

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-RF161075 Page: 1 of 31

RF TEST REPORT

Certificate No. TB180719448

Applicant

Equipment Under Test (EUT)

EUT Name Wireless charger Bluetooth speaker

Model No. SL240

Serial Model No. SL249, P328.031, P328.032, P328.033, SL249, 7198-64

Brand Name N/A

Receipt Date 2018-07-04

Test Date 2018-07-05 to 2018-07-19

2018-07-20 **Issue Date**

Standards ETSI EN 303 417 V1.1.1: 2017

Conclusions PASS

> In the configuration tested, the EUT complied with the standards specified above. The EUT technically complies with the Council Directive 2014/53/EU relating to radio equipment.

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

Jason Xu

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-075-1.0

Report No.: TB-RF161075

Page: 2 of 31

TABLE OF CONTENTS

1	GEN	IERAL INFORMATION	5
	1.1	Client Information	5
	1.2	General Description of EUT (Equipment Under Test)	
	1.3	Block Diagram Showing the Configuration of System Tested	
	1.4	Description of Support Units	
	1.5	Description of Operating Mode	6
	1.6	Description of Testing Condition	7
	1.7	Measurement Uncertainty	8
	1.8	Test Facility	8
2	TES	T RESULTS SUMMARY	9
3	TES	T EQUIPMENT	10
4		RATING FREQUENCY RANG(S)(OFR)	
	4.1	Test Standard and Limit	
	4.2	Test Setup	
	4.3	Test Procedure	
	4.4	EUT Operation During Test	
	4.5	Test Data	
5	H-FI	ELD REQUIREMENTS	12
	5.1	Test Standard and Limit	
	5.2	Test Setup	
	5.3	Test Procedure	
	5.4	EUT Operation During Test	12
	5.5	Test Data	12
6	TRA	NSMITTER SPURIOUS EMISSIONS	13
	6.1	Test Standard and Limit	
	6.2	Test Setup	
	6.3	Test Procedure	
	6.4	EUT Operation During Test	14
	6.5	Test Data	
7	TRA	NSMITTER OUT OF BAND (OOB) EMISSIONS	15
	7.1	Test Standard and Limit	15
	7.2	Test Setup	16
	7.3	Test Procedure	
	7.4	EUT Operation During Test	16
	7.5	Test Data	16
8	WPT	SYSTEM UNWANTED CONDUCTED EMISSIONS	17
	8.1	Test Standard and Limit	
	8.2	Test Setup	
	8.3	Test Procedure	
	8.4	EUT Operating Condition	17
	8.5	Test Data	
9	REC	EIVER BLOCKING	18
	9.1	Test Standard and Limit	
	9.2	Test Setup	

Report No.: TB-RF161075
Page: 3 of 31

9.3	Test Procedure	19
	EUT Operating Condition	
	Test Data	
	TOGRAPHS – TEST SETUP	
	ENT AOPERATING FREQUENCY RANGES	
	ENT BH-FIELD REQUIREMENTS	
	ENT C TRANSMITTER SPURIOUS EMISSIONS	
	ENT D TRANSMITTER OUT OF BAND (OOB) EMISSIONS	
	ENT E BLOCKING	

Report No.: TB-RF161075
Page: 4 of 31

Revision History

Report No.	Version	Description	Issued Date	
TB-RF161075	Rev.01	Initial issue of report	2018-07-20	
Olive Control	And Control	TI MOUNT	The same	
3				
CHIES !	The state of the s		TODAY.	
	022			
The same	3 00			
	TEO DE		DE LA COLOR	
	1000			
TO ME			THE PARTY OF THE P	

Report No.: TB-RF161075 Page: 5 of 31

1 General Information

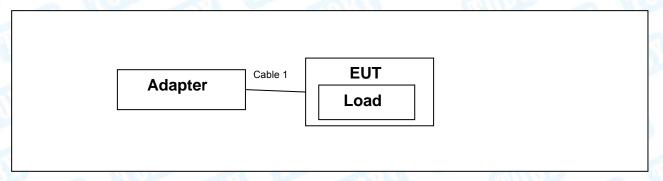
1.1 Client Information

Applicant	:		CIU)	1	ARID.
Address	: 1				1
Manufacturer		-	THE STATE OF		MILLER
Address					

