THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

# EMC TEST REPORT For

Wireless light up logo earbud Test Model: XO-9613 Additional Model No.: /

| Prepared for<br>Address                                                                                       | : |                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prepared by<br>Address                                                                                        | : | Shenzhen LCS Compliance Testing Laboratory Ltd.<br>1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,<br>Bao'an District, Shenzhen, Guangdong, China |
| Tel<br>Fax<br>Web<br>Mail                                                                                     | : | (+86)755-82591330<br>(+86)755-82591332<br>www.LCS-cert.com<br>webmaster@LCS-cert.com                                                                          |
| Date of receipt of test sample<br>Number of tested samples<br>Serial number<br>Date of Test<br>Date of Report | : | September 18, 2018<br>1<br>Prototype<br>September 18, 2018~ September 21, 2018<br>September 27, 2018                                                          |



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 1 of 48

Report No.: LCS180913082AEA

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

|                                                                                                       | EMC TEST REPORT                                                                                                                                                                          |                                                                                                         |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| ElectroMagnetic Compatibility<br>conditions for Broadband Data                                        | <b>72.1.1 (2017-02)&amp;ETSI EN 301 489</b> -<br>(EMC) standard for radio equipment a<br>Transmission Systems; Harmonised St<br>ents of article 3.1(b) of Directive 2014.                | and services; Part 17: Specific tandard covering the essential                                          |
| Report Reference No                                                                                   |                                                                                                                                                                                          |                                                                                                         |
| Date Of Issue                                                                                         | : September 27, 2018                                                                                                                                                                     |                                                                                                         |
|                                                                                                       | <ul> <li>Shenzhen LCS Compliance Testi</li> <li>1/F., Xingyuan Industrial Park, To<br/>Bao'an District, Shenzhen, Guango</li> </ul>                                                      | ngda Road, Bao'an Avenue,                                                                               |
| Testing Location/ Procedure                                                                           | : Full application of Harmonised sta<br>Partial application of Harmonised<br>Other standard testing method                                                                               |                                                                                                         |
| Applicant's Name<br>Address                                                                           |                                                                                                                                                                                          |                                                                                                         |
| Test Specification<br>Standard                                                                        | : ETSI EN 301 489-1 V2.1.1 (2017-<br>ETSI EN 301 489-17 V3.1.1 (2017                                                                                                                     |                                                                                                         |
| Test Report Form No                                                                                   | : LCSEMC-1.0                                                                                                                                                                             |                                                                                                         |
| TRF Originator                                                                                        | : Shenzhen LCS Compliance Testin                                                                                                                                                         | g Laboratory Ltd.                                                                                       |
| Master TRF                                                                                            | : Dated 2017-06                                                                                                                                                                          |                                                                                                         |
| This publication may be reproduce<br>Shenzhen LCS Compliance Testin<br>the material. Shenzhen LCS Com | ing Laboratory Ltd. All rights reserved in whole or in part for non-coming Laboratory Ltd. is acknowledged a pliance Testing Laboratory Ltd. take resulting from the reader's interpreta | mercial purposes as long as the<br>s copyright owner and source of<br>es no responsibility for and will |
| Test Item Description                                                                                 | : Wireless light up logo earbud                                                                                                                                                          |                                                                                                         |
| Trade Mark                                                                                            | : N/A                                                                                                                                                                                    |                                                                                                         |
| Test Model                                                                                            | : XO-9613                                                                                                                                                                                |                                                                                                         |
| Ratings                                                                                               | : DC 3.7V by Rechargeable Li-ion E<br>Recharge Voltage: DC5V/0.04A                                                                                                                       | Battery(55mAh)                                                                                          |
| Result                                                                                                | : Positive                                                                                                                                                                               |                                                                                                         |
| Compiled by:                                                                                          | Supervised by:                                                                                                                                                                           | Approved by:                                                                                            |
| Ryan the                                                                                              | Calvin Weng                                                                                                                                                                              | Fauto Fang                                                                                              |
| Ryan Hu/ Administrators                                                                               | Calvin Weng/ Technique principal                                                                                                                                                         | Gavin Liang Manager                                                                                     |
|                                                                                                       |                                                                                                                                                                                          |                                                                                                         |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 2 of 48

# **EMC -- TEST REPORT**

# Test Report No. : LCS180913082AEA

September 27, 2018 Date of issue

| Test Model   | : XO-9613                       |
|--------------|---------------------------------|
| EUT          | : Wireless light up logo earbud |
| Applicant    | :                               |
| Address      | :                               |
| Telephone    | : /                             |
| Fax          | : /                             |
| Manufacturer | :                               |
| Address      | :                               |
| Telephone    | : /                             |
| Fax          | : /                             |
| Factory      | :                               |
| Address      | :                               |
| Telephone    | : /                             |
| Fax          |                                 |

| Test Result | Positive |
|-------------|----------|
|-------------|----------|

The test report merely corresponds to the test sample.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

| ice vision mistory    |                    |               |             |  |  |
|-----------------------|--------------------|---------------|-------------|--|--|
| <b>Report Version</b> | Issue Date         | Revisions     | Revised By  |  |  |
| 000                   | September 27, 2018 | Initial Issue | Gavin Liang |  |  |
|                       |                    |               |             |  |  |
|                       |                    |               |             |  |  |

# **Revision History**

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 4 of 48

# TABLE OF CONTENTS

#### **Test Report Description** Page 1. GENERAL INFORMATION......7 1.9. Measurement Uncertainty ......9 3. LINE CONDUCTED EMISSION......12 8. RF ELECTROMAGNETIC FIELD (80 MHZ - 6000 MHZ) ......24

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 5 of 48

| SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. | Report No.: LCS180913082AEA |
|-------------------------------------------------|-----------------------------|
| 11.1. TEST CONFIGURATION                        |                             |
| 11.2. TEST STANDARD                             |                             |
| 11.3. TEST PROCEDURE                            |                             |
| 11.4. TEST DATA                                 |                             |
| 12. SURGES, LINE TO LINE AND LINE TO GROUND     |                             |
| 12.1. TEST CONFIGURATION                        |                             |
| 12.2. TEST STANDARD                             |                             |
| 12.3. TEST PROCEDURE                            |                             |
| 12.4. TEST DATA                                 |                             |
| 13. VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST    |                             |
| 13.1. TEST CONFIGURATION                        |                             |
| 13.2. TEST STANDARD                             |                             |
| 13.3. TEST PROCEDURE                            |                             |
| 13.4. TEST DATA                                 |                             |
| 14. PHOTOGRAPHS OF TEST SETUP                   |                             |
| 15. PHOTOGRAPHS OF THE EUT                      |                             |

# **1. GENERAL INFORMATION**

#### **1.1. Product Description for Equipment Under Test (EUT)**

| EUT                      | : Wireless light up logo earbud                                                                 |
|--------------------------|-------------------------------------------------------------------------------------------------|
| Model No.                | : XO-9613                                                                                       |
| Model Declaration        | : /                                                                                             |
| Test Model               | : XO-9613                                                                                       |
| Power Supply             | DC 3.7V by Rechargeable Li-ion Battery(55mAh)<br>Recharge Voltage: DC5V/0.04A                   |
| Hardware Version         | : BK3266A                                                                                       |
| Software Version         | <b>:</b> BK3266_01_00                                                                           |
| Bluetooth                |                                                                                                 |
| Frequency Range          | : 2.402-2.480GHz                                                                                |
| Channel Number           | <ul><li>79 channels for Bluetooth (BDR/EDR)</li><li>40 channels for Bluetooth (BT LE)</li></ul> |
| Channel Spacing          | : 1MHz for Bluetooth (BDR/EDR)<br>2MHz for Bluetooth (BT LE)                                    |
| Modulation Type          | : GFSK, π/4-DQPSK, 8-DPSK for Bluetooth (BDR/EDR)<br>GFSK for Bluetooth (BT LE)                 |
| <b>Bluetooth Version</b> | : V5.0                                                                                          |
| Antenna Description      | : Internal Antenna, 0.58dBi (Max.)                                                              |

## 1.2. Objective

| ETSI EN 301<br>489-1  | ElectroMagnetic Compatibility (EMC) standard for radio equipment and services;<br>Part 1: Common technical requirements; Harmonised Standard covering the<br>essential requirements of article 3.1(b) of Directive 2014/53/EU and the essential<br>requirements of article 6 of Directive 2014/30/EU |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ETSI EN 301<br>489-17 | ElectroMagnetic Compatibility (EMC) standard for radio equipment and services;<br>Part 17: Specific conditions for Broadband Data Transmission Systems;<br>Harmonised Standard covering the essential requirements of article 3.1(b) of<br>Directive 2014/53/EU                                      |

The objective is to determine compliance with ETSI EN 301 489-1 V2.1.1 (2017-02) and ETSI EN 301 489-17 V3.1.1 (2017-02).

