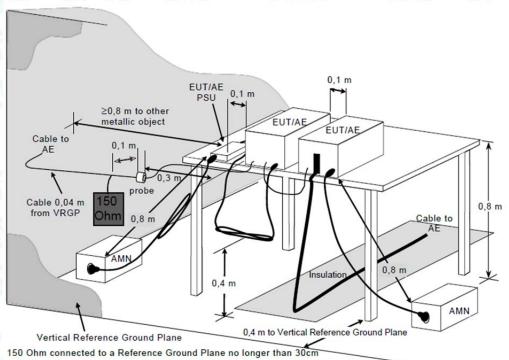

Limits for class A equipment					
Frequency range	Voltage Limits dB(μV) Current limits dB(μA)			s dB(μA)	
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 ~ 0.5	97 ~ 87	84 ~ 74	53 ~ 43	40 ~ 30	
0.5 ~ 30	87	74	43	30	
Note: if "150 Ω to 50 Ω adaptor" applied, correction factor of 9.5dB should be added to the					

Note: If "150 Ω to 50 Ω adaptor" applied, correction factor of 9.5dB should be added to the test data.

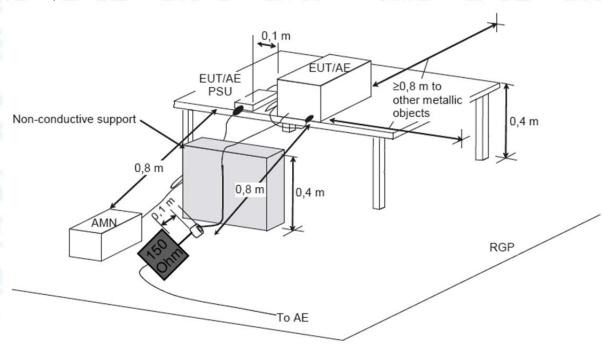
Limits for class B equipment						
Frequency range	Voltage Limits dB(μV) Current limits dE			s dB(μA)		
(MHz)	Quasi-peak	Average	Quasi-peak	Average		
0.15 ~ 0.5	84 ~ 74	74 ~ 64	40 ~ 30	30 ~ 20		
0.5 ~ 30	74	64	30	20		
Note: if " 150Ω to 50Ω adaptor" applied, correction factor of 9.5dB should be added to the test data.						


5.2 Test setup

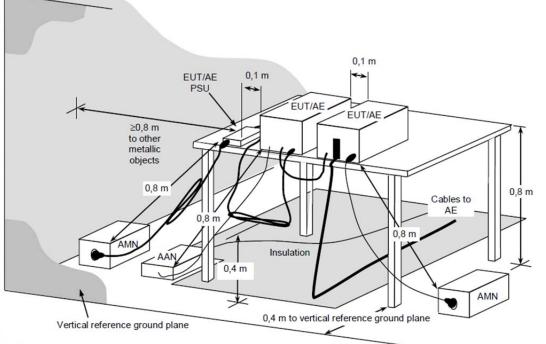
Coupling device: CVP and Current probe (alternative method 1)



AMNs or CVPs bonded to a Reference Ground Plane


Coupling device: Current probe / "150Ω to50Ω adaptor" / high impedance probe (alternative method 1)

Probe may be Current probe / "150 Ohm to 50 Ohm adaptor" / high impedance probe



Coupling device: Current probe / "150 Ω to50 Ω adaptor" / high impedance probe (alternative method 2)

150 Ohm connected to a Reference Ground Plane no longer than 30cm Probe may be Current probe / "150 Ohm to 50 Ohm adaptor" / high impedance probe

Coupling device: AAN

AMNs or AANs bonded to a reference ground plane

ABLE BY THE DOC

BE MA

NAS AVAILABLE ALSC

AL DOCI

THE DOCUMENT THE ORI

WITH THE

REDACTED

5.3 Test Setup and Test Procedure

Detailed test procedurewas followingclause C.4.1 of EN 55032. Frequency range 150kHz – 30MHz was checked and EMI receiver measurement bandwidth was set to 9 kHz.

DataPort	Measurementtype	Coupling device	No. of Pairs
BalancedUnscreened	Voltage	AAN	≤ 4
BalancedUnscreened	Voltage andCurrent	CVP& Current probe	>4 or unable to AAN
Screenedor Coaxial	Voltage	AAN	N/A
Screenedor Coaxial	Voltage orCurrent	Current probe / "150Ω to50Ω adaptor" / high impedance probe	N/A
Unbalancedcables	Voltage and Current	CVP& Current probe	N/A

5.4 Test Data

No requirement for this test item

6 Radiated Disturbance Test

- 6.1 Test Standard and Limit
- 6.1.1 Test Standard

DraftETSI EN 301 489-1 Clause 8.2 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN55032: 2015 Class B

6.1.2 Test Limit

FREQUENCY (MHz)	Class A (at 10m)	Class B (at 10m) dBuV/m	
	dBuV/m		
30 – 230	40	30	
230 – 1000	47	37	

Radiated Disturbance Test Limit

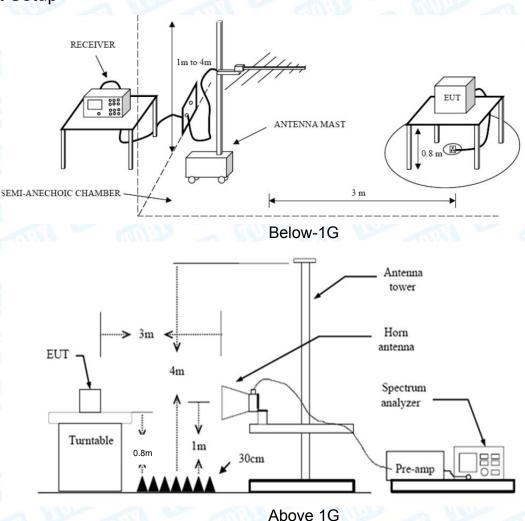
Notes:

(1) The limit for radiated test was performed according to as following: EN55032

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Limits of Radiated Emission Measurement (Above 1000MHz)						
FREQUENCY	Class A (dBuV/m) (at 3m)		Class B (dBuV/m) (at 3m)			
(MHz)	PEAK	AVERAGE	PEAK	AVERAGE		
1000-3000	76	56	70	50		
3000-6000	80	60	74	54		

Notes:


(1) The lower limit applies at the transition frequency.

Frequency Rangeof Radiated Measurement

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5th harmonic of the highest frequency or 6 GHz, whichever is lower

TOBY

6.2 Test Setup

6.3 Test Procedure

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m. The table was rotated 360 degrees to determine the position of the highest radiation.

The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

The initial step in collecting radiated emission data is a spectrum QuasiPeak detector mode scanning the measurement frequency range.

If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

6.4 Test Data

Please refer to the Attachment B.

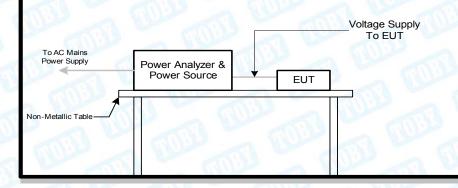
7 Harmonic Current Emission Test

- 7.1 Test Standard and Limit
- 7.1.1 Test Standard

Draft ETSI EN 301 489-1 Clause 8.5 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-3-2

7.1.2 Limits

BE MADE AVAILABLE BY THE DO


AL CAN OP

		IEC 555-2	and l	ROB	
Table- I			Table- II		
Equipment Category	Harmonic order n	Max. permissible harmonic current (in Ampers)	Equipment Category	Harmonic order n	Max. permissible harmonic current (in Ampers)
a fundad	odd I	narmonics	a Dur	odd harmonics	
NonPortableTo olsorTVReceive rs	3	2.30		3	0.8
	5	1.14		5	0.65
	7	0.77		7	0.45
	9	0.40		9	0.30
	11	0.33		11	0.17
	13	0.21	TV Receivers	13	0.12
	15≤n≤39	0.15·15/n		15≤n≤39	0.10·15/n
	even harmonics			even harmonics	
	2	1.08	1 Martin	2	0.30
	4	0.43	U Long	4	0.15
The second	8	0.30		3	TOD A
	8≤n≤40	0.23·8/n	and the	DC	0.05

E	N 61000-3-2	a Curr	and have	
Max. permissible harmonic current (in Ampers)	Equipment Category	Harmonic order n	Max. permissible harmonic current (in A) (mA/w)	
Class A Same as Limits Specified in Table I But onlyodd Harmonics required	a Cub	3	2.30	3.4
	Class D	5	1.14	1.9
		7	0.77	1.0
		9	0.40	0.5
		11	0.33	0.35
		8≤n≤40	See Tabel I	3.85/n
		Only o	dd harmonics re	equired
	Max. permissible harmonic current (in Ampers) Same as Limits Specified in Table I But onlyodd	harmonic current (in Ampers)Equipment CategorySame as Limits Specified in Table I But onlyoddClass D	Max. permissible harmonic current (in Ampers)Equipment CategoryHarmonic order nSame as Limits Specified in Table I But onlyodd Harmonics required35Same as Limits Specified in Table I79But onlyodd Harmonics required118≤n≤40	Max. permissible harmonic current (in Ampers)Equipment CategoryHarmonic

7.2 Test Setup

7.3 Test Procedure

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.

The classification of EUT is according to section 5 of EN 61000-3-2.The EUT is classified as follows:

- Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.
- Class B: Portable tools.Arc welding equipment which is not professional equipment.
- Class C: Lighting equipment.
- Class D: Equipment having a specified power less than or equal to600 W of the following types: Personal computers and personal computer monitors and television receivers.

7.4 Test Data

No requirement for this test item

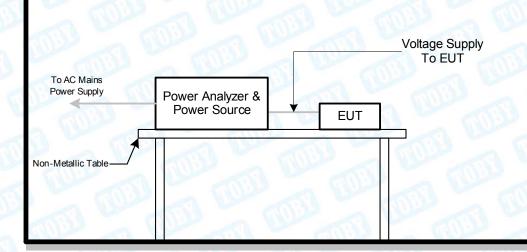
8 Voltage Fluctuation and Flicker Test

8.1 Test Standard and Limit

8.1.1 Test Standard

Draft ETSI EN 301 489-1 Clause 8.4 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-3-3

8.1.2 Limit


BE MADE AVAILABLE BY THE

CAN ONLY

Lim		Limits	Descriptions		
Tests IEC555-3 IEC 61000-3-3	Descriptions				
Pst	≤ 1.0, Tp= 10 min.	≤ 1.0, Tp= 10 min.	Short Term Flicker Indicator		
Pit	N/A	≤ 0.65, Tp=2 hr.	Long Term Flicker Indicator		
dc	≤ 3 %	≤ 3 %	Relative Steady-State V-Chang		
dmax	≤ 4 %	≤ 4 %	Maximum Relative V-change		
d (t)	N/A	\leq 3% for > 200 ms	RelativeV-change characterist		

Eliakov Teet Limit

8.2 Test Setup

8.3 Test Procedure

BY THE DOCUI

Ш

THE ORIGINAL CAN

ALSO.