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Wireless charger Blue	etooth speaker			
Model No.	d	SL240, SL249, P328.031, P328.032, P328.033, SL249, 7198-64				
Model Difference	13	All these models are identical in the same PCB layout and electrical circuit, the only difference is appearance.				
CUD 133		ERIO DE	110 kHz to 205 kHz			
Product Description	1	Operational Mode ☐ Mode 1: base station in stand-by, idle ☐ Mode 2: Communication before charg adjustment charging mode/position. ☐ Mode 3: Communication. ☐ Mode 4: energy transmission.				
		Antenna information	Coil Antenna: 0 dBi			
Power Rating		DC 3.7V 400mAh by I Input: DC 5V by USB Wireless Output: DC 5	Cable.			
Software Version		1.0				
Hardware Version		1.0				
Connecting I/O Port(S)	: Please refer to the User's Manual					

Note:


(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-08-14. AT THE TIME OF GENERATING THE DI

Report No.: TB-RF161075 Page: 6 of 31

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

Equipment Information								
Name Model S/N Manufacturer Used " ~								
Load	5V/9V	1339 (CHIPSVISION	√				
Adapter	EP-TA200		SAMSUNG	√				
Cable Information								
Number Shielded Type Ferrite Core Length No								
1	NO	NO	0.8m					

1.5 Description of Operating Mode

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Items	Mode
Permitted range of operating frequencies	TX Mode
Operating frequency ranges	TX Mode
H-field requirements	TX Mode
Transmitter spurious emissions	TX Mode
Transmitter out of band (OOB) emissions	TX Mode
WPT system unwanted conducted emissions	N/A
Receiver blocking	RX Mode

Note:

(1) The EUT is considered a portable unit, and it was pre-tested on the positioned of each 3 axis: X axis, Y axis and Z axis. The worst case was found positioned on X-plane. There for only the test data of this X-plane were used for radiated emission measurement test.

TB-RF-075-1. 0

Report No.: TB-RF161075
Page: 7 of 31

1.6 Description of Testing Condition

OLD TO BE	Normal Test Conditions	Extreme Test Conditions
Temperature	15°C~35°C	-10°C~55°C
Humidity	20%~75%	N/A
Supply Voltage	DC 5V	DC 4.75V~DC 5.25V

Note:

(1) For tests at extreme temperatures, measurements shall be made in accordance with the procedures specified in clause 5.6.1.1(EN 300 330), at the upper and lower temperatures of the range as follows:

Category I (General)	-20°C to +55°C
Category I I (Portable)	-10°C to +55°C
Category I II (Normal indoor use)	0°C to +35°C

(2) Mains voltage:

The extreme test voltage for equipment to be connected to an AC mains source shall be the nominal mains voltage ± 10 %.

Regulated lead-acid or gel-cell type batteries:

When the radio equipment is intended for operation from the usual type of regulated lead-acid battery power sources, the extreme test voltages shall be 1,3 and 0,9 multiplied by the nominal voltage of the battery (6 V, 12 V, etc.).

For float charge applications using "gel-cell" type batteries, the extreme test voltages shall be 1,15 and 0,85 multiplied by the nominal voltage of the declared battery voltage.

Power sources using other types of batteries:

The lower extreme test voltages for equipment with power sources using the following types of battery shall be:

- For the Leclanché or lithium type battery: 0,85 times the nominal voltage of the battery;
- For the nickel-cadmium type of battery: 0,9 times the nominal voltage of the battery. In both cases, the upper extreme test voltage shall be 1,15 times the nominal voltage of the battery.
- For other types of batteries, the lower extreme test voltage for the discharged condition shall be declared by the equipment provider.

The nominal voltage is considered to be the upper extreme test voltage in this case.

Report No.: TB-RF161075
Page: 8 of 31

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Expanded Uncertainty (U _{Lab})				
Conducted Emission	±3.42 dB				
Radiated Emission (9kHz to 30 MHz)	±4.60 dB				
RF Power-Conducted	±0.18 dB				
RF level uncertainty for a given BER	±1.5 dB				
Radiated Emission (30MHz to 1000 MHz)	±4.40 dB				
Radiated Emission (Above 1000MHz)	±4.20 dB				
Temperature	±0.6℃				
Humidity	±4%				

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

THIS DOCUMENT WAS REDACTED WITH T

Report No.: TB-RF161075 9 of 31 Page:

