RADIO TEST REPORT For . .. Bottle with wireless charging Test Model: 62143 Additional Model No.: 62140 Prepared for : Address : Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd. Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com Mail : webmaster@LCS-cert.com Date of receipt of test sample : August 29, 2018 Number of tested samples : 1 Serial number : Prototype Date of Test : August 29, 2018~September 04, 2018 Date of Report : September 12, 2018 # RADIO TEST REPORT ETSI EN 303 417 V1.1.1 (2017-09) Wireless power transmission systems, using technologies other than radio frequency beam, in the 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz ranges; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU Report Reference No. : LCS180828032AEB Date Of Issue.....: September 12, 2018 Testing Laboratory Name......: Shenzhen LCS Compliance Testing Laboratory Ltd. Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China Testing Location/Procedure: Full application of Harmonised standards ■ Other standard testing method Applicant's Name: Address: **Test Specification** Standard : ETSI EN 303 417 V1.1.1 (2017-09) Test Report Form No.: LCSEMC-1.0 TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd. Master TRF.....: Dated 2017-06 Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd.is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd.takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Test Item Description.....: Bottle with wireless charging Trade Mark: N/A Test Model..... : 62143 Ratings 5V==, by Rechargeable Li-ion Battery (5000mAh) Recharge Voltage: by 5V== 2.1A USB Output: 5V== 2.1A Wireless Output: 5W== Result: Positive Compiled by: Supervised by: Calvin Weng/ Technique principal Gavin Liang/ Manager Aking Jin/ Administrators September 12, 2018 # **EMC -- TEST REPORT** Test Report No.: LCS180828032AEB Date of issue Test Model.....: : 62143 EUT.....: Bottle with wireless charging Applicant....:: Address..... Telephone.....:: / Fax.....:: : / Manufacturer..... Address....:: Telephone.....:: : / Fax....:: : / Factory....:: Address..... | lest result Fositive | Test Result | Positive | |------------------------|-------------|----------| |------------------------|-------------|----------| The test report merely corresponds to the test sample. Telephone....:: / Fax.....: : / It is not permitted to copy extracts of these test result without the written permission of the test laboratory. #### SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. Report No.: LCS180828032AEB # **Revision History** | Revision | Issue Date | Revisions | Revised By | |----------|--------------------|---------------|-------------| | 000 | September 12, 2018 | Initial Issue | Gavin Liang | | | | | | | | | | | # **TABLE OF CONTENTS** | 1. GENERAL INFORMATION | 7 | |---|------| | 1.1. PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) | 7 | | 1.2. SUPPORT EQUIPMENT LIST | | | 1.3. External I/O | | | 1.4. Objective | | | 1.5. Test Methodology | | | 1.6. Measurement Uncertainty (95% confidence levels, k=2) | | | 1.7. DESCRIPTION OF TEST FACILITY | | | 1.8. DESCRIPTION OF TEST MODE | 8 | | 2. SYSTEM TEST CONFIGURATION | 9 | | 2.1. JUSTIFICATION | | | 2.2. EUT Exercise Software | 9 | | 2.3. SPECIAL ACCESSORIES | | | 2.4. BLOCK DIAGRAM/SCHEMATICS | | | 2.5. EQUIPMENT MODIFICATIONS | 9 | | 2.6. CONFIGURATION OF TEST SETUP | 9 | | 3. SUMMARY OF TEST RESULTS | 10 | | | | | 4. PERMITTED RANGE OF OPERATING FREQUENCIES | | | 4.1. DEFINITION | | | 4.2. LIMIT | | | 4.4. Test Procedure 4.4. Test Result | | | | | | 5. OPERATING FREQUENCY RANGE(S) (OFR) | | | 5.1. Definition | | | 5.2. LIMIT | | | 5.3. TEST PROCEDURE | | | 5.4. Test Result | . 14 | | 6. H-FIELD REQUIREMENTS | 15 | | 6.1. DEFINITION | | | 6.2. LIMIT | 15 | | 6.3. Test Setup | . 