ğ

CTED

8.3.1 Fluctuation and Flickers Test:

Testswas performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in Clause 5.0/6.0 of IEC555-3 and/or Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.

- 8.3.2 All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.
- 8.3.3 For the actual test configuration, please refer to the related Item –Block Diagram of system tested.

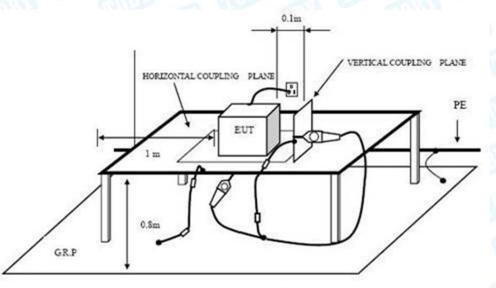
8.4 Test Data

No requirement for this test item

9 Electrostatic Discharge Immunity Test

9.1 Test Requirements

9.1.1 Test Standard


Draft ETSI EN 301 489-1 Clause 9.3 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-4-2

9.1.2 Test Level

Discharge Impedance:	330 ohm/ 150pF		
Discharge Voltage:	Air Discharge: 2kV/4kV/8kV(Direct) Contact Discharge: 2kV/4kV (Direct /Indirect) Positive& Negative		
Polarity:			
Number of Discharge:	Air Discharge: min.20 times at each test point Contact Discharge: min.200 times in total		
Discharge Mode:	Single Discharge		
Discharge Period:	1 second minimum		

9.1.3 4Performance criterion: B

9.2 Test Setup

INDIRECT DISCHARGE SETUP

9.3 Test Procedure

9.3.1 Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shallbe removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

9.3.2 Contact Discharge:

All the procedure shall be same as air discharge. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

9.3.3 Indirect discharge for horizontal coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

9.3.4 Indirect discharge for vertical coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

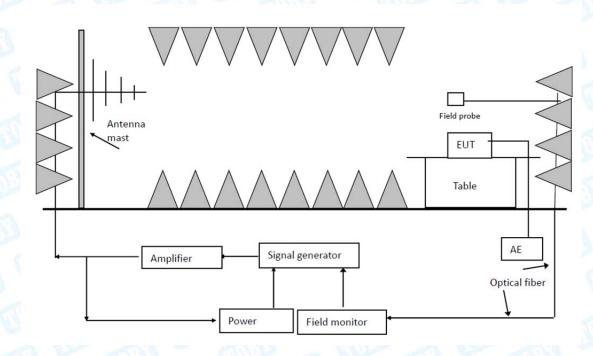
9.4 Test Data

Please refer to the Attachment C.

10Radiated Electromagnetic Field Immunity test

- 10.1 Test Requirements
- 10.1.1 Test Standard

Draft ETSI EN 301 489-1 Clause 9.2 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-4-3


10.1.2 Test Level

Test Level for Radiated Electromagnetic Field Immunity Test

Port	Test Specification
EnclosurePort	80-6000MHz
	3 V/m
	80 % AM (1kHz)

10.1.3 Performance criterion: A

10.2 Test Setup

10.3 Test Procedure

The EUT are placed on a table, which is 0.8 meter high above the ground. The EUT is set 3 meters away from the transmitting antenna, which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna is set on test. Each of the four sides of the EUT must be faced this transmitting antenna and measured individually.

In order to judge the EUT performance, a camera is used to monitor its screen.

All the scanning conditions are as following:

Condition of Test	Remark
Fielded Strength	3V/m
Radiated Signal	80%AM,1kHz Since Wave
Scanning Frequency	80-6000MHz
Sweep time of radiated	0.0015 Decade/s
Dwell Time	3 Sec.

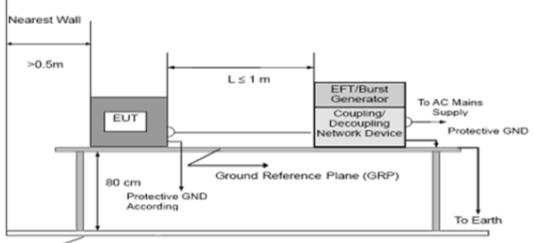
10.4 Test Data

Please refer to the Attachment D.

11Electrical Fast Transient/Burst Test

- 11.1 Test Requirements
- 11.1.1 Test Standard

Draft ETSI EN 301 489-1 Clause 9.4 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-4-4


11.1.2 Test Level

Test Level for Electrical Fast Transient Test
--

mes - mes	On Switching Adapter Lines	On I/O (Input/Output) Signal data and control lines	
Test Voltage:	1 KV	0.5 KV	
Polarity:	Posi	tive&Negative	
Impulse Wave Shape:		5/50ns	
Burst Duration:		15ms	
Burst Period:	300ms		
Test Duration:	Not I	ess than 1 min	

11.1.3 Performance criterion: B

11.2 Test Setup

Ground Reference Plane (GRP) Bonded to Earth

11.3 Test Procedure

11.3.1 For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 1minute.

11.3.2 For signal lines and control lines ports:

A coupling clamp is use to couple the EFT interference signal to the signal and control lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 1 minute.

11.3.3 For DC input and DC output power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to DC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 1 minute.