TB-RF-075-1. 0

Test Results Summary

Requi	irement		Require	Requirement Conditionality		
No Description Reference: Clause No				U/C Condition		
1	Permitted range of operating frequencies	4.3.2	U		PASS	
2	Operating frequency ranges	4.3.3	U		PASS	
3	H-field requirements	4.3.4	U		PASS	
4	Transmitter spurious emissions	4.3.5	U	TOP IN THE	PASS	
5	Transmitter out of band (OOB) emissions	4.3.6	U	WO177	PASS	
6	WPT system unwanted conducted emissions	4.3.7	С	Only for equipment which has a cable between the off board power supply and the primary coil which is longer than 3 m	N/A	
7	Receiver blocking	4.4.2	С	Only for Mode 1, Mode 2 and Mode 3	PASS	

Note:

(1)"N/A" indicates test is not applicable in this Test Report.
(2) "U/C": Indicates whether the requirement is unconditionally applicable (U) or is conditional upon the manufacturer's claimed functionality of the equipment (C).

Report No.: TB-RF161075
Page: 10 of 31

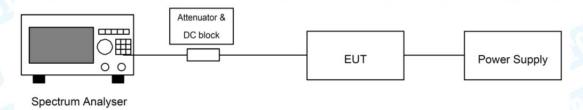
3 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Oct. 26, 2017	Oct. 25, 2018	
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Oct. 26, 2017	Oct. 25, 2018	
Vector Signal Generator	Agilent	N5182A	MY50141294	Oct. 26, 2017	Oct. 25, 2018	
Analog Signal Generator	Agilent	N5181A	MY50141953	Oct. 26, 2017	Oct. 25, 2018	
	DARE!! Instruments	RadiPowerRP R3006W	17I00015SNO26	Oct. 26, 2017	Oct. 25, 2018	
RF Power	DARE!! Instruments	RadiPowerRP R3006W	17I00015SNO29	Oct. 26, 2017	Oct. 25, 2018	
Sensor	DARE!! Instruments	RadiPowerRP R3006W	17I00015SNO31	Oct. 26, 2017	Oct. 25, 2018	
	DARE!! Instruments	RadiPowerRP R3006W	17I00015SNO33	Oct. 26, 2017	Oct. 25, 2018	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019	
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019	
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019	
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019	
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019	
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul. 13, 2019	
Pre-amplifier	Sonoma	310N	185903	Mar.17, 2018	Mar. 16, 2019	
Pre-amplifier	HP	8447B	3008A00849	Mar.17, 2018	Mar. 16, 2019	
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.17, 2018	Mar. 16, 2019	
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Mar.17, 2018	Mar. 16, 2019	
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A	
Temp. &Humidity Chamber	ZHONG ZHI	CZ-A-225D	HW08053	Jul. 18, 2018	Jul. 17, 2019	
DC Power Supply	MATRIX	MPS-3005L-3	D806050W	Jul. 18, 2018	Jul. 17, 2019	
AC Power Supply	HengJie	HPC-1110	2010007	Jul. 18, 2018	Jul. 17, 2019	

Report No.: TB-RF161075
Page: 11 of 31

4 Operating Frequency Rang(s)(OFR)

4.1 Test Standard and Limit


4.1.1 Test Standard

ETSI EN 303 417 V1.1.1:2017 clause 4.3.3

4.1.2 Test Limit

The permitted range of operating frequency range(s) for intentional emissions shall be within 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz.

4.2 Test Setup

4.3 Test Procedure

The method of measurement in clause 6.2.1 of ETSI EN 303 417 V1.1.1.

4.4 EUT Operation During Test

The measurements shall be performed during normal.

4.5 Test Data

Please refer to the Attachment A.

Report No.: TB-RF161075
Page: 12 of 31

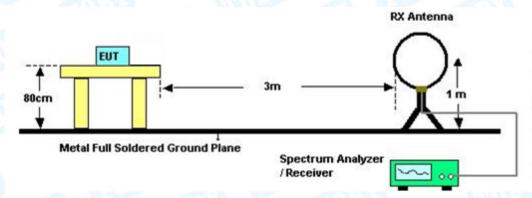
5 H-field Requirements

5.1 Test Standard and Limit

5.1.1 Test Standard

ETSI EN 303 417 V1.1.1:2017 clause 4.3.4

5.1.2 Limits


H-field Limits									
Frequency range [MHz]	H-field strength limit [dBµA/m at 10 m]	Comments							
0,019 ≤ f < 0,021	72								
0,059 ≤ f < 0,061	69,1 descending 10 dB/dec above 0,059 MHz	See note 1							
$0,079 \le f < 0,090$	67,8 descending 10 dB/dec above 0,079 MHz	See note 2							
$0,100 \le f < 0,119$	42								
0,119 ≤ f < 0,135	66 descending 10 dB/dec above 0,119 MHz	See note 1							
0,135 ≤ f < 0,140	42								
0,140 ≤ f < 0,1485	37,7								
0,1485 ≤ f < 0,30	-5								
$6,765 \le f < 6,795$	42								