15 | | 6.4. TEST PROCEDURE | | | 6.5. Test Result | . 16 | | 7. TRANSMITTER SPURIOUS EMISSIONS | 19 | | 7.1. Definition | | | 7.2. LIMIT | | | 7.3. TEST SETUP | | | 7.4. TEST PROCEDURE | | | 7.5. Test Result | 20 | | 8. TRANSMITTER OUT OF BAND (OOB) EMISSIONS | 21 | | 8.1. DEFINITION | 21 | | 8.2. LIMIT | | | 8.3. TEST PROCEDURE | | | 8.4. Test Result | | | 9. WPT SYSTEM UNWANTED CONDUCTED EMISSIONS | 22 | | | | | 9.1. APPLICABILITY | | | 9.3. LIMIT | _ | | 9.4. TEST PROCEDURE | | | 9.4. TEST RESULT | | | | _ | | 10. RECEIVER BLOCKING | | | 10.1 DEFINITION | | | 10.2. LIMIT | | | 10.3. TEST SETUP | | | 10.+. 1E311 NOCEDUKE | . 43 | | نہ | |---| | 崱 | | € | | Ō | | 늣 | | ũ | | S | | 2 | | Z | | ш | | 픋 | | ⊱ | | <u>m</u> | | ۳ | | 品 | | ╛ | | ≶ | | Α. | | ᆷ | | ₹ | | <u>-</u> | | 罶 | | ≿ | | Ž | | 2 | | ₹ | | Ö | | ₹ | | 릁 | | 읥 | | 9 | | ú | | Ε | | 6 | | LSO. THE ORIGINAL CAN ONLY | | F | | щį | | 희 | | ₹ | | ₹ | | € | | ş | | ≱ | | É | | á | | Ź | | ರ | | ğ | | 7 | | ₹ | | 듄 | | 풆 | | Ō | | 뿌 | | Ē | | - | | z | | Ē | | OMEN | | OCUMEN. | | DOCUMEN | | HE DOCUMEN. | | THE DOCUMEN | | NG THE DOCUMEN | | TING THE DOCUMEN | | PATING THE DOCUMEN | | IERATING THE DOCUMEN | | Ī | | Ī | | W | | Ī | | Ī | | Ī | | Ī | | Ī | | Ī | | Ī | | 18. AT THE TIME OF GENEI TIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | TIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | TIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | TIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | TIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | TIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | TIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | TIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | 18. AT THE TIME OF GENEI | | WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | WITH THE PRODUCTIP REDACTION TOOL ON 2018-1 | | WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | TIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | WITH THE PRODUCTIP REDACTION TOOL ON 2018-10-18. AT THE TIME OF GENEI | | SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. | Report No.: LCS180828032AEB | |---|-----------------------------| | 10.5. Test Result | 25 | | 11. LIST OF MEASURING EQUIPMENT | 26 | | 12.TEST SETUP PHOTOGRAPHS | 27 | #### 1. GENERAL INFORMATION ## 1.1. Product Description for Equipment Under Test (EUT) EUT : Bottle with wireless charging Test Model : 62143 Additional Model : 62140 Model Declaration : PCB board, structure and internal of these model(s) are the same, So no additional models were tested Hardware Version : V1.3 Software Version : v1.0 **Charging Station Base** Operating Frequency: 110.0~205.0KHz Modulation Type : CW (Continuous Wave) Antenna Type : Coil Antenna 5V==, by Rechargeable Li-ion Battery (5000mAh) Recharge Voltage: by 5V== 2.1A Input/Output : USB Output: 5V== 2.1A Wireless Output: 5W=== # 1.2. Support equipment List | Manufacturer | Description | Description Model | | Certificate | |--------------|---------------------------|-------------------|--|-------------| | LCS | Adapter (Supplied by lab) | EQ-24BEU | | CE | | Apple | Mobile Phone | iPhone X | | CE | #### 1.3. External I/O | I/O Port Description | Quantity | Cable | |----------------------|----------|-------| | Micro USB | 1 | N/A | | USB | 1 | N/A | # 1.4. Objective The following report of is prepared on behalf of the **Anhui Inno-sign International Co., Ltd.