11.4 Test Data

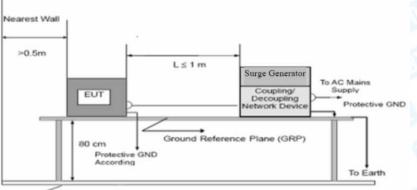
Please refer to the Attachment E.

12SurgeImmunity Test

12.1 Test Requirements

12.1.1 Test Standard

Draft ETSI EN 301 489-1 Clause 9.8 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-4-5


12.1.2 Level

Basic Standard:	EN 61000-4-5		
Wave-Shape:	Combination Wave 1.2/50us Open Circuit Voltage 8/20us Short Circuit Current		
Test Voltage	Power Line:0.5kV,1kV,2kV		
Surge Input/Output:	L1-I2,I1-PE,L2-PE		
Generator Source:	2 ohm between networks		
Impedance:	12ohm between network and ground		
Polarity:	Positive/Negative		
Phase Angle:	0/90/180/270		
Pulse Repetition Rate:	1 time/min.(maximum)		
Number of Tests:	5 positive and 5 negative at selected points		

Test Level for Surge Immunity Test

12.1.3 Performance criterion: B

12.2 Test Setup

- Ground Reference Plane (GRP) Bonded to Earth

TOBY

12.3 Test Procedure

ILABLE BY THE DOCU

BE MA

- 12.3.1 Set up the EUT and test generator.
- 12.3.2 For line to line coupling mode, provide a 1.0 KV 1.2/50us voltage surge
- 12.3.3 (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 12.3.4 At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate areconducted during test.
- 12.3.5 Different phase angles are done individually.
- 12.3.6 Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

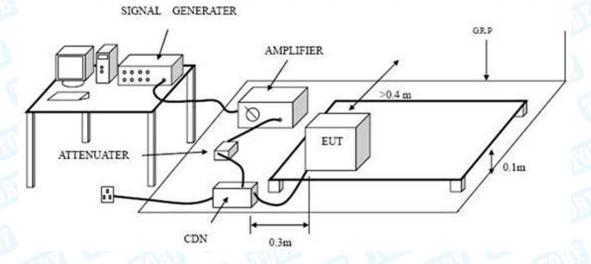
12.4 Test Data

Please refer to the Attachment F.

13RF Common Mode

- 13.1 Test Requirements
- 13.1.1 Test Standard

Draft ETSI EN 301 489-1 Clause 9.5 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-4-6


13.1.2 Test Level

Test	l evel	for	RF	Common	Mode
1031	LCVCI	101	1.1	Common	mouc

Port	Test Specification
Input AC power port	0.15MHz~80MHz
	3V(r.m.s.) (unmodulated)

13.1.3 Performance criterion: A

13.2 Test Setup

13.3 Test Procedure

- 13.3.1 Set up the EUT, CDN and test generators.
- 13.3.2 Let the EUT work in test mode and test it.
- 13.3.3 The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 13.3.4 The disturbance signal description below is injected to EUT through CDN.
- 13.3.5 The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 13.3.6 The frequency range is swept from 0.150MHz to 230MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave.
- 13.3.7 The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 13.3.8 Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

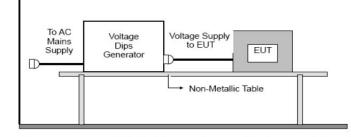
13.4 Test Data

Please refer to the Attachment G.

14Voltage Dips and Interruptions Immunity Test

14.1 Test Requirements

14.1.1 Test Standard


Draft ETSI EN 301 489-1 Clause 9.7 Draft ETSI EN 301 489-3/ Draft ETSI EN 301 489-17 EN 61000-4-11

14.1.2 Level

Test Level for Voltage Dips and Interruptions

Basic Standard:	EN 61000-4-11 B(For 100% Voltage Dips) B(For 100% Voltage Dips) C(For 30% Voltage Dips) C(For 100% Voltage Interruptions)					
Required Performance:						
Test Duration Time:	Minimum three test events in sequence					
Interval Between Event:	Minimum ten seconds					
Phase Angle:	0°/45°/90°/135°/180°/225°/270°/315°/360°					
Test Cycle:	3 times					

14.2 Test Setup

14.3 Test Procedure

The EUT shall be tested for each selected combination of test levels and duration witha sequence of three dips/interruptions with intervals of 10 s minimum (between eachtest event). Each representative mode of operation shall be tested. Abrupt changes insupply voltage shall occur at zero crossings of the voltage waveform.

14.4 Test Data

Please refer to the Attachment H.