NOTE 1: Limit is 42 dBµA/m for the following spot frequencies: 60 kHz ± 250 Hz and 129,1 kHz ± 500 Hz.

NOTE 2: At the time of preparation of the present document the feasibility of increased limits for high power wireless power transmission systems to charge vehicles [i.4] was prepared. New specific requirements for such systems (e.g. higher H-field emission limits in the 79 - 90 kHz band) will be reflected within a future revision of the present document.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB). Limit line = specific limits (dBuV) + distance extrapolation factor.

5.2 Test Setup

5.3 Test Procedure

The method of measurement in clause 6.2.1 of ETSI EN 303 417 V1.1.1

5.4 EUT Operation During Test

The measurements shall be performed during continuously transmitting.

5.5 Test Data

Please refer to the Attachment B.

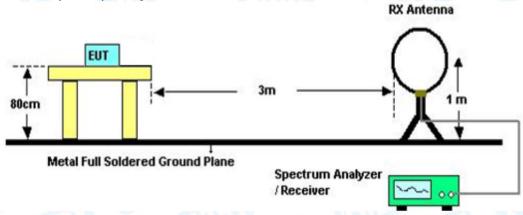
Report No.: TB-RF161075
Page: 13 of 31

6 Transmitter Spurious Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

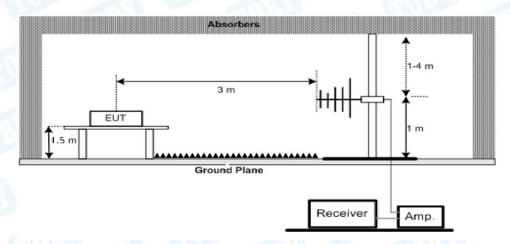
ETSI EN 303 417 V1.1.1:2017 clause 4.3.5


6.1.2 Limits

9KHz~30MHz										
State (see note)	Frequency 9 kHz ≤ f < 10 MHz	Frequency 10 MHz ≤ f < 30 MHz								
Operating	27 dBμA/m at 9 kHz descending 10 dB/dec	-3,5 dBμA/m								
Standby	5,5 dBµA/m at 9 kHz descending 10 dB/dec	-25 dBμA/m								
	g" means mode 2, 3 and 4 according to Ta	able 2; "standby" means mode 1								
according	to Table 2.									

		Below 1G	
	State (see note)	47 MHz to 74 MHz 87,5 MHz to 118 MHz 174 MHz to 230 MHz 470 MHz to 790 MHz	Other frequencies between 30 MHz to 1 000 MHz
	Operating	4 nW	250 nW
	Standby	2 nW	2 nW
l	NOTE: "Operating" me	ans mode 2, 3 and 4 according to Table 2; "	standby" means mode 1 according to
١	Table 2		_

6.2 Test Setup


(1) Test Set-Up Frequency 9KHz~30MHz

Report No.: TB-RF161075
Page: 14 of 31

(2) Test Set-Up Frequency Below 1GHz

6.3 Test Procedure

The method of measurement in clause 6.2.1 of ETSI EN 303 417 V1.1.1.

6.4 EUT Operation During Test

The measurements shall be performed during continuously transmitting.

6.5 Test Data

Please refer to the Attachment C.

Report No.: TB-RF161075 Page:

15 of 31

7 Transmitter out of Band (OOB) Emissions

7.1 Test Standard and Limit

Test Standard 7.1.1

ETSI EN 303 417 V1.1.1:2017 clause 4.3.6.

7.1.2 Limits

Transmitter out of band (OOB) emissions

They are descending from the intentional limits from Table 3 of section 5.1 in the test report at f_H/f_L with 10 dB/decade.

The transmitter spurious emissions for a single frequency system are to be considered in frequency ranges defined in Figure 4 ($f < f_{SL}$ and $f > f_{SH}$).