#### **1.3. Related Submittal(s)/Grant(s)**

No Related Submittals.

#### 1.4. Test Methodology

All measurements contained in this report were conducted with ETSI EN 301 489-1 V2.1.1 (2017-02) and ETSI EN 301 489-17 V3.1.1 (2017-02).

# **1.5. Description of Test Facility**

FCC Registration Number. is 254912. Industry Canada Registration Number. is 9642A-1. ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081. TUV RH Registration Number. is UA 50296516-001 NVLAP Registration Code is 600167-0.

#### **1.6. Support Equipment List**

| Manufacturer | Description | Model | Serial Number | Certificate |
|--------------|-------------|-------|---------------|-------------|
|              |             |       |               |             |

#### 1.7. External I/O

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

| I/O Port Description | Quantity | Cable            |  |
|----------------------|----------|------------------|--|
| Micro USB            | 1        | 0.2m, unshielded |  |

#### 1.8. List Of Measuring Equipment

| Item | Equipment                                             | Manufacturer         | Model No.          | Serial No.  | Cal Date   | Due Date   |
|------|-------------------------------------------------------|----------------------|--------------------|-------------|------------|------------|
| 1    | X-series USB Peak and Average Power<br>Sensor Aglient | Agilent              | U2021XA            | MY54080022  | 2017-10-26 | 2018-10-25 |
| 2    | 4 CH. Simultaneous Sampling 14 Bits 2MS/s             | Agilent              | U2531A             | MY54080016  | 2017-10-26 | 2018-10-25 |
| 3    | Test Software                                         | Ascentest            | AXO-961390-S       | 20160630    | N/A        | N/A        |
| 4    | RF Control Unit                                       | Ascentest            | W<br>AXO-961390-RF | N/A         | 2018-06-16 | 2019-06-15 |
| 5    | MXA Signal Analyzer                                   | Agilent              | N9020A             | MY49100040  | 2018-06-16 | 2019-06-15 |
| 6    | SPECTRUM ANALYZER                                     | R&S                  | FSP                | 100503      | 2018-06-16 | 2019-06-15 |
| 7    | MXG Vector Signal Generator                           | Agilent              | N5182A             | MY47071151  | 2017-11-17 | 2018-11-16 |
| 8    | ESG VECTOR SIGNAL GENERATOR                           | Agilent              | E4438C             | MY42081396  | 2017-11-17 | 2018-11-16 |
| 9    | PSG Analog Signal Generator                           | Agilent              | E8257D             | MY4520521   | 2017-11-17 | 2018-11-16 |
| 10   | Universal Radio Communication Tester                  | R&S                  | CMU 200            | 105788      | 2018-06-16 | 2019-06-15 |
| 11   | WIDEBAND RADIO COMMUNICATION<br>TESTER                | R&S                  | CMW 500            | 103818      | 2018-06-16 | 2019-06-15 |
| 12   | RF Control Unit                                       | Tonscend             | JS0806-1           | N/A         | 2018-06-16 | 2019-06-15 |
| 13   | DC Power Supply                                       | Agilent              | E3642A             | N/A         | 2017-11-17 | 2018-11-16 |
| 14   | LTE Test Software                                     | Tonscend             | JS1120-1           | N/A         | N/A        | N/A        |
| 15   | Temperature & Humidity Chamber                        | GUANGZHOU<br>GOGNWEN | GDS-100            | 70932       | 2017-10-11 | 2018-10-10 |
| 16   | DC Source                                             | CHROMA               | 62012P-80-60       | 34782951    | 2017-10-11 | 2018-10-10 |
| 17   | RF Filter                                             | Micro-Tronics        | BRC50718           | S/N-017     | 2018-06-16 | 2019-06-15 |
| 18   | RF Filter                                             | Micro-Tronics        | BRC50719           | S/N-011     | 2018-06-16 | 2019-06-15 |
| 19   | RF Filter                                             | Micro-Tronics        | BRC50720           | S/N-011     | 2018-06-16 | 2019-06-15 |
| 20   | RF Filter                                             | Micro-Tronics        | BRC50721           | S/N-013     | 2018-06-16 | 2019-06-15 |
| 21   | RF Filter                                             | Micro-Tronics        | BRM50702           | S/N-195     | 2018-06-16 | 2019-06-15 |
| 22   | Splitter/Combiner                                     | Micro-Tronics        | PS2-15             | CB11-20     | 2018-06-16 | 2019-06-15 |
| 23   | Splitter/Combiner                                     | Micro-Tronics        | CB11-20            | N/A         | 2018-06-16 | 2019-06-15 |
| 24   | Attenuator                                            | Micro-Tronics        | PAS-8-10           | S/N23466    | 2018-06-16 | 2019-06-15 |
| 25   | Exposure Level Tester                                 | Narda                | ELT-400            | N-0713      | 2018-04-02 | 2019-04-01 |
| 26   | B-Field Probe                                         | Narda                | ELT-400            | M-1154      | 2018-04-10 | 2019-04-09 |
| 27   | 3m Semi Anechoic Chamber                              | SIDT<br>FRANKONIA    | SAC-3M             | 03CH03-HY   | 2018-06-16 | 2019-06-15 |
| 28   | Positioning Controller                                | MF                   | MF-7082            | /           | 2018-06-16 | 2019-06-15 |
| 29   | EMI Test Software                                     | AUDIX                | E3                 | N/A         | 2018-06-16 | 2019-06-15 |
| 30   | EMI Test Receiver                                     | R&S                  | ESR 7              | 101181      | 2018-06-16 | 2019-06-15 |
| 31   | AMPLIFIER                                             | QuieTek              | QTK-A2525G         | CHM10809065 | 2017-11-17 | 2018-11-16 |
| 32   | Active Loop Antenna                                   | SCHWARZBECK          | FMZB 1519B         | 00005       | 2018-06-22 | 2019-06-21 |
| 33   | By-log Antenna                                        | SCHWARZBECK          | VULB9163           | 9163-470    | 2018-05-01 | 2019-04-30 |