Ш

Ł

ACTED WI

Report No.: TB-EMC161073 Page: 39 of 58

15Photographs - Constructional Details

Photo 1 Appearance of EUT

Photo 2 Appearance of EUT

Photo 3 Internal of EUT

Photo 4 Internal of EUT

LIS

TB-RF-075-1.0

Photo 5 Internal of EUT

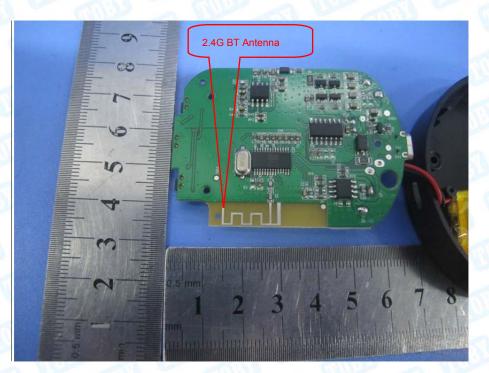


Photo 6 Internal of EUT

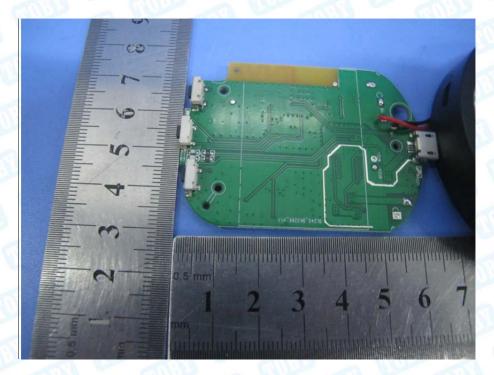


Photo 7 Appearance of PCB

Photo 8 Appearance of PCB

TB-RF-075-1.0

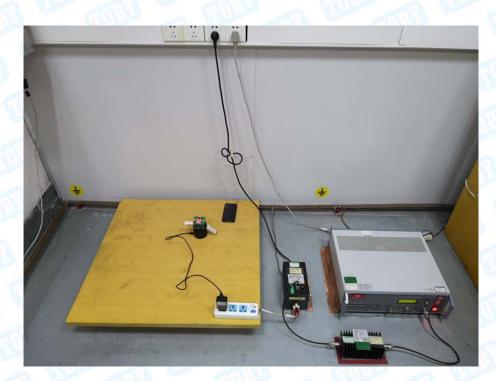
BY THE

Ш

Report No.: TB-EMC161073 Page: 43 of 58

16Photographs –Test Setup

Conducted Emission Test Setup

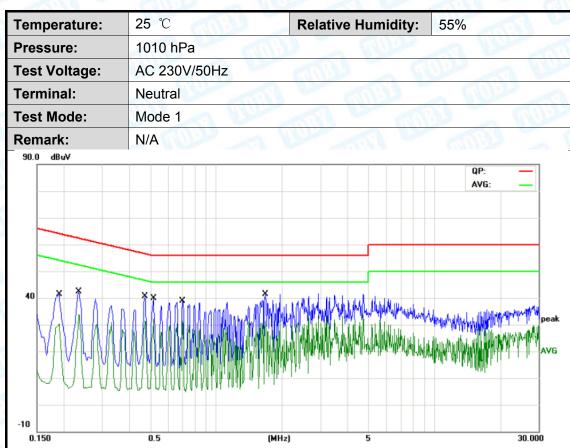


Radiation Test Setup

Injection Current Test Setup

Electrostatic Discharge Test Setup

TB-RF-075-1.0


EFT, Surge, Voltage Dips Test Setup

Attachment A--Conducted Emission Data

emperature	: 25 °C		Re	lative Humid	ity:	55%	
Pressure:	1010	hPa	61				AU
est Voltage:	AC 2	30V/50Hz	TAB V	E mas			
erminal:	Line		and the second		ann	2	MU
est Mode:	Mode	e 1	AV	1 Contraction	100	Ellin	2
Remark:	N/A		ALL AND	LUL -	122		mB
90.0 dBuV						QP: AVG:	
40				XyxXyxxxhaarna XyyXyyyhyhyhyhyhyhyhyhyhyhyhyh	unhann den Willigender	uternep () () () ()	peak
-10	0.5		(MHz)	5			30.000
0.150		Reading	Correct	Measure-	imit	Over	30.000
	Freq.	Level	Correct Factor	Measure- ment	Limit	Over	
0.150 No. Mk.	Freq. MHz	Level dBuV	Correct Factor dB	Measure- ment dBuV	dBuV	dB	Detector
0.150 No. Mk. 1	Freq. MHz 0.1860	Level dBuV 33.04	Correct Factor dB 9.58	Measure- ment dBuV 42.62	dBuV 64.21	dB -21.59	Detector
0.150 No. Mk. 1 2	Freq. MHz 0.1860 0.1860	Level dBuV 33.04 21.31	Correct Factor dB 9.58 9.58	Measure- ment dBuV 42.62 30.89	dBu∨ 64.21 54.21	dB -21.59 -23.32	Detector QP AVG
0.150 No. Mk. 1 2 3	Freq. MHz 0.1860 0.1860 0.2340	Level dBuV 33.04 21.31 31.66	Correct Factor dB 9.58 9.58 9.58	Measure- ment dBuV 42.62 30.89 41.24	dBuV 64.21 54.21 62.30	dB -21.59 -23.32 -21.06	Detector QP AVG QP
0.150 No. Mk. 1 2 3 4	Freq. MHz 0.1860 0.1860 0.2340 0.2340	Level dBuV 33.04 21.31 31.66 21.60	Correct Factor dB 9.58 9.58 9.58 9.58	Measure- ment dBuV 42.62 30.89 41.24 31.18	dBuV 64.21 54.21 62.30 52.30	dB -21.59 -23.32 -21.06 -21.12	Detector QP AVG QP AVG
0.150 No. Mk. 1 2 3 4 5	Freq. MHz 0.1860 0.1860 0.2340 0.2340 0.2340 0.2819	Level dBuV 33.04 21.31 31.66 21.60 28.23	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.59	Measure- ment dBuV 42.62 30.89 41.24 31.18 37.82	dBuV 54.21 54.21 52.30 52.30 50.76	dB -21.59 -23.32 -21.06 -21.12 -22.94	Detector QP AVG QP AVG QP
0.150 No. Mk. 1 2 3 4	Freq. MHz 0.1860 0.1860 0.2340 0.2340	Level dBuV 33.04 21.31 31.66 21.60	Correct Factor dB 9.58 9.58 9.58 9.58	Measure- ment dBuV 42.62 30.89 41.24 31.18 37.82	dBuV 54.21 54.21 52.30 52.30 50.76	dB -21.59 -23.32 -21.06 -21.12	Detector QP AVG QP AVG