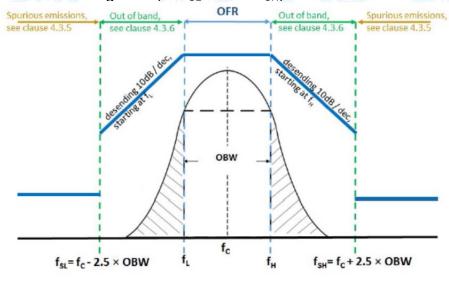


Figure 4: Out of band and spurious domain of a single frequency WPT system

The transmitter spurious emissions for a multi frequency system (within one WPT frequency range from Table 2) are to be considered in frequency ranges defined in Figure 5 (f < f_{SL} and f > f_{SH}).

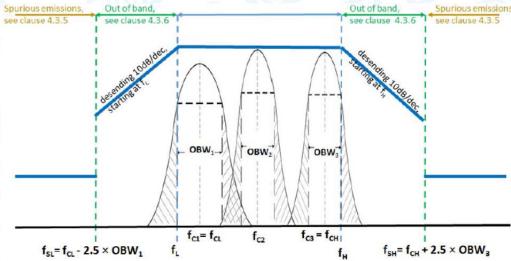
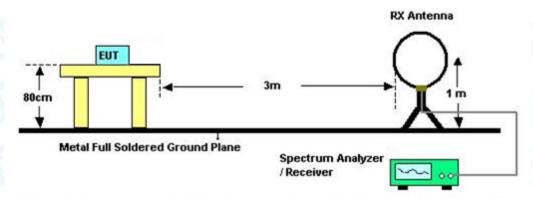



Figure 5: Out of band and spurious domain of a multi - frequency system (during one WPT system cycle time)

Report No.: TB-RF161075
Page: 16 of 31

7.2 Test Setup

7.3 Test Procedure

The method of measurement in clause 6.2.1 of ETSI EN 303 417 V1.1.1

7.4 EUT Operation During Test

The measurements shall be performed during continuously transmitting.

7.5 Test Data

Please refer to the Attachment D.

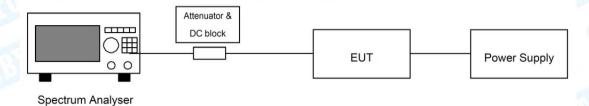
Report No.: TB-RF161075 Page: 17 of 31

8 WPT System Unwanted Conducted Emissions

8.1 Test Standard and Limit

8.1.1 Test Standard

ETSI EN 303 417 V1.1.1:2017 clause 4.3.7


8.1.2 Limit

WPT system unwanted conducted emission

The common mode current (ICM) between 1 MHz and 30 MHz shall not exceed the following limit: I_{CM} = 47 - 8 × I_{OG} (f) dB μ A

Note: f is frequency in MHz.

8.2 Test Setup

8.3 Test Procedure

The method of measurement in clause 6.2.4 of ETSI EN 303 417 V1.1.1

8.4 EUT Operating Condition

The EUT was programmed to be in transmitting mode.

8.5 Test Data

This requirement is not applicable.

The cable to the primary coil is less than 3 m.

TB-RF-075-1.0

Report No.: TB-RF161075
Page: 18 of 31

9 Receiver Blocking

9.1 Test Standard and Limit

9.1.1 Test Standard ETSI EN 303 417 V1.1.1:2017 clause 4.4.2

9.1.2 Limits

Suprious emissions and cabinet radiation_receiver Table 6: Receiver blocking limits								
Frequency	Centre frequency (f _c) of the WPT system (see clause 4.3.3)	f = f _c ± F (see note)	$f = f_c \pm 10 \times F$ (see note)					
Signal level field strength at the EUT	72 dBμA/m	72 dBμA/m	82 dBμA/m					
NOTE: F = OFR see claus	e 4.3.3.							

9.2 Test Setup

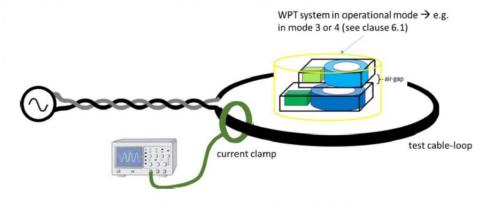


Figure 11: Schematic test set-up for the RX-blocking test

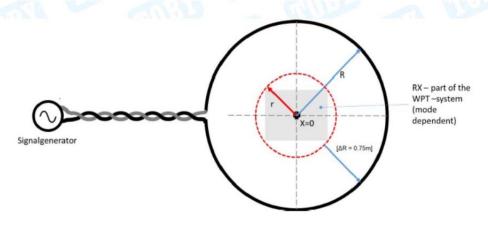


Figure 12: Schematic test set-up for the RX-blocking test

Report No.: TB-RF161075
Page: 19 of 31

9.3 Test Procedure

The method of measurement in clause 6.3.2 of ETSI EN 303 417 V1.1.1.