| 34 | Horn Antenna                           | SCHWARZBECK     | BBHA 9120 D    | 9120D-1925                          | 2018-07-02 | 2019-07-01 |
|----|----------------------------------------|-----------------|----------------|-------------------------------------|------------|------------|
| 35 | Broadband Horn Antenna                 | SCHWARZBECK     | BBHA 9170      | 791                                 | 2017-09-21 | 2018-09-20 |
| 36 | Broadband Preamplifier                 | SCHWARZBECK     | BBV 9719       | 9719-025                            | 2017-09-21 | 2018-09-20 |
| 37 | RF Cable-R03m                          | Jye Bao         | RG142          | CB021                               | 2018-06-16 | 2019-06-15 |
| 38 | RF Cable-HIGH                          | SUHNER          | SUCOFLEX 106   | 03CH03-HY                           | 2018-06-16 | 2019-06-15 |
| 39 | TEST RECEIVER                          | R&S             | ESCI           | 101142                              | 2018-06-16 | 2019-06-15 |
| 40 | RF Cable-CON                           | UTIFLEX         | 3102-26886-4   | CB049                               | 2018-06-16 | 2019-06-15 |
| 41 | 10dB Attenuator                        | SCHWARZBECK     | MTS-IMP136     | 261115-001-0032                     | 2018-06-16 | 2019-06-15 |
| 42 | Artificial Mains                       | R&S             | ENV216         | 101288                              | 2018-06-16 | 2019-06-15 |
| 43 | Power Analyzer Test System             | Voltech         | PM6000         | 20000670053                         | 2018-06-16 | 2019-06-15 |
| 44 | ESD Simulator                          | SCHLODER        | SESD 230       | 604035                              | 2018-06-16 | 2019-06-1  |
| 45 | RF POWER AMPLIFIER                     | OPHIR           | 5225R          | 1052                                | NCR        | NCR        |
| 46 | RF POWER AMPLIFIER                     | OPHIR           | 5273F          | 1019                                | NCR        | NCR        |
| 47 | Stacked Broadband Log Periodic Antenna | SCHWARZBECK     | STLP 9128      | 9128ES-145                          | NCR        | NCR        |
| 48 | Stacked Mikrowellen LogPer Antenna     | SCHWARZBECK     | STLP 9149      | 9149-484                            | NCR        | NCR        |
| 49 | Electric field probe                   | Narda S.TS./PMM | EP601          | 611WX80208                          | 2018-03-26 | 2019-03-25 |
| 50 | Power Meter                            | Agilent         | E4419B         | MY45104493                          | 2018-06-16 | 2019-06-15 |
| 51 | Power Sensor                           | Agilent         | E9301H         | MY41495234                          | 2018-06-16 | 2019-06-1  |
| 52 | Power Sensor                           | Agilent         | E4412A         | MY41500229                          | 2018-06-16 | 2019-06-1  |
| 53 | Sound Level meter                      | BK Precision    | 735            | 73500873100                         | 2018-06-16 | 2019-06-15 |
| 54 | Audio Analyzer                         | R&S             | UPV            | 10020<br>1146.2003K0<br>2-101782-XP | 2018-06-16 | 2019-06-15 |
| 55 | Mouse Simulation                       | Bruel & Kjaer   | 4227           | A0304216                            | 2018-06-16 | 2019-06-15 |
| 56 | Ear Simulation and supply              | Bruel & Kjaer   | 2669.4182.5935 | A0305284                            | 2018-06-16 | 2019-06-15 |
| 57 | Acoustical Calibrators                 | Bruel & Kjaer   | 4231           | A0304215                            | 2018-06-16 | 2019-06-15 |
| 58 | Immunity Simulative Generator          | EM TEST         | UCS500-M4      | 0101-34                             | 2017-11-17 | 2018-11-16 |
| 59 | Simulator                              | FRANKONIA       | CIT-10         | A126A1195                           | 2018-06-16 | 2019-06-15 |
| 60 | CDN                                    | FRANKONIA       | CDN-M2         | 5100100100                          | 2018-06-16 | 2019-06-15 |
| 61 | CDN                                    | FRANKONIA       | CDN-M3         | 0900-11                             | 2018-06-16 | 2019-06-15 |
| 62 | Attenuator                             | FRANKONIA       | ATT6           | 0010222A                            | 2018-06-16 | 2019-06-13 |
| 63 | Infuse tongs                           | EM TEST         | EM-Clamp       | 0513A031201                         | 2018-06-16 | 2019-06-15 |
| 64 | Voltage dips and up generator          | 3CTEST          | VDG-1105G      | EC0171014                           | 2018-06-16 | 2019-06-15 |

### **1.9. Measurement Uncertainty**

| Item                                                  | MU      | Remark      |
|-------------------------------------------------------|---------|-------------|
| Uncertainty for Power point Conducted Emissions Test  | 2.42dB  |             |
| Uncertainty for Radiation Emission test in 3m chamber | 3.54dB  | Polarize: V |
| (30MHz to 1GHz)                                       | 4.1dB   | Polarize: H |
| Uncertainty for Radiation Emission test in 3m chamber | 2.08dB  | Polarize: H |
| (1GHz to 25GHz)                                       | 2.56dB  | Polarize: V |
| Uncertainty for radio frequency                       | 0.01ppm |             |
| Uncertainty for conducted RF Power                    | 0.65dB  |             |
| Uncertainty for temperature                           | 0.2°C   |             |
| Uncertainty for humidity                              | 1%      |             |
| Uncertainty for DC and low frequency voltages         | 0.06%   |             |

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 9 of 48

# 1.10. Description Of Test Modes

There was 3 test Modes. TM1 to TM3 were shown below:

- TM1 : Operate in Bluetooth mode;
- TM2Recharge mode
- TM3 : Idle mode

\*\*\*Note:

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

1. All test modes were tested, but we only recorded the worst case in this report.

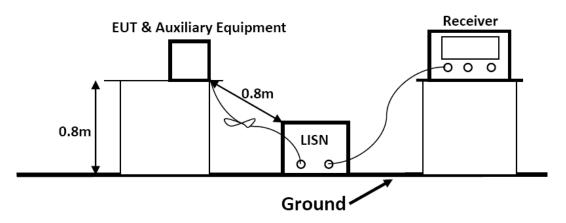
# 2. SUMMARY OF TEST RESULTS

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

| Rule          | Description of Test Items                                                                                   | Result     |
|---------------|-------------------------------------------------------------------------------------------------------------|------------|
| §7.1          | Reference to clause 8.4 of ETSI EN 301 489-1                                                                | Compliant  |
| 0             | Conducted Emission (AC mains input/output port)                                                             | - <b>I</b> |
| §7.1          | Reference to clause 8.3 of ETSI EN 301 489-1                                                                | N/A*       |
|               | Conducted Emission (DC power input/output port)                                                             |            |
| §7.1          | Reference to clause 8.7 of ETSI EN 301 489-1                                                                | N/A*       |
|               | Conducted Emission (Wired network port)                                                                     |            |
| §7.1          | Reference to clause 8.2 of ETSI EN 301 489-1                                                                | Compliant  |
|               | Radiated Emission (Enclosure of ancillary equipment)<br>Reference to clause 8.5 of ETSI EN 301 489-1        | -          |
| §7.1          |                                                                                                             | N/A*       |
|               | Harmonic current emissions (AC mains input port)<br>Reference to clause 8.6 of ETSI EN 301 489-1            |            |
| <b>§7.1</b>   |                                                                                                             | N/A*       |
|               | Voltage fluctuations and flicker (AC mains input port)<br>Reference to clause 9.3 of ETSI EN 301 489-1      |            |
| 87.0          |                                                                                                             | Comuliant  |
| §7 <b>.</b> 2 | Electrostatic discharge (Enclosure port)                                                                    | Compliant  |
|               | (EN 61000-4-2)<br>Reference to clause 9.2 of ETSI EN 301 489-1                                              |            |
| §7.2          | Reference to clause 9.2 of ETSTEN 301 489-1<br>RF electromagnetic field (80MHz to 6000MHz) (Enclosure port) | Compliant  |
| 81.2          | (EN 61000-4-3)                                                                                              | Compliant  |
|               | Reference to clause 9.4 of ETSI EN 301 489-1                                                                |            |
|               | Fast transients common mode (signal, wired network and control ports, DC                                    |            |
| §7.2          | and AC power ports)                                                                                         | N/A*       |
|               | (EN 61000-4-4)                                                                                              |            |
|               | Reference to clause 9.8 of ETSI EN 301 489-1                                                                |            |
|               | Surges, line to line and line to ground (AC mains power input ports, wired                                  |            |
| §7.2          | network ports)                                                                                              | N/A*       |
|               | (EN 61000-4-5)                                                                                              |            |
|               | Reference to clause 9.5 of ETSI EN 301 489-1                                                                |            |
|               | RF common mode 0.15MHz to 80MHz (signal, wired network and control                                          |            |
| §7.2          | ports, DC and AC power ports)                                                                               | N/A*       |
|               | (EN 61000-4-6)                                                                                              |            |
|               | Reference to clause 9.6 of ETSI EN 301 489-1                                                                |            |
| §7.2          | Transients and surges in the vehicular environment                                                          | N/A*       |
| 0             | (ISO 7637-2)                                                                                                |            |
|               | Reference to clause 9.7 of ETSI EN 301 489-1                                                                |            |
| §7.2          | Voltage dips and interruptions (AC mains power input ports)                                                 | N/A*       |
|               | (EN 61000-4-11)                                                                                             |            |

# **3. LINE CONDUCTED EMISSION**

#### **3.1. Conducted Emission Limit**


Relevant Standard(s): ETSI EN 301 489-1 V2.1.1 (2017-02) / EN 55032: 2015 Class B

| Limits for Line Conducted Emission |                  |               |  |  |
|------------------------------------|------------------|---------------|--|--|
| Frequency                          | Limit (dBµV)     |               |  |  |
| (MHz)                              | Quasi-peak Level | Average Level |  |  |
| 0.15 ~ 0.50                        | 66.0 ~ 56.0 *    | 56.0 ~ 46.0 * |  |  |
| 0.50 ~ 5.00                        | 56.0             | 46.0          |  |  |
| 5.00 ~ 30.00                       | 60.0             | 50.0          |  |  |

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

#### **3.2. Test Configuration**



The setup of EUT is according with per ETSI EN 301 489-1 measurement procedure. The specification used was with the ETSI EN 301 489-1 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The EUT received DC 12V charging power from the adapter which received power through a LISN supplying power of AC 230V/50Hz.