** in accordance with ETSI EN 303 417 V1.1.1 (2017-09): Wireless power transmission systems, using technologies other than radio frequency beam, in the 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz ranges; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU. The objective is to determine compliance with ETSI EN 303 417 V1.1.1 (2017-09). # 1.5. Test Methodology All measurements contained in this report were conducted with ETSI EN 303 417 V1.1.1 (2017-09). # 1.6. Measurement Uncertainty (95% confidence levels, k=2) | Test Item | | Uncertainty | |-------------------------------|---|------------------------| | Radio Frequency | : | 0.9 x 10 ⁻⁴ | | Total RF Power, Conducted | : | 1.0 dB | | RF Power Density, Conducted | : | 1.8 dB | | Spurious Emissions, Conducted | | 1.8 dB | | All Emissions, Radiated | : | 3.1 dB | | Temperature | : | 0.5°C | | Humidity | : | 1 % | | DC And Low Frequency Voltages | : | 1 % | # 1.7. Description of Test Facility FCC Registration Number. is 254912. Industry Canada Registration Number. is 9642A-1. ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081. TUV RH Registration Number. is UA 50296516-001. NVLAP Registration Code is 600167-0. #### 1.8. Description Of Test Mode The EUT has been tested under typical operating condition. No software used to control the EUT for staying in transmitting mode for testing. ***Note: The EUT has been tested under normal condition in this report, and only recorded the worst test data in the report. # 2. SYSTEM TEST CONFIGURATION # 2.1. Justification The system was configured for testing in engineering mode. ## 2.2. EUT Exercise Software N/A. # 2.3. Special Accessories N/A. # 2.4. Block Diagram/Schematics Please refer to the related document. # 2.5. Equipment Modifications Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT. # 2.6. Configuration of Test Setup Please refer to the test setup photo. # 3. SUMMARY OF TEST RESULTS | Reference Clause No. | Description Of Test Item | Result | |----------------------|---|-----------| | §4.3.2 | Permitted range of operating frequencies | | | §4.3.3 | §4.3.3 Operating frequency range(s) (OFR) | | | §4.3.4 | H-field requirements | Compliant | | §4.3.5 | Transmitter spurious emissions | Compliant | | §4.3.6 | Transmitter out of band (OOB) emissions | Compliant | | §4.3.7 | WPT system unwanted conducted emissions | N/A | | §4.4.2 | Receiver blocking | Compliant | Note: N/A means not applicable ## 4. PERMITTED RANGE OF OPERATING FREQUENCIES #### 4.1. Definition The permitted range of operating frequencies denotes the frequency ranges set out in Table 1. It likewise denotes the respective frequency range for accommodation of the fundamental WPT frequency of the EUT within its operating frequency range (OFR). Table 1: WPT systems within the permitted frequency bands below 30MHz | | WPT frequency range | Frequency Bands | WPT systems | |----------------------|---------------------|----------------------|-------------| | Transmit and Receive | 1 | 19 kHz to 21 kHz | WPT systems | | Transmit and Receive | 2 | 59 kHz to 61 kHz | WPT systems | | Transmit and Receive | 3 | 79 kHz to 90 kHz | WPT systems | | Transmit and Receive | | 100 kHz to 119 kHz | WPT systems | | Transmit and Receive | 4 | 119 kHz to 140 kHz | WPT systems | | Transmit and Receive | 4 | 140 kHz to 148,5 kHz | WPT systems | | Transmit and Receive | | 148.5 kHz to 300 kHz | WPT systems | | Transmit and Receive | 5 | 6765kHz to 6795 kHz | WPT systems | #### **4.2. Limit** The permitted range of operating frequency range(s) for intentional emissions shall be within 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz. Table 2: Overview of operational modes within a WPT system | Operational Mode | Set-up | Function of base station | Function of
mobile
device | Test scenario | Conformance Requirements | |---|----------------------|--------------------------|---------------------------------|--|--| | Mode 1:
base station in