9.4 EUT Operating Condition

The measurements shall be performed during continuously receiving.

9.5 Test Data

Please refer to the Attachment E.

Report No.: TB-RF161075
Page: 20 of 31

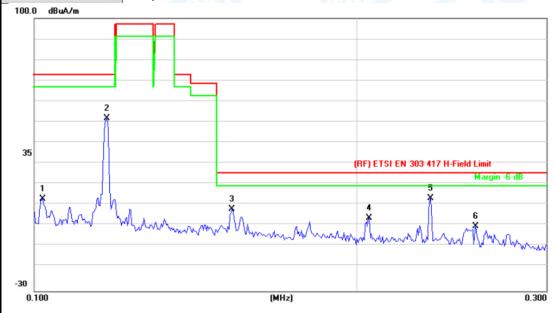
10Photographs - Test Setup

Radiated Spurious Emission (30MHz~1GHz)

Radiated Spurious Emission (9KHz~30MHz)

Report No.: TB-RF161075
Page: 21 of 31

Attachment A--Operating Frequency Ranges


Test Mode :	TX Mode				
Test Conditions	Fequency range (KHz) 100 kHz~300 kHz				
rest Conditions					
Tnom, Vnom	112.4250	205.1580			
Tmin, Vmin	112.4160	205.1520			
Tmin, Vmax	112.4310	205.1540			
Tmax, Vmin	112.4620	205.1530			
Tmax, Vmax	112.4520	205.1570			
Min. fL / Max. fH Band Edges	112.3580	205.7680			
Limits	fL >100 KHz	fH < 300 KHz			
Result	PA	ss			

Report No.: TB-RF161075
Page: 22 of 31

Attachment B--H-field Requirements

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 230V/50Hz		THUE
Ant. Pol.	Ant 0°		
Test Mode:	TX Mode		
Remark:	Only showed the worst mode	test data.	THE PARTY OF
100.0 dBuA/m			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
10 T		MHz	dBuA/m	dB	dBuA/m	dBuA/m	dB	Detector
1		0.1018	18.02	-4.00	14.02	73.30	-59.28	peak
2		0.1169	56.85	-4.57	52.28	73.30	-21.02	peak
3		0.1528	15.23	-5.91	9.32	26.30	-16.98	peak
4		0.2051	12.51	-7.67	4.84	26.30	-21.46	peak
5	*	0.2340	22.25	-7.89	14.36	26.30	-11.94	peak
6		0.2578	9.26	-8.06	1.20	26.30	-25.10	peak

Emission Level= Read Level+ Correct Factor

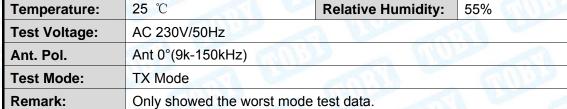

Note: H_{3m} = H_{10m} + C_3 refer to ETSI EN300 330 Annex H.2

Report No.: TB-RF161075 23 of 31 Page:

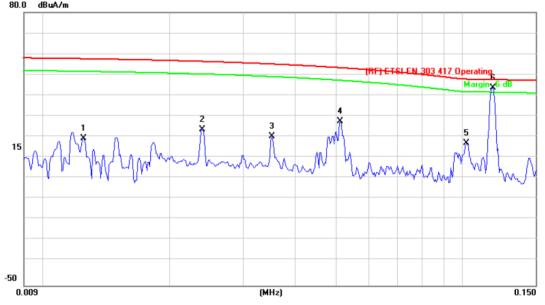
TB-RF-075-1. 0

25 ℃ Temperature: **Relative Humidity:** 55% **Test Voltage:** AC 230V/50Hz Ant. Pol. Ant 90° **Test Mode:** TX Mode