0.150 No. Mk. 1 2 3 4 5	Freq. MHz 0.1860 0.1860 0.2340 0.2340 0.2340 0.2819	Level dBuV 33.04 21.31 31.66 21.60 28.23	Correct Factor dB 9.58 9.58 9.58 9.58 9.58 9.59	Measurement dBuV 42.62 30.89 41.24 31.18 37.82 28.69	dBuV 54.21 54.21 52.30 52.30 50.76 50.76	dB -21.59 -23.32 -21.06 -21.12 -22.94	Detector QP AVG QP AVG QP
0.150 No. Mk. 1 2 3 4 5 6	Freq. MHz 0.1860 0.1860 0.2340 0.2340 0.2340 0.2819 0.2819	Level dBuV 33.04 21.31 31.66 21.60 28.23 19.10	Correct Factor dB 9.58 9.58 9.58 9.58 9.59 9.59	Measurement dBuV 42.62 6 30.89 5 41.24 6 31.18 5 37.82 6 28.69 5 37.11 5	dBuV 54.21 52.30 52.30 50.76 50.76 59.55	dB -21.59 -23.32 -21.06 -21.12 -22.94 -22.07	Detector QP AVG QP AVG QP AVG
0.150 No. Mk. 1 2 3 4 5 6 7	Freq. MHz 0.1860 0.1860 0.2340 0.2340 0.2819 0.2819 0.2819 0.3260	Level dBuV 33.04 21.31 31.66 21.60 28.23 19.10 27.52	Correct Factor dB 9.58 9.58 9.58 9.58 9.59 9.59 9.59	Measurement Measurement dBuV 42.62 6 30.89 41.24 6 31.18 4 6 37.82 6 6 28.69 4 6 37.11 4 6 37.98 4 6	dBuV 54.21 54.21 52.30 52.30 50.76 50.76 59.55 49.55	dB -21.59 -23.32 -21.06 -21.12 -22.94 -22.07 -22.44	Detector QP AVG QP AVG QP AVG QP
0.150 No. Mk. 1 2 3 4 5 6 7 8	Freq. MHz 0.1860 0.2340 0.2340 0.2340 0.2819 0.2819 0.3260 0.3260	Level dBuV 33.04 21.31 31.66 21.60 28.23 19.10 27.52 20.39	Correct Factor dB 9.58 9.58 9.58 9.58 9.59 9.59 9.59 9.59	Measurement Measurement dBuV 42.62 6 30.89 4 6 31.18 5 6 37.82 6 6 37.11 5 6 35.33 6 6	dBuV 54.21 52.30 52.30 50.76 59.55 49.55 56.51	dB -21.59 -23.32 -21.06 -21.12 -22.94 -22.07 -22.44 -19.57	Detector QP AVG QP AVG QP AVG QP AVG
0.150 No. Mk. 1 2 3 4 5 6 7 8 9	Freq. MHz 0.1860 0.1860 0.2340 0.2340 0.2819 0.2819 0.3260 0.3260 0.3260	Level dBuV 33.04 21.31 31.66 21.60 28.23 19.10 27.52 20.39 25.73	Correct Factor dB 9.58 9.58 9.58 9.58 9.59 9.59 9.59 9.59	Measurement Measurement dBuV 42.62 6 30.89 4 6 31.18 5 6 37.82 6 6 37.11 5 6 35.33 6 6 30.30 4 6	dBuV 54.21 52.30 52.30 50.76 59.55 59.55 59.55 56.51 46.51	dB -21.59 -23.32 -21.06 -21.12 -22.94 -22.07 -22.44 -19.57 -21.18	Detector QP AVG QP AVG QP AVG QP AVG QP

		Deseller	0	Management			
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1900	27.60	9.65	37.25	64.03	-26.78	QP
2	0.1900	16.78	9.65	26.43	54.03	-27.60	AVG
3	0.2340	30.19	9.62	39.81	62.30	-22.49	QP
4	0.2340	20.86	9.62	30.48	52.30	-21.82	AVG
5	0.4700	27.63	9.58	37.21	56.51	-19.30	QP
6 *	0.4700	22.21	9.58	31.79	46.51	-14.72	AVG
7	0.5140	26.65	9.58	36.23	56.00	-19.77	QP
8	0.5140	18.47	9.58	28.05	46.00	-17.95	AVG
9	0.6980	26.91	9.59	36.50	56.00	-19.50	QP
10	0.6980	18.43	9.59	28.02	46.00	-17.98	AVG
11	1.6740	28.61	9.60	38.21	56.00	-17.79	QP
12	1.6740	18.48	9.60	28.08	46.00	-17.92	AVG