#### 3.3. EMI Test Receiver Setup

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Receiver Parameter     | Setting        |
|------------------------|----------------|
| Attenuation            | Auto           |
| Start ~ Stop Frequency | 150KHz ~ 30MHz |
| (IF)RBW                | 9kHz           |

All data was recorded in the Quasi-peak and average detection mode.

#### **3.4. Test Procedure**

Power on the EUT, the EUT begins to work. Make sure the EUT operates normally during the test.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

#### 3.5. Test Data

BY THE DOCUMENT OWNER

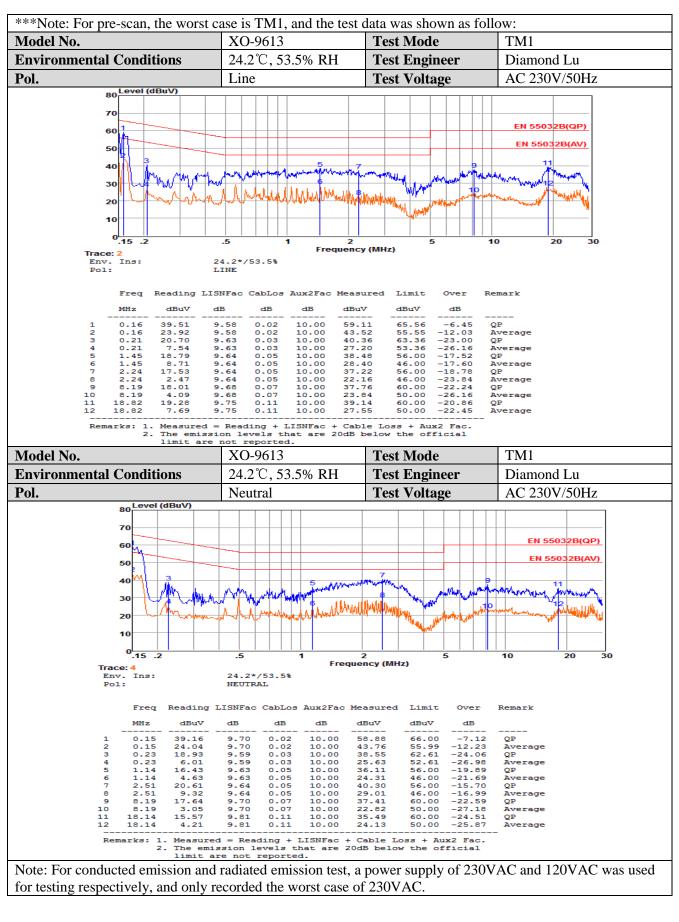
**BE MADE AVAILABLE** 

THE ORIGINAL CAN ONLY

DOCUMENT WAS AVAILABLE ALSO.

ORIGINAL

OF GENERATING THE DOCUMENT THE


TIME

Ψ

REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT

-WAS

DOCUMENT



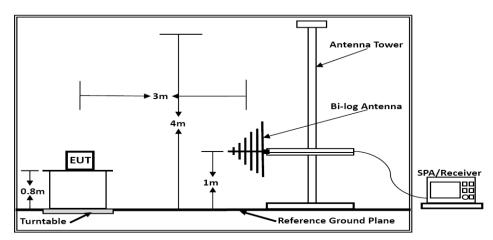
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 14 of 48

# 4. RADIATED DISTURBANCE

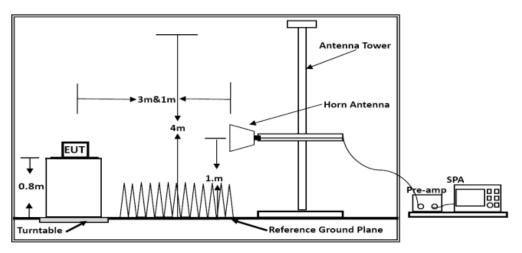
#### 4.1. Radiated Emission Limit

Relevant Standard(s): ETSI EN 301 489-1 V2.1.1 (2017-02) / EN 55032: 2015 Class B

| Limits for Radiated Disturbance Below 1GHz |          |               |  |  |
|--------------------------------------------|----------|---------------|--|--|
| Frequency Distance Field Strengths Limit   |          |               |  |  |
| (MHz)                                      | (Meters) | $(dB\mu V/m)$ |  |  |
| 30 ~ 230                                   | 3        | 40            |  |  |
| 230 ~ 1000                                 | 3        | 47            |  |  |


\*\*\*Note:

(1) The smaller limit shall apply at the combination point between two frequency bands.


(2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.

| Limits for Radiated Disturbance Above 1GHz                    |          |               |               |  |  |
|---------------------------------------------------------------|----------|---------------|---------------|--|--|
| Frequency Distance Peak Limit Average Limit                   |          |               |               |  |  |
| (MHz)                                                         | (Meters) | $(dB\mu V/m)$ | $(dB\mu V/m)$ |  |  |
| 1000 ~ 3000 3 70 50                                           |          |               |               |  |  |
| 3000 ~ 6000                                                   | 3        | 74            | 54            |  |  |
| ***Note: The lower limit applies at the transition frequency. |          |               |               |  |  |

# 4.2. Test Configuration



Below 1GHz



Above 1GHz

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 15 of 48

## 4.3. Test Procedure

# 1) Sequence of testing 30 MHz to 1 GHz Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

#### **Pre-measurement:**

--- The turntable rotates from 0 °to 315 °using 45 °steps.

--- The antenna is polarized vertical and horizontal.

--- The antenna height changes from 1 to 4 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ( $\pm 45$  °) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre-measurement with marked maximum final measurements and the limit will be stored.

#### 2) Sequence of testing 1 GHz to 6 GHz

#### Setup:

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11, AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.

--- The EUT was set into operation.

#### **Pre-measurement:**

--- The turntable rotates from 0 ° to 315 ° using 45 ° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 4 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

#### Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of pre-measurement the software maximize the peaks by changing turntable position ( $\pm 45$  °) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

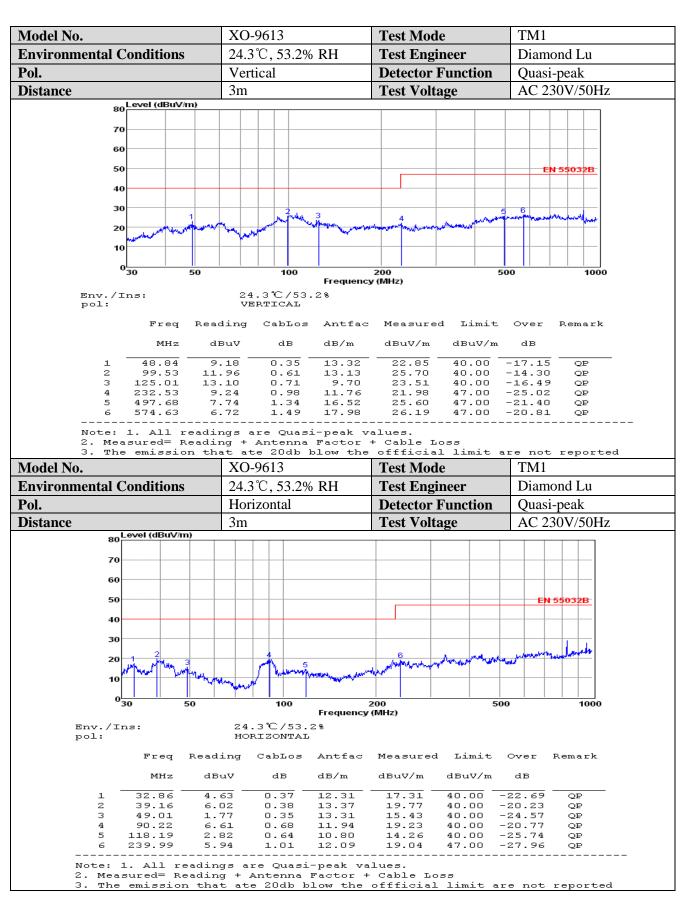
--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre-measurement with marked maximum final measurements and the limit will be stored.

| Receiver Parameter     | Setting                                |  |  |
|------------------------|----------------------------------------|--|--|
| Attenuation            | Auto                                   |  |  |
| Start ~ Stop Frequency | 30MHz~1000MHz / RBW 100kHz for QP      |  |  |
|                        |                                        |  |  |
| Spectrum Parameter     | Setting                                |  |  |
| Attenuation            | Auto                                   |  |  |
| Start Frequency        | 1000 MHz                               |  |  |
| Stop Frequency         | 6000 MHz                               |  |  |
| RBW / VBW              | 1MHz / 1MHz for Peak, 1 MHz / 10Hz for |  |  |
|                        | Average                                |  |  |

#### 4.4. Test Data

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.