Remark: Only showed the worst mode test data. 100.0 dBuA/m


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuA/m	dB	dBuA/m	dBuA/m	dB	Detector
1	0.1022	28.60	-4.01	24.59	73.30	-48.71	peak
2	0.1171	63.38	-4.57	58.81	73.30	-14.49	peak
3	0.1532	25.83	-5.92	19.91	26.30	-6.39	peak
4	0.2056	20.01	-7.68	12.33	26.30	-13.97	peak
5 *	0.2346	28.14	-7.90	20.24	26.30	-6.06	peak
6	0.2561	14.15	-8.05	6.10	26.30	-20.20	peak

Emission Level= Read Level+ Correct Factor


Report No.: TB-RF161075 Page: 24 of 31

Attachment C-- Transmitter Spurious Emissions

(1) 9KHz~30MHz

80.0 dBuA/m

No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuA/m	dB	dBuA/m	dBuA/m	dB	Detector
1	0.0125	30.33	-10.32	20.01	56.84	-36.83	peak
2	0.0240	34.22	-10.09	24.13	54.12	-29.99	peak
3	0.0350	31.03	-9.97	21.06	52.55	-31.49	peak
4	0.0512	38.28	-10.06	28.22	50.97	-22.75	peak
5	0.1023	21.72	-4.01	17.71	48.14	-30.43	peak
6 *	0.1184	48.66	-4.63	44.03	47.88	-3.85	peak

Emission Level= Read Level+ Correct Factor

Report No.: TB-RF161075
Page: 25 of 31

Temperature:	25 °C		R	elative Humi	dity: 55	5%				
Test Voltage:	AC 2	30V/50Hz	A W		27	6	4112			
Ant. Pol.	Pol. Ant 0°(150kHz-30MHz)									
Test Mode: TX Mode										
Remark: Only showed the worst mode test data.										
1 2 15 X	3 X W W	* 5 * X	6	(R	F) ETSI EN 303	417 Operating Margin	7 dd			
0.150	0.5		(MHz)	5			30.000			
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBuA/m	dB	dBuA/m	dBuA/m	dB	Detector			
1 (0.1532	26.15	-5.92	20.23	47.42	-27.19	peak			
2 (0.2366	25.88	-7.91	17.97	46.43	-28.46	peak			
3 * (0.3539	33.34	-8.72	24.62	45.00	-20.38	peak			
4 (0.8261	18.40	-10.15	8.25	39.07	-30.82	peak			
A SAN	1.0541	16.72	-10.27	6.45	37.92	-31.47	peak			
6	1.2892	14.47	-10.29	4.18	37.70	-33.52	peak			

Emission Level= Read Level+ Correct Factor

5

6

Report No.: TB-RF161075
Page: 26 of 31

-37.23

-2.70

peak

peak

48.14

47.89

Tempe	rature:	25 ℃		110	Relative H	lumidity:	55%				
Test Ve	oltage:	AC 230	AC 230V/50Hz								
Ant. Po	ol.	Ant 90	Ant 90°(9k-150kHz)								
Test M	lode:	TX Mo	TX Mode								
Remar		Only sl	Only showed the worst mode test data.								
15	IBUA/m	Ž	2 * * */	3	4	MAMAMA	Margir¥	6 dB			
-50											
0.009				(MHz)				0.150			
No.	Mk. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	1	MHz	dBuA/m	dB	dBuA/m	dBuA/m	dB	Detector			
1	0.0	0150	34.45	-10.38	24.07	56.12	-32.05	peak			
2	0.0	0240	34.50	-10.09	24.41	54.15	-29.74	peak			
3	0.0	0351	30.54	-9.98	20.56	52.56	-32.00	peak			
4	0.0	0512	27.69	-10.06	17.63	50.98	-33.35	peak			

Emission Level= Read Level+ Correct Factor

0.1023

0.1178

Note: H_{3m} = H_{10m} + C_3 refer to ETSI EN300 330 Annex H.2

14.92

49.80

-4.01

-4.61

10.91

45.19

Report No.: TB-RF161075 Page: 27 of 31

Temp	perature:	25 °C		Re	elative Humi	dity: 55	5%	
Test	Voltage:	AC 2	30V/50Hz	a W		88 14	- 6	any
Ant. I	Pol.	Ant 9	0°(150kHz-3	BOMHz)	a Min			
Test Mode: TX Mode								
Rema	ark:	Only	showed the	worst mode	e test data.	1	Gral.	11:50
15	1 2 X X	3 X W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W	5 MARYANAMA	6 X	(RI	FJETSLEN 303	417 Operating Margin	6-dB
-50 0.150	0	0.5		(MHz)	5			30.000
	o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuA/m	dB	dBuA/m	dBuA/m	dB	Detector
1		0.1955	20.41	-7.48	12.93	46.98	-34.05	peak
2		0.2341	21.32	-7.89	13.43	46.46	-33.03	peak
3	*	0.3502	28.08	-8.70	19.38	45.04	-25.66	peak
4		0.5885	11.46	-9.83	1.63	42.03	-40.40	peak
5		1.1114	9.59	-10.27	-0.68	37.87	-38.55	peak
6		2.0119	9.55	-10.41	-0.86	35.70	-36.56	peak