stand-by, idle mode | Single device | Transmitter | Not applicable | Single radiation test (TX) with the base station/charging pad. The test set-up as described in clause 6.1.2 shall be used. | Operating frequency range (clause 4.3.3) H-Field emission (clause 4.3.4) TX spurious (clauses 4.3.5, 4.3.6 and 4.3.7) Performance criteria test (RX test) (clause 4.4) | | Mode 2:
Communication
before charging,
adjustment
charging mode /
position | In combination | TX and RX | TX and RX | Specific test setup, declared by the manufacturer. Manufacturer shall declare the maximal distance between base station and mobile device the WPT system is able to communicate (distance D). The test setup- up shall be performed with the largest communication distance. The test set-up as described in clause 6.1.3 shall be used. | Operating frequency range (clause 4.3.3) H-Field emission (clause 4.3.4) TX spurious (clauses 4.3.5, 4.3.6 and 4.3.7) Performance criteria test (RX test) (clause 4.4) Wanted performance criteria test (RX test) (clause 4.4) | | Mode 3:
Communication | WPT system alignment | TX and RX | TX and RX | Worst case alignment | Operating frequency range (clause 4.3.3) H-Field emission (clause 4.3.4) | | Mode 4: energy
transmission | WPT system alignment | TX and RX | TX and RX | Both tests can be performed within one set-up, worst-case alignment. The test set-up as described in clause 6.1.4 shall be used. | TX spurious (clauses 4.3.5, 4.3.6 and 4.3.7) Performance criteria test (RX test) (clause 4.4) Wanted performance criteria test (RX test) (clause 4.4) | #### 4.3. Test Procedure Please refer to ETSI EN 303 417 V1.1.1 (2017-09) clause 6 for the measurement method. ## 4.4. Test Result The manufacturer declared that the WPT system is designed to operate in the frequency ranges 110KHz~205KHz. The justification/test shall be performed for Operating frequency ranges(OFR). #### 5.1. Definition The operating frequency range is the frequency range over which the WPT system is intentionally transmitting (all operational modes, see clause 4.2.3, Table 2). The operating frequency range(s) of the WPT system are determined by the lowest (fL) and highest frequency (fH) as occupied by the power envelope. The WPT system could have more than one operating frequency range. For a single frequency systems the OFR is equal to the occupied bandwidth (OBW) of the WPT system. For multi-frequency systems the OFR is described in figures 2 and 3. Figure 2: OFR of a multi - frequency WPT system within one frequency range of Table 2 and within one WPT system cycle time Figure 3: OFR of a multi - frequency WPT system within two frequency ranges of Table 2 and within one WPT system cycle time #### 5.2. Limit The operating frequency range for emissions shall be within one of the following limits: 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz. ## 5.3. Test Procedure Please refer to ETSI EN 303 417 V1.1.1 (2017-09) clause 6 for the measurement method. ## 5.4. Test Result #### Pass. | Temperature | : | 24.5℃ | |---------------|---|--------------| | Humidity | | 53.2% | | Test Engineer | | Wilson Hong | | | Test Result | | | | | | | |-----------------------------|-----------------------|-----------------------------|-----------------------------|--------------------------------------|--|--|--| | Test
Temperature
(°C) | Test Voltage
(Vdc) | Lower
Frequency
(KHz) | Upper
Frequency