The worst test mode of the EUT was TM1, and its test data was showed as the follow:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 17 of 48 BE MADE AVAILABLE BY THE DOCUMENT OWNER.

THE ORIGINAL CAN ONLY

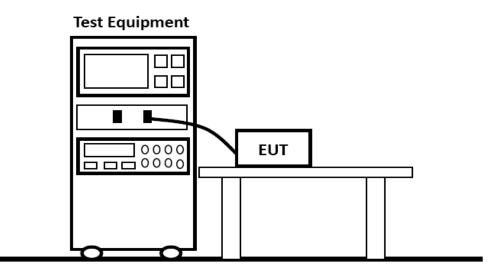
DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO.

Report No.: LCS180913082AEA



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 18 of 48

| Test Mode: TM1 (Worst Case for Above 1GHz) |                            |                | Tested by: Diamond Lu |               |       |        |        |
|--------------------------------------------|----------------------------|----------------|-----------------------|---------------|-------|--------|--------|
| Test Voltage                               | Test Voltage: AC 230V/50Hz |                | Test Distance: 3m     |               |       |        |        |
| <b>Detector Function</b> : Peak + AV       |                            |                | Test Results: Passed  |               |       |        |        |
| Polarization                               | Frequency                  | Emission Level |                       | Limit         |       | Margin |        |
| FOIAITZAUOII                               | (MHz)                      | (dBµ           | V/m)                  | $(dB\mu V/m)$ |       | (dB)   |        |
|                                            | 1262.39                    | 57.40          | 32.84                 | 70.00         | 50.00 | -12.60 | -17.16 |
|                                            | 1858.77                    | 57.43          | 36.49                 | 70.00         | 50.00 | -12.57 | -13.51 |
| Horizontal                                 | 2155.46                    | 51.79          | 32.72                 | 70.00         | 50.00 | -18.21 | -17.28 |
| Horizontai                                 | 3273.02                    | 49.99          | 32.32                 | 74.00         | 54.00 | -24.01 | -21.68 |
|                                            | 4395.59                    | 55.49          | 37.14                 | 74.00         | 54.00 | -18.51 | -16.86 |
|                                            | 5730.16                    | 55.46          | 31.74                 | 74.00         | 54.00 | -18.54 | -22.26 |
|                                            | 1264.53                    | 56.32          | 33.37                 | 70.00         | 50.00 | -13.68 | -16.63 |
|                                            | 1858.74                    | 57.88          | 36.99                 | 70.00         | 50.00 | -12.12 | -13.01 |
| Vertical                                   | 2153.51                    | 52.22          | 33.10                 | 70.00         | 50.00 | -17.78 | -16.90 |
|                                            | 3274.17                    | 49.10          | 30.32                 | 74.00         | 54.00 | -24.90 | -23.68 |
|                                            | 4397.34                    | 55.51          | 35.61                 | 74.00         | 54.00 | -18.49 | -18.39 |
|                                            | 5730.57                    | 56.16          | 31.21                 | 74.00         | 54.00 | -17.84 | -22.79 |


1. Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

2. Measurements above show only up to 6 maximum emissions noted.

3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

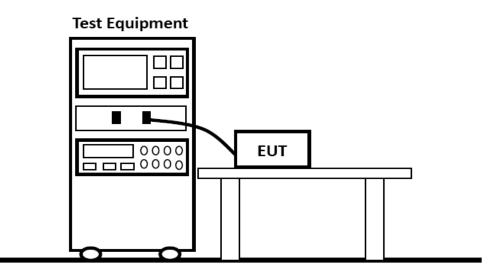
# 5. HARMONIC CURRENT EMISSIONS

#### **5.1. Test Configuration**



#### 5.2. Test Standard

According to ETSI EN 301 489-1 V2.1.1 (2017-02) & EN 61000-3-2: 2014


#### 5.3. Test Data

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

Because power of EUT less than 75W, According standard EN 61000-3-2, Harmonic current unnecessary to test.

# 6. VOLTAGE FLUCTUATION AND FLICKER

#### 6.1. Test Configuration



#### 6.2. Test Standard

According to ETSI EN 301 489-1 V2.1.1 (2017-02) & EN 61000-3-3: 2013

#### 6.3. Test Data

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

# 7. GENERAL PERFORMANCE CRITERIA FOR IMMUNITY TEST

#### 7.1. Performance criteria for Continuous phenomena applied to Transmitter (CT)

For equipment of type II or type III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence.

Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur.

#### 7.2. Performance criteria for Transient phenomena applied to Transmitter (TT)

For equipment of type II or type III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur.

#### 7.3. Performance criteria for Continuous phenomena applied to Receiver (CR)

For equipment of type II or III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

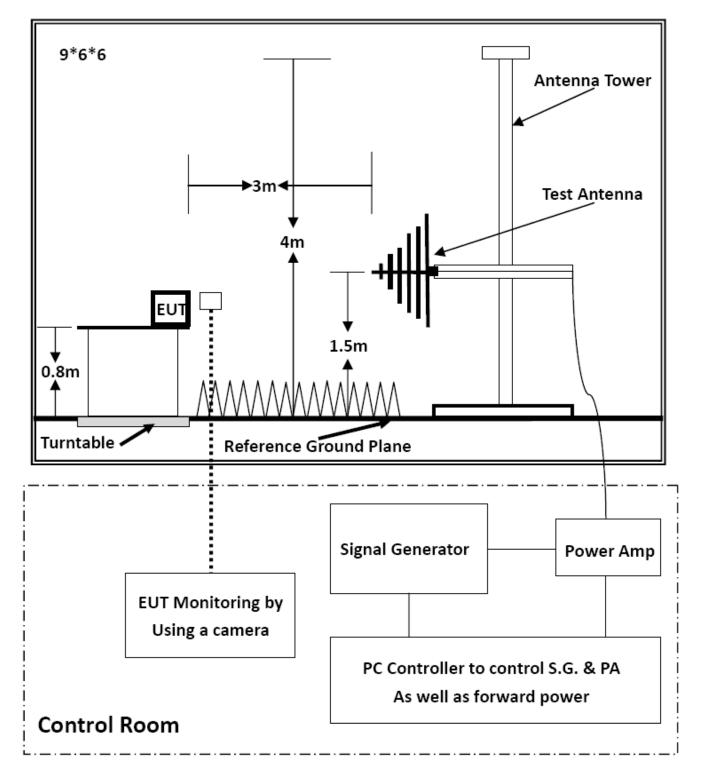
#### 7.4. Performance criteria for Transient phenomena applied to Receiver (TR)

For equipment of type II or type III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

| Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | During test                                                                                                                                                                               | After test                                                                                                                                                                                                                                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shall operate as intended.<br>(see note 1).<br>Shall be no loss of function.<br>Shall be no unintentional transmissions.                                                                  | Shall operate as intended.<br>Shall be no degradation of performance (see note 3).<br>Shall be no loss of function.<br>Shall be no loss of stored data or user programmable<br>functions.                                                          |  |  |
| В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | May show loss of function (one or more).<br>May show degradation of performance<br>(see note 2).<br>Shall be no unintentional transmissions.                                              | <ul> <li>Functions shall be self-recoverable.</li> <li>Shall operate as intended after recovering.</li> <li>Shall be no degradation of performance (see note 3)</li> <li>Shall be no loss of stored data or user programmabl functions.</li> </ul> |  |  |
| С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | May be loss of function (one or more).Functions shall be recoverable by the operator.<br>Shall operate as intended after recovering.<br>Shall be no degradation of performance (see note) |                                                                                                                                                                                                                                                    |  |  |
| <ul> <li>NOTE 1: Operate as intended during the test allows a level of degradation of performance (see note b).</li> <li>NOTE 1: Operate as intended during the test allows a level of degradation not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.</li> <li>NOTE 2: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance level specified by the manufacturer for the use of the apparatus as intended.</li> </ul> |                                                                                                                                                                                           |                                                                                                                                                                                                                                                    |  |  |

#### Performance criteria for ETSI EN 301 489-17 V3.1.1 (2017-02)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 22 of 48 THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER


performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 3: No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

# 8. RF ELECTROMAGNETIC FIELD (80 MHz - 6000 MHz)

# 8.1. Test Configuration

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11, AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.