Emission Level= Read Level+ Correct Factor

Report No.: TB-RF161075
Page: 28 of 31

Temperature:	25 ℃	000	Relative F	lumidity:	55%		
Test Voltage:	AC 230V/50Hz	0		811 .		SOUTH STATES	
Ant. Pol.	Horizontal	019	2 ARD				
Test Mode:	TX Mode		3		111111		
Remark:	Remark: Only showed the worst mode test data.						
-70 -70		1 2 X	5 \$	(RF)	ETSI EN 3034 Margin -6		
30.000 40 50	60 70	(MHz)	300	400 500	600 700	1000.000	
No. Mk. Fre	Reading eq. Level	Correct Factor	Measure- ment	Limit	Over		
MH	Hz dBm	dB	dBm	dBm	dB	Detector	
1 127.2	176 -57.39	-11.28	-68.67	-36.00	-32.67	peak	
2 148.4	410 -59.74	-9.59	-69.33	-36.00	-33.33	peak	
3 192.4	186 -56.06	-7.36	-63.42	-54.00	-9.42	peak	
4 * 226.0	994 -57.31	-0.85	-58.16	-54.00	-4.16	peak	
5 252.9	482 -62.22	4.05	-58.17	-36.00	-22.17	peak	
6 462.3	455 -71.08	1.36	-69.72	-36.00	-33.72	peak	
Emission Level=	Read Level+ Co	rrect Factor					

Report No.: TB-RF161075 Page: 29 of 31

25 ℃ Temperature: 55% **Relative Humidity: Test Voltage:** AC 230V/50Hz Ant. Pol. Vertical **Test Mode:** TX Mode Remark: Only showed the worst mode test data. -20.0 dBm (RF) ETSI EN 303417 -70 -120 70 80 (MHz) 300 600 700 1000.000 30.000 40 50 60 400 500 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBm dB dBm dBm Detector dB 35.2511 -47.71-9.99 -57.70-36.00 -21.701 peak 2 52.9453 -40.13-56.13 -16.00-54.00 -2.13peak 3 60.4919 -14.26-58.94ļ -44.68-54.00-4.94peak 4 147.4036 -50.82-7.27-58.09-36.00-22.09peak -59.02 5 193.7728 -51.72-7.30-54.00 -5.02peak

-53.53

-7.90

-61.43

-54.00

-7.43

peak

226.0994

6

Report No.: TB-RF161075

Page: 30 of 31

Attachment D-- Transmitter out of band (OOB) Emissions

Na	Frequency	Result@3m	C ₃	Result@10	Limit@10	Margin	Damark	
No.	(MHz)	(dBuA/m)	(dB)	(dBuA/m)	(dBuA/m)	(dB)	Remark	
1	F _{cL} -2.5 x OBW ₁	-24.78	31.2	-55.98	41.76	-97.74	peak	
2	F _L	-20.65	31.2	-51.85	42.00	-93.85	peak	
3	F _H	-20.74	31.2	-51.94	-5.00	-46.94	peak	
4	F _{cH} +2.5 x OBW ₃	-26.37	31.2	-57.57	-5.23	-52.34	peak	

Report No.: TB-RF161075
Page: 31 of 31

Attachment E-- Blocking

Temperature :	26°C	Relative Humidity: 60%		CHOOL STORY
Pressure :	1010 hPa	Test Voltage :	AC 230V/50Hz	
Test Mode :	Receive Mode	A COLOR	5	(1137)
Test Frequency	Blocking Signal(dBuA/m)	Performance Criterion Result		Result
fc -10 ×OFR	82	without degradation of performance		PASS
Fc	72	without degradation of performance		PASS
Fc+OFR	72	without degradation of performance PA		PASS
fc +10 ×OFR	82	without degradation of performance PASS		

----END OF REPORT----