(KHz) | Limit | | | | | 24.5℃ | 5.0 | 110.22 | 204.84 | 100KHz <f<300khz< th=""></f<300khz<> | | | | # 6. H-FIELD REQUIREMENTS #### 6.1. Definition The radiated H-field is defined in the direction of maximum field strength under specified conditions of measurement. #### 6.2. Limit The H-field limits are provided in Table 3. They have been specified for control of any radiated emissions within the OFR originating from the WPT system (power transmission and accompanying data communication). The H-field limits in Table 3 are EU wide harmonised according to EC Decision 2013/752/EU [i.2]. Further information is available in ERC/REC 70-03 [i.1]. Table 3 H-field limits at 10 m | Frequency range [MHz] | H-field strength limit [dBµA/m at 10 m] | Comments | |-----------------------|---|------------| | 0,019 ≤ f < 0,021 | 72 | | | 0,059 ≤ f < 0,061 | 69,1 descending 10 dB/dec above 0,059 MHz | See note 1 | | $0.079 \le f < 0.090$ | 67,8 descending 10 dB/dec above 0,079 MHz | See note 2 | | 0,100 ≤ f < 0,119 | 42 | | | 0,119 ≤ f < 0,135 | 66 descending 10 dB/dec above 0,119 MHz | See note 1 | | 0,135 ≤ f < 0,140 | 42 | | | 0,140 ≤ f < 0,1485 | 37,7 | | | 0,1485 ≤ f < 0,30 | -5 | | | 6,765 ≤ f < 6,795 | 42 | | NOTE 1: Limit is 42 dB μ A/m for the following spot frequencies: 60 kHz \pm 250 Hz and 129,1 kHz \pm 500 Hz. NOTE 2: At the time of preparation of the present document the feasibility of increased limits for high power wireless power transmission systems to charge vehicles [i.4] was prepared. New specific requirements for such systems (e.g. higher H-field emission limits in the 79 - 90 kHz band) will be reflected within a future revision of the present document. #### 6.3. Test Setup #### 6.4. Test Procedure Please refer to ETSI EN 303 417 V1.1.1 (2017-09) clause 6.1&6.2 for the measurement method. #### 6.5. Test Result #### **Pass** | Temperature | : | 24.5℃ | |---------------|-----|-------------| | Humidity | | 53.2% | | Test Engineer | • • | Wilson Hong | #### **Normal Condition** | Frequency
(KHz) | Antenna
Polarity | Measure Level At
3m
(dBuA/m) | Calculated
Factor
(dB, -C ₃) | Result At 10m
(dBuA/m) | Limit At 10m
(dBuA/m) | |--------------------|---------------------|------------------------------------|--|---------------------------|--| | 110.00 | | 5.66 | -31.40 | -25.74 | 42.0 | | 111.00 | | 6.60 | -31.40 | -24.80 | 42.0 | | 114.00 | | 5.05 | -31.40 | -26.35 | 42.0 | | 117.00 | | 5.81 | -31.40 | -25.59 | 42.0 | | 120.00 | | 3.00 | | -28.40 | 66 descending 3
dB/oct above
0,119 MHz | | 129.05 | | 5.82 | -31.40 | -25.58 | 66 descending 3
dB/oct above
0,119 MHz | | 129.15 | | 5.94 | -31.40 | -25.46 | 66 descending 3
dB/oct above
0,119 MHz | | 135.00 | | 5.66 | -31.40 | -25.74 | 66 descending 3
dB/oct above
0,119 MHz | | 139.00 | | 4.66 | -31.40 | -26.74 | 42.0 | | 141.00 | | 4.48 | -31.40 | -26.92 | 37.7 | | 148.00 | | 2.15 | -31.40 | -29.25 | 37.7 | | 150.00 | | 5.85 | -31.40 | -25.55 | -5.0 | | 157.50 | | 4.94 | -31.40 | -26.46 | -5.0 | | 205.00 | | 8.40 | -31.40 | -23.00 | -5.0 | ^{***}Note: $H_{10m} = H_{3m} - C_3$ The correct factor C₃ is equal to or approximately equal to 31.4dB All test modes have been tested and only record the worst result. # **Extreme Condition: Lower Temperature -20℃** | Frequency
(KHz) | Measure Level by Calculated Probe at 10cm Factor (dBuA/m) (dB) | | Result At 10m
(dBuA/m) | Limit At 10m
(dBuA/m) | | |--------------------|--|--------|---------------------------|--|--| | 110.00 | 30.41 | -60.94 | -30.53 | 42.0 | | | 111.00 | 27.25 | -60.94 | -33.69 | 42.0 | | | 114.00 | 31.23 | -60.94 | -29.71 | 42.0 | | | 117.00 | 27.13 | -60.94 | -33.81 | 42.0 | | | 120.00 | 31.34 | -60.94 | -29.60 | 66 descending 3
dB/oct above
0,119 MHz | | | 129.05 | 33.21 | -60.94 | -27.73 | 66 descending 3
dB/oct above
0,119 MHz | | | 129.15 | 31.28 | -60.94 | -29.66 | 66 descending 3
dB/oct above
0,119 MHz | | | 135.00 | 27.36 | -60.94 | -33.58 | 66 descending 3
dB/oct above
0,119 MHz | | | 139.00 | 27.06 | -60.94 | -33.88 | 42.0 | | | 141.00 | 29.47 | -60.94 | -31.47 | 37.7 | | | 148.00 | 33.85 | -60.94 | -27.09 | 37.7 | | | 150.00 | 32.94 | -60.94 | -28.00 | -5.0 | | | 157.50 | 35.65 | -60.94 | -25.29 | -5.0 | | | 205.00 | 33.39 | -60.94 | -27.55 | -5.0 | | ^{***}Note: The correct factor is -60.94dB which is calculated by the reference level measured by probe in normal condition. All test modes have been tested and only record the worst result. # Extreme Condition: Lower Temperature +45℃ | Frequency