#### 8.2. Test Standard

ETSI EN 301 489-1, ETSI EN 301 489-3, ETSI EN 301 489-17 / (EN 61000-4-3: 2006+A2: 2010)

Test level 2 at 3V/m.

#### 8.3. Severity Level

| Level                    | Field Strength<br>(V/m) |  |
|--------------------------|-------------------------|--|
| 1                        | 1                       |  |
| 2                        | 3                       |  |
| 3                        | 10                      |  |
| X                        | Special                 |  |
| Performance Criterion: A |                         |  |

#### **8.4. Test Procedure**

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD camera is used to monitor EUT screen. All the scanning conditions are as follows:

| Condition of Test      | Remark                   |  |
|------------------------|--------------------------|--|
| Fielded Strength       | 3 V/m (Severity Level 2) |  |
| Radiated Signal        | Unmodulated              |  |
| Scanning Frequency     | 80-6000MHz               |  |
| Dwell time of radiated | 0.0015 decade/s          |  |
| Waiting Time           | 3 Sec.                   |  |

#### 8.5. Test Result

PASS.

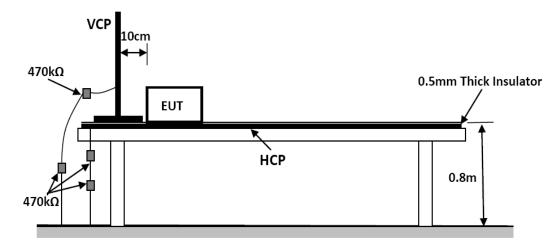
Please refer to the following page.

| <b>RF ELECTROMAGNETIC FIELD</b> |                                       |             |                    |  |
|---------------------------------|---------------------------------------|-------------|--------------------|--|
| Standard                        | □ IEC 61000-4-3 ☑ EN 61000-4-3        |             |                    |  |
| Applicant                       | Dongguan Xing Yue Electronic co., Ltd |             |                    |  |
| EUT                             | Wireless light up logo earbud         | Temperature | 24.3℃              |  |
| M/N                             | XO-9613                               | Humidity    | 53.2%              |  |
| Test Mode                       | Iode TM1                              |             | В                  |  |
| Test Engineer                   | Diamond Lu                            | Test Date   | September 20, 2018 |  |

#### **Bluetooth Test Result:**

| EUT<br>Working Mode | Antenna<br>Polarity | Frequency<br>(MHz) | Fielded<br>Strength<br>(V/m) | Observation | Position                    | Conclusion |
|---------------------|---------------------|--------------------|------------------------------|-------------|-----------------------------|------------|
| Operating Mode      | Vertical            | 80-6000            | 3                            | CT, CR      | Front, Right,<br>Left, Back | Pass       |
|                     | Horizontal          | 80-6000            | 3                            | CT, CR      | Front, Right,<br>Left, Back | Pass       |
| Idle                | Vertical            | 80-6000            | 3                            | See Note    | Front, Right,<br>Left, Back | Pass       |
| lale                | Horizontal          | 80-6000            | 3                            | See Note    | Front, Right,<br>Left, Back | Pass       |

# TM2-TM3 Test Result:


| EUT<br>Working Mode | Antenna<br>Polarity | Frequency<br>(MHz) | Fielded<br>Strength<br>(V/m) | Observation | Position                    | Conclusion |
|---------------------|---------------------|--------------------|------------------------------|-------------|-----------------------------|------------|
| Operating Made      | Vertical            | 80-6000            | 3                            | See Note    | Front, Right,<br>Left, Back | Pass       |
| Operating Mode      | Horizontal          | 80-6000            | 3                            | See Note    | Front, Right,<br>Left, Back | Pass       |
| Idle                | Vertical            | 80-6000            | 3                            | See Note    | Front, Right,<br>Left, Back | Pass       |
| luie                | Horizontal          | 80-6000            | 3                            | See Note    | Front, Right,<br>Left, Back | Pass       |

Note: There is no any degradation of performance and function.

# 9. ELECTROSTATIC DISCHARGE

Please refer to ETSI EN 301 489-1 and EN 61000-4-2.

# 9.1. Test Configuration



EN 61000-4-2 specifies that a tabletop EUT shall be placed on a non-conducting table which is 80 centimeters above a ground reference plane and that floor mounted equipment shall be placed on a insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement.

For tabletop equipment, a 1.5 by 1.0-meter metal sheet (HCP) is placed on the table and connected to the ground plane via a metal strap with two 470 k Ohms resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material. A Vertical Coupling Plane (VCP) grounded on the ground plane through the same configuration as in the HCP is used.

# 9.2. Test Procedure

ETSI EN 301 489-1 V2.1.1 (2017-02) / EN 61000-4-2: 2009 Test level 3 for Air Discharge at  $\pm 8$  kV Test level 2 for Contact Discharge at  $\pm 4$  kV

# 9.2.1. Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

#### 9.2.2. Contact Discharge

All the procedure shall be same as Section 9.2.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

# 9.2.3. Indirect Discharge For Horizontal Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

#### 9.2.4. Indirect Discharge For Vertical Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

#### 9.3. Test Data

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

PASS.

Please refer to the following page.

Pass

Pass

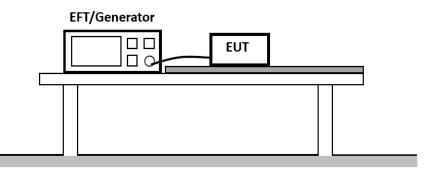
| Electrostatic Discharge Test Results |                                                   |                   |                     |         |           |                          |                    |
|--------------------------------------|---------------------------------------------------|-------------------|---------------------|---------|-----------|--------------------------|--------------------|
| Standard                             |                                                   | C 61000-4         | 4-2 🗹 EN 6100       | 00-4-2  |           |                          |                    |
| Applicant                            | Dong                                              | guan Xin          | g Yue Electronic co | ., Ltd  |           |                          |                    |
| EUT                                  | Wirel                                             | ess light ı       | up logo earbud      |         | Tempera   | <b>Temperature</b> 24.5℃ |                    |
| M/N                                  | XO-9                                              | 613               |                     |         | Humidit   | у                        | 52.4%              |
| Criterion                            | В                                                 |                   |                     |         | Pressure  | essure 1021mbar          |                    |
| Test Mode                            | TM1-                                              | -TM3              |                     |         | Test Date | e                        | September 20, 2018 |
| Test Engineer                        | Diam                                              | ond Lu            |                     |         |           |                          |                    |
| TEST RESULT OF BLUETOOTH             |                                                   |                   |                     |         |           |                          |                    |
| Test Voltage                         | Test VoltageCouplingObservationResult (Pass/Fail) |                   |                     |         |           |                          | Result (Pass/Fail) |
| ±2KV, ±4kV Con                       |                                                   | tact Discharge    | CT, CR              |         |           | Pass                     |                    |
| ±2KV, ±4kV, ±8kV A                   |                                                   | ir Discharge      | CT, CR              |         |           | Pass                     |                    |
| ±2KV, ±4kV Indirec                   |                                                   | ct Discharge HCP  | CT, CR              |         |           | Pass                     |                    |
| ±2KV, ±4kV Indirec                   |                                                   | ct Discharge VCP  | CT, CR              |         |           | Pass                     |                    |
|                                      |                                                   |                   |                     |         |           |                          |                    |
| TEST RESULT OF TM2-TM3               |                                                   |                   |                     |         |           |                          |                    |
| Test Voltage                         |                                                   |                   | Coupling            |         |           | Result (Pass/Fail)       |                    |
| ±2KV, ±4kV                           |                                                   | Contact Discharge |                     |         | Pass      |                          |                    |
| ±2KV, ±4kV, ±8kV                     |                                                   |                   | Air Discharge       |         |           | Pass                     |                    |
| ±2KV, ±4k                            | V, ±8kV                                           | V                 | Air Di              | scharge |           |                          | Pass               |

Indirect Discharge HCP

Indirect Discharge VCP

Note: There is no any degradation of performance and function.