Attachment B--Radiated EmissionTest Data

-----Below 1G

TOBY

						-
Temperature:	25 ℃	Re	lative Humid	lity: 55%	%	(LON
Pressure:	1010 hPa	AV.	- ABL		(UDR)	
Test Voltage:	DC 5V	July Contraction	0	ann		4000
Ant. Pol.	Horizontal			5	Land	
Test Mode:	Mode 1		The second		2	(B)
Remark:	Only the worst ca	ase is reporte	ed			
80.0 dBu∀/m						
				EN55032 ClassB	3M Radiation Margin -6	dB
			4 5 6 X 5	-		
30	1 2 x	3 X	they prove			
man	×	M.	- WW	han	manner	m
~~~~	~~~~					
-20 30.000 40 50	60 70 80	(MHz)	300	400 500	0 600 700	1000.000
	Reading	Correct	Measure-			
No. Mk. Fr	req. Level	Factor		Limit	Over	
M	MHz dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1 54.0	0711 45.87	-23.70	22.17	40.00	-17.83	peak
	.6443 46.91	-22.16	24.75	40.00	-15.25	peak
	.6850 48.47	-22.45	26.02	40.00	-13.98	peak
	1005 54.06	-19.84	34.22	40.00	-5.78	peak
5 226.0	.0994 50.83	-18.51	32.32	40.00	-7.68	peak
6 334.8	.8589 49.94	-15.07	34.87	47.00	-12.13	peak



					1				
Temperature:	<b>25</b> °C		Re	elative Humidi	ty: 58	5%	3 2		
Pressure:	1010	hPa	(III)	- FOD	2		-		
Test Voltage:	DC 5	DC 5V							
Ant. Pol.	Vertic	Vertical							
Test Mode:	Mode	e 1			mB1		MORE		
Remark:	Only	the worst ca	ise is report	ted			-		
30.0 dBuV/m 30 -20	1 2 XX	3	4 5 X		155032 Class	sB 3M Radiation Margin -6			
30.000 40	50 60 70		(MHz)	300	400 50	00 600 700	1000.000		
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment L	.imit	Over			
	MHz	dBuV	dB/m	dBuV/m d	BuV/m	dB	Detector		
1 ! 49	9.3594	59.09	-23.02	36.07	40.00	-3.93	peak		
2 ! 52	2.5753	59.16	-23.53	35.63	40.00	-4.37	peak		
3 10	2.3597	55.31	-22.18	33.13 4	40.00	-6.87	peak		
4 14	8.4410	53.46	-21.60	31.86	40.00	-8.14	peak		
5 17	1.9946	53.38	-20.45	32.93	40.00	-7.07	peak		
6 * 19	5.1365	56.45	-19.88	36.57	40.00	-3.43	peak		

Emission Level= Read Level+ Correct Factor

**WAS REDACTED WITH THE PRODUCTIP** 

**THIS DOCU** 

# -----Above 1G

**VBLE BY THE DOCL** 

BE MA

**JENT THE** 

ON 2018-

REDACTED WITH THE

em	perature:		<b>25</b> ℃			Relativ	/e Humid	ity: 5	5%	
res	sure:		1010 hF	a	14	000		(ma)	30 -	
est	Voltage:		DC 5V	NOF		1 me	100		1112	
nt.	Pol.		Horizon	tal	RUP	-	U.S.	AN AN		(III)
est	Mode:		Mode 1	Mode 1						
em	ark:		No repo prescrib		emissi	ion which	more that	n 10 dB	below th	e
100.0	) dBu¥/m									
							EN 5	5032 ClassB	Radiation PE	AK
		1					EN	55032 Class	8 Radiation A	VG
50		х								
		2 X								
0.0										
10	00.000 1500.0	0	2000.00 25	600.00 30	00.00	3500.00 400	00.00 4500	.00 5000	).00	6000.00

No	. Mk.	Freq.	-	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1730.272	54.47	-3.51	50.96	70.00	-19.04	peak
2	*	1730.272	41.26	-3.51	37.75	50.00	-12.25	AVG

Гem	perature:		<b>25</b> ℃			Relative	Humidity	: 55%	
res	sure:		1010 hF	°a	an		MORE	-	Nu -
ſest	Voltage:		DC 5V	100		COR)	-	TUPP	
۹nt.	Pol.		Vertical				TOB .	50	1012
ſest	Mode:		Mode 1						
Rem	ark:		No repo prescrib		emissi	on which m	ore than 1	0 dB below	the
100.0	) dBu∀/m								
							EN 55032	ClassB Radiation	PEAK
					-				
							EN 5503	2 ClassB Radiatio	AVG
50									
		1							
		ż							
		2 X							
		^							
0.0									

Ν	۱o.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			1730.272	42.19	-3.51	38.68	70.00	-31.32	peak
2		*	1730.272	31.13	-3.51	27.62	50.00	-22.38	AVG

Emission Level= Read Level+ Correct Factor

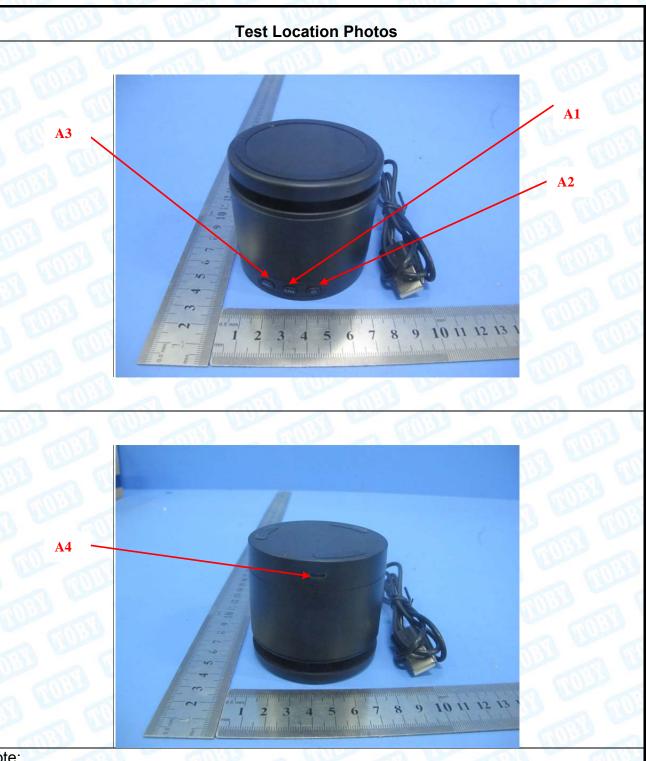
HT TH

CTED WI