(KHz) | Measure Level by
Probe at 10cm
(dBuA/m) | Calculated
Factor
(dB) | Result At 10m
(dBuA/m) | Limit At 10m
(dBuA/m) | | |--------------------|---|------------------------------|---------------------------|--|--| | 110.00 | 32.59 | -60.94 | -28.35 | 42.0 | | | 111.00 | 32.08 | -60.94 | -28.86 | 42.0 | | | 114.00 | 28.20 | -60.94 | -32.74 | 42.0 | | | 117.00 | 27.62 | -60.94 | -33.32 | 42.0 | | | 120.00 | 27.05 | -60.94 | -33.89 | 66 descending 3
dB/oct above
0,119 MHz | | | 129.05 | 26.81 | -60.94 | -34.13 | 66 descending 3
dB/oct above
0,119 MHz | | | 129.15 | 29.64 | -60.94 | -31.30 | 66 descending 3
dB/oct above
0,119 MHz | | | 135.00 | 33.00 | -60.94 | -27.94 | 66 descending 3
dB/oct above
0,119 MHz | | | 139.00 | 31.73 | -60.94 | -29.21 | 42.0 | | | 141.00 | 28.48 | -60.94 | -32.46 | 37.7 | | | 148.00 | 29.79 | -60.94 | -31.15 | 37.7 | | | 150.00 | 30.17 | -60.94 | -30.77 | -5.0 | | | 157.50 | 26.47 | -60.94 | -34.47 | -5.0 | | | 205.00 | 24.85 | -60.94 | -36.09 | -5.0 | | ^{***}Note: The correct factor is -60.94dB which is calculated by the reference level measured by probe in normal condition. All test modes have been tested and only record the worst result. ## 7. TRANSMITTER SPURIOUS EMISSIONS #### 7.1. Definition The transmitter spurious emissions for a single frequency system are to be considered in frequency ranges defined in Figure 4 (f < fSL and f > fSH). #### **7.2. Limit** The radiated field strength of spurious emissions below 30 MHz shall not exceed the generated H-field given in Table 4. Table 4 | State (see note) | Frequency 9 kHz ≤ f < 10 | Frequency 10 MHz ≤ f < 30 | | | | |---------------------|--|---------------------------|--|--|--| | | MHz | MHz | | | | | Operating | 27 dBµA/m at 9 kHz descending | -3,5 dBµA/m | | | | | | 10 dB/dec | | | | | | Standby | 5,5 dBµA/m at 9 kHz | -25 dBµA/m | | | | | | descending 10 dB/dec | | | | | | NOTE: "Operating" n | NOTE: "Operating" making mode 2, 2 and 4 according to Table 2: "standby" making mode 1 | | | | | NOTE: "Operating" means mode 2, 3 and 4 according to Table 2; "standby" means mode 1 according to Table 2. The power of any radiated spurious emission between 30 MHz and 1 GHz shall not exceed the values given in Table 5. Table 5 | State (see note) | 47 MHz to 74 MHz
87,5 MHz to 118 MHz
174 MHz to 230 MHz
470 MHz to 790 MHz | Other frequencies between 30 MHz to 1 000 MHz | |------------------|---|---| | Operating | 4 nW | 250 nW | | Standby | 2 nW | 2 nW | | MOTE TO THE | | | NOTE: "Operating" means mode 2, 3 and 4 according to Table 2; "standby" means mode 1 according to Table 2. # 7.3. Test Setup Please refer to ETSI EN 303 417 V1.1.1 (2017-09) clause 6. ## 7.4. Test Procedure Please refer to ETSI EN 303 417 V1.1.1 (2017-09) clause 6.1&6.2 for the measurement method. #### 7.5. Test Result | Temperature | | 24.5℃ | |---------------|---|-------------| | Humidity | : | 53.2% | | Test Engineer | : | Wilson Hong | | | The Worst Test Re | sult for TX mode: 9KHz~30MH | Z | |--------------------|---------------------------|---------------------------------------|----------------| | Frequency
(MHz) | Measure Level
(dBuA/m) | Limit
(dBuA/m) | Margin
(dB) | | | | 27 dBµA/m at 9 kHz | | | | | descending 3 dB/oct
(9KHz – 10MHz) | | | | | -3,5 dBµA/m | | | | | (10MHz – 30MHz) | | | | Test Result for S | tandby mode: 9KHz~30MHz | | | Frequency
(MHz) | Measure Level (dBuA/m) | Limit
(dBuA/m) | Margin
(dB) | | | | 5.5 dBµA/m at 9 kHz | | | | | descending 3 dB/oct