±2KV, ±4kV


 $\pm 2KV, \pm 4kV$ 

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 29 of 48

# **10. ELECTRICAL FAST TRANSIENT IMMUNITY**

#### **10.1. Test Configuration**



#### 10.2. Test Standard

ETSI EN 301 489-1 V2.1.1 (2017-02)/ EN61000-4-4: 2012 Test level 2 at 1 kV

| Test Level                                  |                       |                                                        |  |  |  |
|---------------------------------------------|-----------------------|--------------------------------------------------------|--|--|--|
| Open Circuit Output Test Voltage $\pm 10\%$ |                       |                                                        |  |  |  |
| Level                                       | On Power Supply Lines | On I/O (Input/Output)<br>Signal data and control lines |  |  |  |
| 1                                           | 0.5 kV                | 0.25 kV                                                |  |  |  |
| 2                                           | 1 kV                  | 0.5 kV                                                 |  |  |  |
| 3                                           | 2 kV                  | 1 kV                                                   |  |  |  |
| 4                                           | 4 kV                  | 2 kV                                                   |  |  |  |
| Х                                           | Special               | Special                                                |  |  |  |
| Performance Criterion: B                    | • •                   | · · · · ·                                              |  |  |  |

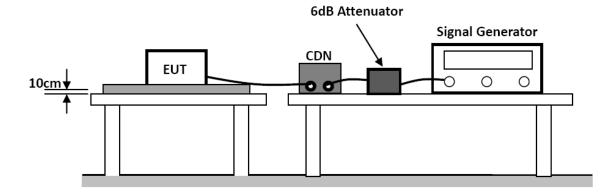
## 10.3. Test Procedure

The EUT is put on the table, which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

10.3.1.For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device, which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.

10.3.2.For signal lines and control lines ports: No I/O ports. It's unnecessary to test.


10.3.3.For DC output line ports: It's unnecessary to test.

#### 10.4. Test Data

#### PASS.

## **11. RF COMMON MODE**

#### **11.1. Test Configuration**



#### 11.2. Test Standard

ETSI EN 301 489-1 V2.1.1 (2017-02)/ EN 61000-4-6: 2014 Test level 2 at 3 V (r.m.s.), 0.15 MHz ~ 80 MHz, Modulation type: AM Modulation depth: 80% Modulation signal: 1 kHz

| Test Level               |                              |  |  |  |
|--------------------------|------------------------------|--|--|--|
| Level                    | Voltage Level (r.m.s)<br>(V) |  |  |  |
| 1                        | 1                            |  |  |  |
| 2                        | 3                            |  |  |  |
| 3                        | 10                           |  |  |  |
| Х                        | Special                      |  |  |  |
| Performance Criterion: A |                              |  |  |  |

#### **11.3. Test Procedure**

11.3.1. Let the EUT work in test mode and test it.

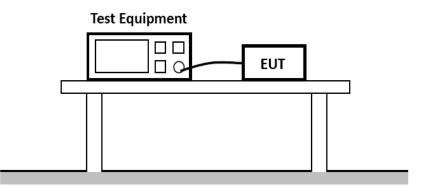
11.3.2. The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50mm (where possible).

11.3.3. The disturbance signal described below is injected to EUT through CDN.

11.3.4. The EUT operates within its operational mode(s) under intended climatic conditions after power on.

11.3.5. The frequency range is swept from 150kHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.

11.3.6. The rate of sweep shall not exceed 1.5\*10-3 decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.


11.3.7. Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

#### 11.4. Test Data

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

# 12. SURGES, LINE TO LINE AND LINE TO GROUND

#### **12.1.** Test Configuration



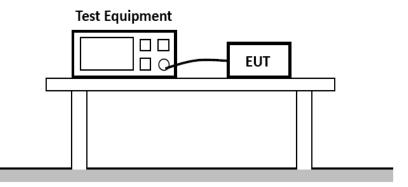
#### 12.2. Test Standard

ETSI EN 301 489-1 V2.1.1 (2017-02) / EN 61000-4-5: 2014+A1: 2017 L-N: Test level 2 at 1 kV

L-PE, N-PE Test Level 3 at 2kV

| Test Level                                  |                       |                                                        |  |  |  |
|---------------------------------------------|-----------------------|--------------------------------------------------------|--|--|--|
| Open Circuit Output Test Voltage $\pm 10\%$ |                       |                                                        |  |  |  |
| Level                                       | On Power Supply Lines | On I/O (Input/Output)<br>Signal data and control lines |  |  |  |
| 1                                           | 0.5 kV                | 0.25 kV                                                |  |  |  |
| 2                                           | 1 kV                  | 0.5 kV                                                 |  |  |  |
| 3                                           | 2 kV                  | 1 kV                                                   |  |  |  |
| 4                                           | 4 kV                  | 2 kV                                                   |  |  |  |
| Х                                           | Special               | Special                                                |  |  |  |
| Performance Criterion: B                    |                       |                                                        |  |  |  |

#### **12.3. Test Procedure**


THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

- 12.3.1. For line to line coupling mode, provide a 0.5 kV 1.2/50us voltage surge (at open-circuit condition).
- 12.3.2. At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 12.3.3. Different phase angles are done individually.
- 12.3.4. Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

#### 12.4. Test Data

# **13. VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST**

#### **13.1.** Test Configuration



#### 13.2. Test Standard

ETSI EN 301 489-1 V2.1.1 (2017-02)/ EN 61000-4-11: 2004 Test levels and Performance Criterion

| Test Level                             |                 |             |  |  |
|----------------------------------------|-----------------|-------------|--|--|
| Voltage Reduction                      | Voltage Dips    | Duration    |  |  |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | %U <sub>T</sub> | (in Period) |  |  |
| 100                                    | 0               | 0.5         |  |  |
| 100                                    | 0               | 1           |  |  |
| 30                                     | 70              | 5           |  |  |
| Voltage Reduction                      | Voltage Dips    | Duration    |  |  |
| ~ ~ U <sub>T</sub>                     | %U <sub>T</sub> | (in Period) |  |  |
| 100                                    | 0               | 250         |  |  |
| Performance Criterion: B&C             |                 |             |  |  |

#### **13.3. Test Procedure**

13.3.1. The interruption is introduced at selected phase angles with specified duration.

13.3.2. Record any degradation of performance.

#### 13.4. Test Data

# **14. PHOTOGRAPHS OF TEST SETUP**

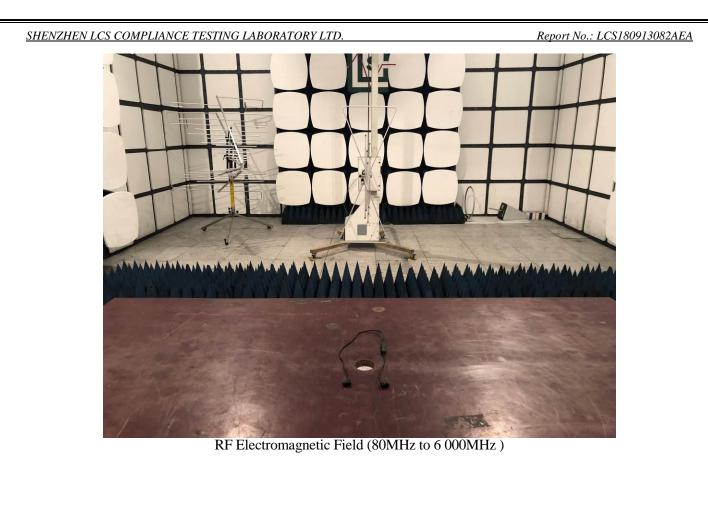
THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.