# **Attachment C--Electrostatic Discharge Test Data**

Temperature:	<b>24</b> °C	Humidity :	50%
PowerSupply:	DC 5V	Test Mode :	Mode 1
Test Engineer :	Jason	and - I	

Air Discharge:  $\pm 2kV/\pm 4kV/\pm 8kV$  Contact Discharge:  $\pm 2kV/\pm 4kV$ For each point positive 10 times and negative 10 times discharge.


Location	Test Level (kV)	No. of Discharge	Result
A1		20	А
A2	±2kV	20	A
72	±4kV	20	
A3	±8kV	20	A
A4	and the	20	А
1		1	1
	±2kV	1	
1	±4kV		(TIM)
1	a and the		1
НСР	±4kV	40	А
VCP	±4kV	40	A

Note: "/" Representative the test not applicable.



BY THE

ш



#### Note:



# Attachment D--RF Field Strength Susceptibility Test Data

Temperature :	<b>25℃</b>	Humidity :	50%
Powersupply :	AC 230V/50Hz	Test Mode :	Mode 1

#### **Required Performance Criteria: A**

Modulation: AM 80%

Pulse: 1 kHz

The second	Ac				
EUT Position	Frequency 80~100		Frequency 1000~60		Judgment
	Horizontal	Vertical	Horizontal	Vertical	TOT I
Front	A	A	A	Α	PASS
Right	A	A	A	A	PASS
Rear	A	Α	A	A	PASS
Left	A	A	A	A	PASS

Note:



# **Attachment E--Electrical Fast Transient/Burst Test Data**

Tempe	rature :	<b>25</b> ℃		Humidity	: 50%	3 me	TODI L
Power supply	DI U	AC 230V/50H	z	Test Mode	e : Mode	1	mil au
Requir	ed Perfo	rmance Criter	ia: B		I LA	TOBL	an Euch
Line :		C Mains Cou	pling : 🖂 🛛	Direct	Charles I.	DEI L	EOD .
Line :	🗌 Sigi	nal 🗌 I/O	Cable Co	oupling :	Capacitiv	e	and C
Line		Voltage(kV)	Required Performance Criteria		Actual Performance Criteria		Judgment
38			(+)	(-)	(+)	(-)	TOB
	L	1.0	В	В	Α	A	PASS
3 10	N	1.0	В	В	Α	A	PASS
AC	L-N	1.0	В	В	A	A	PASS
LINE	L-PE	1.0			1	I	
DB1	N-PE	1.0		1	1	100	
	L-N-PE	1.0					
DC LINE					1	N Y P	
Signal L	ine	1			1	1	

#### Remark:

# TOBY

# Attachment F--Surge Immunity Test Data

Temperature : 24℃

Humidity : 50%

Power supply

AC 230V/50Hz

Test Mode : Mode 1

Required Performance Criteria: B

Injected Line	Voltage (kV)	Phase	Actual Performance Criteria		Result	
			(+)	(-)	(+)	(-)
3 000		<b>0</b> °	Α	Α	PASS	PASS
	10	90°	A	Α	PASS	PASS
L, N, L-N	1.0	180°	A	Α	PASS	PASS
		270°	A	Α	PASS	PASS
1000	2.0	0°			1.00	
		90°		1		I
L/N-PE		180°	1		100	1
		270°		1	I	1000
a	2.0	0°	1		1	1
L-N-PE		90°	1	1		
		180°	N/V	1	1	1
		270°	071			
Signal Line	1.0	+/-		7		

#### Remark:



# **Attachment G--Conducted Immunity Test Data**

Tem	pera	ature

**24**℃

Humidity :

50%

Power supply : A

AC 230V/50Hz

Test Mode : Mode 1

**Required Performance Criteria: A** 

Frequency Range (MHz)	Injected Voltage Level Position (e.m.f.)		Required Performance Criteria	Actual Performance Criteria	Result	
0.15 ~ 80	AC Mains	3V(rms), AM 80% Modulated with 1 kHz	A	А	PASS	
0.15 ~ 80	DC Mains	3V(rms), AM 80% Modulated with 1 kHz	A			
0.15 ~ 80	Signal Line	3V(rms), AM 80% Modulated with 1 kHz	A		TOP	

#### Remark:

# **Attachment H--Voltage Dips and Interruptions Test Data**

Temperature :	<b>25</b> ℃	Humidity :	50 %
Power Supply :	AC 230V/50Hz	Test Mode :	Mode 1

Test Results Description

Voltage Reduction	Cycles	Perform Criteria	Results	Judgment
Voltage dip 100%	0.5	В	А	PASS
Voltage dip 100%	1000	В	A	PASS
Voltage dip 30%	25	C	С	PASS
Voltage Interruption100%	250	С	С	PASS

Remark:

BEM

Criteria A: There was no change operated with initial operating during the test. Criteria B: The EUT function loss during the test, but self-recoverable after the test. Criteria C: The system shut down during the test.

-----END OF REPORT-----