(9KHz – 10MHz) | | | | | -25 dBµA/m | | | | | (10MHz – 30MHz) | | #### Remark: Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. Measured in frequency range from 9k~10th harmonic or 1GHz(which is greater). | The Worst Test Result for TX mode: Above 30MHz) | | | | | | | |---|---------------------------|----------------|----------------|------------|--------|--| | Frequency
(MHz) | Measure
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Pol./Phase | Remark | | | 171.31 | -47.45 | -36.00 | -11.45 | Horizontal | Peak | | | 301.30 | -47.34 | -36.00 | -11.34 | Horizontal | Peak | | | 736.92 | -66.36 | -54.00 | -12.36 | Horizontal | Peak | | | 115.86 | -69.24 | -54.00 | -15.24 | Vertical | Peak | | | 360.35 | -51.15 | -36.00 | -15.15 | Vertical | Peak | | | 649.59 | -70.38 | -54.00 | -16.38 | Vertical | Peak | | Note: We have tested all modes and only record the worst result. # 8. TRANSMITTER OUT OF BAND (OOB) EMISSIONS #### 8.1. Definition The WPT system out of band emissions are to be considered in frequency ranges defined in Figure 4 and Figure 5 (between fSL and fL and between fH and fSH). #### 8.2. Limit The OOB limits are visualized in figures 4 and 5; they are descending from the intentional limits from Table 3 at fH/fL with 10 dB/decade. #### 8.3. Test Procedure Please refer to ETSI EN 303 417 V1.1.1 (2017-09) clause 6.1&6.2 for the measurement method. ## 8.4. Test Result ## **PASS** | Temperature | : | 24.5℃ | |---------------|---|-------------| | Humidity | : | 53.2% | | Test Engineer | : | Wilson Hong | Test Mode: TX | f _C | f_L | f _H | OBW | |--------------------------|---------|----------------|-------| | (KHz) | (KHz) | (KHz) | (KHz) | | 110KHz(f _{CL}) | 109.968 | 110.031 | 0.063 | | 205KHz(f _{CH}) | 204.965 | 205.032 | 0.067 | | Frequency
(KHz) | Max measured
Values
At 3m
(dBuA/m) | Calculated Factor (dB, -C ₃) | Max measured
Values
At 10m
(dBuA/m) | Limit
(dBuA/m) | |------------------------------|---|--|--|-------------------| | 109.8375KHz ~
110.0000KHz | -5.20 | -31.40 | -36.60 | 42.0 | | 205KHz ~
205.1700KHz | -8.29 | -31.40 | -39.69 | -5.0 | ^{***}Note: $H_{10m}=H_{3m}-C_3$ The correct factor C_3 is equal to or approximately equal to 31.4dB All test modes have been tested and only record the worst result. # 9. WPT SYSTEM UNWANTED CONDUCTED EMISSIONS # 9.1. Applicability This applies to all WPT systems where the cable to the primary coil exceeds a length of 3 m and where the cable is not installed in the ground or any metallic structures. #### 9.2. Definition WPT system unwanted conducted emissions are based on the emissions of the unwanted common mode current on the cable between the off board power supply and the primary coil seen as a monopole radiator driven against the power supply. #### 9.3. Limit The common mode current (ICM) between 1 MHz and 30 MHz shall not exceed the following limit: $$ICM = 47 - 8 \times log(f) dB\mu A$$ NOTE: f is the frequency in MHz. #### 9.4. Test Procedure Please refer to ETSI EN 303 417 V1.1.1 (2017-09) clause 6.2.4 for the measurement method. Figure 9: Measurement setup for unwanted conducted emissions #### 9.4. Test Result NOT Applicable. Note: The EUT cable to the primary coil is less than a length of 3 m. #### 10. RECEIVER BLOCKING #### 10.1. Definition Blocking is a measure of the capability of the receiver to receive a wanted signal without exceeding a given degradation due to the presence of an unwanted input signal at any frequencies other than those of the receiver spurious responses. The test shall be performed in the relevant operational modes (see clause 4.2.3). The wanted performance criteria from clause 4.2.2 shall be used as criterion for the receiver blocking tests. #### 10.2. Limit Table 6: Receiver blocking limits | | In-band signal | OOB signal | Remote-band signal | | | | |--|--|---------------------------|-------------------------------------|--|--|--| | Frequency | Centre frequency (fc) of