Power Line Conducted Emission



Radiated Emission Below 1 GHz

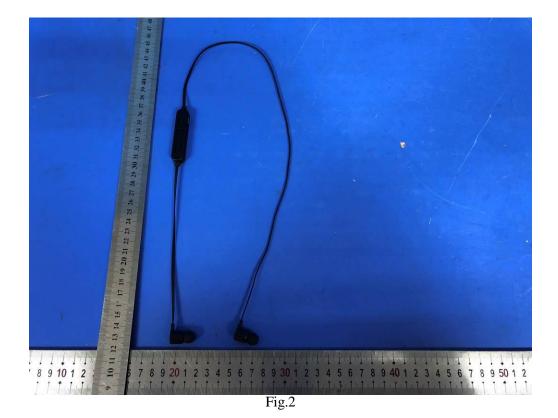

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 35 of 48



Radiated Emission Above 1 GHz



Electrostatic Discharge

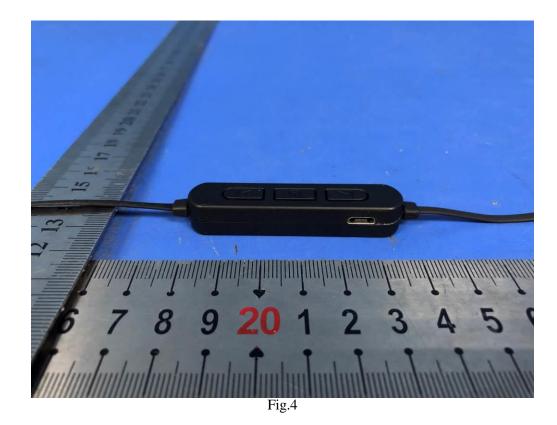



## **15. PHOTOGRAPHS OF THE EUT**

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL MAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.



Fig.1




This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 38 of 48 THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

Report No.: LCS180913082AEA



Fig.3



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 39 of 48 THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL MAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.



Fig.5



Fig.6

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 40 of 48 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

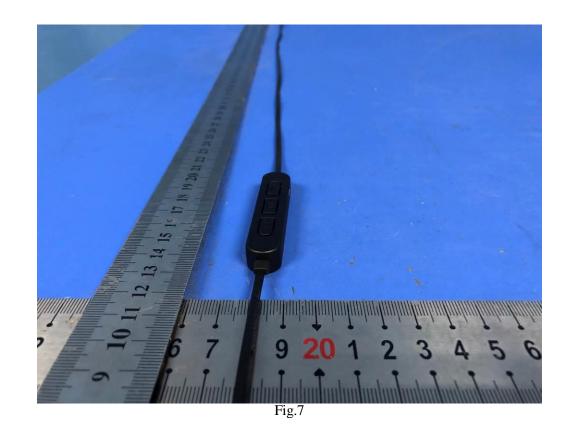



Fig.8

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 41 of 48

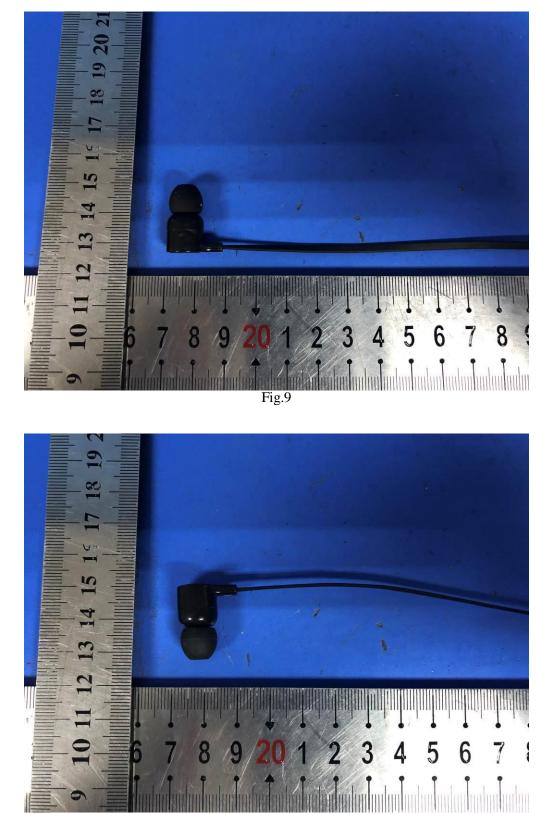



Fig.10

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 42 of 48



Fig.11




Fig.12

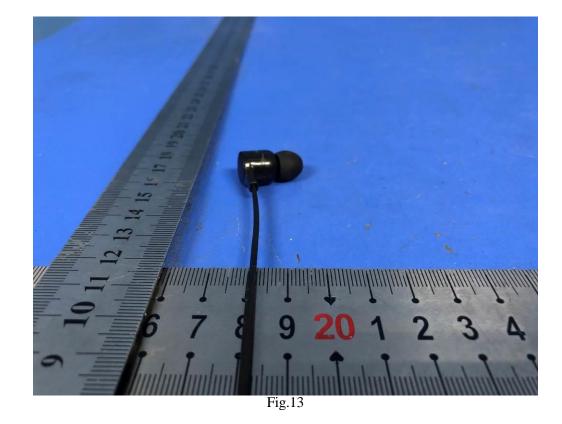





Fig.14

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 44 of 48

Report No.: LCS180913082AEA



Fig.15



Fig.16

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

Report No.: LCS180913082AEA



Fig.17

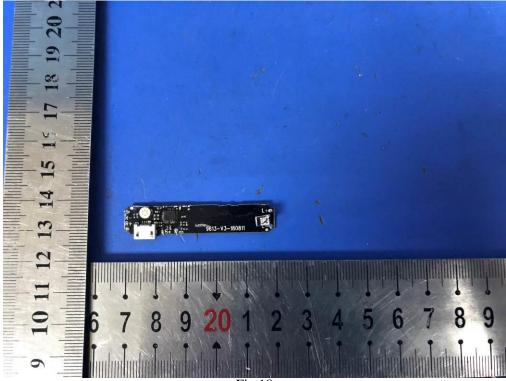



Fig.18

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 46 of 48

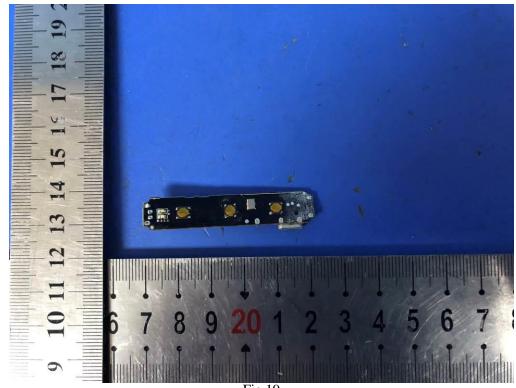



Fig.19

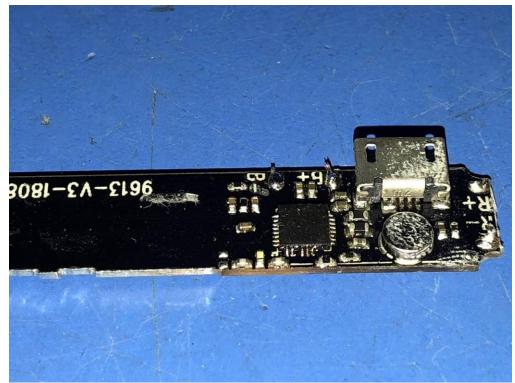



Fig.20

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-11. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

Report No.: LCS180913082AEA

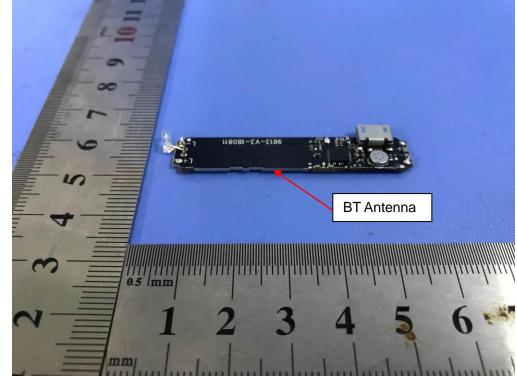



Fig.21

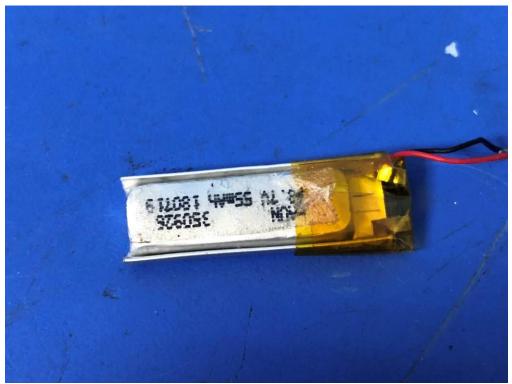



Fig.22

## -----THE END OF REPORT------

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 48 of 48