the WPT system (see
clause 4.3.3) | $f = fc \pm F$ (see note) | $f = fc \pm 10 \times F$ (see note) | | | | | Signal level field strength at the EUT | 72 dBμA/m | 72 dBµA/m | 82 dBμA/m | | | | | NOTE: F = OFR see clause 4.3.3. | | | | | | | #### 10.3. Test Setup Figure 11: Schematic test set-up for the RX-blocking test Figure 12: Schematic test set-up for the RX-blocking test # 10.4. Test Procedure - a) The fulfilment of the WPT system performance criterion in all possible operational modes (see clause 4.2.3) shall be tested in presence of the inference signals according to Table 6. - b) The manufacturer shall declare in which device orientation(s) (worst case) the test shall be performed. - c) The WPT system shall initially operate without interference according to its specified sensitivity (detecting an specific object in the maximum depth as declared by the manufacturer (see clause 4.2.2 on wanted performance criteria)). - The test setup is visualized in the following Figures 11 and 12. - e) The tool shall be operated as intended (e.g. some tools might require to be moved across the object, some tool can be used stationary). - f) The test shall be carried out inside a test chamber according to clauses C.1.1 and C.1.2 in ETSI EN 300 330 [1]. - g) A test loop with a radius r shall be used to create the magnetic field; the test loop shall lie on a non-metallic ground and the minimum distance to metallic objects (e.g. ground plane) shall be 0,75 m. - h) The EUT shall be placed to the centre of the test-loop (e.g. see Figures 11 and 12). - i) The test loop shall be sufficiently large so that the test loop itself does not influence the WPT system; The radius R of the test-loop shall be in minimum $\Delta R = 0.75$ m larger than the maximum dimension r of the EUT. - j) (See Figure 12): $R \ge r + \Delta R$. - k) The maximum H-Field can be calculated from the loop current I (into the test-loop) with the following formula: - The required output current to achieve the required magnetic field from Table 12 at the WPT system shall be generated with a signal generator (unmodulated signal) at the test frequencies from Table 6. - m) For each test frequency the "reaction" of the device shall be recorded and checked against the performance criterion from clause 4.2.2. n) #### 10.5. Test Result PASS. | Temperature | : | 24.5℃ | |---------------|---|--------------| | Humidity | : | 53.2% | | Test Engineer | : | Wilson Hong | | EUT | | | | | | |---------------------------|-----------------------|---|----------------|------------|--| | Operational | Unwanted Input Signal | Unwanted Input Signal Test Frequency Unwanted | | Conclusion | | | Mode | Type | (KHz) | Level (dBµA/m) | | | | | In-band signal | f _c =157.5KHz | 70 | PASS | | | Mode 3
(worst
case) | OOB signal | f₀ - OFR | 70 | PASS | | | | | f _c + OFR | 70 | PASS | | | | Domete hand signal | f _c - 10*OFR | 81 | PASS | | | | Remote-band signal | f _c + 10*OFR | 81 | PASS | | | Note: F = OFR | | | | | | Note. F = OFK # 11. LIST OF MEASURING EQUIPMENT | Manufacturer | Description | Model | Serial Number | Cal. Date | Due Date | |-------------------|--------------------------------|-----------------|---------------|------------|------------| | SIDT FRANKONIA | 3m Semi
Anechoic
Chamber | SAC-3M | 03CH03-HY | 2018/06/17 | 2019/06/16 | | EMI Test Receiver | ROHDE &
SCHWARZ | ESCI | 101142 | 2018/06/17 | 2019/06/16 | | Agilent | MXA Signal
Analyzer | N9020A | MY50510140 | 2017/10/27 | 2018/10/26 | | SCHWARZBECK | Loop Antenna | FMZB 1519 | / | 2017/10/31 | 2018/10/30 | | SCHWARZBECK | By-log
Antenna | VULB9163 | 9163-470 | 2018/06/09 | 2019/06/08 | | EMCO | Horn Antenna | 3115 | 6741 | 2018/06/09 | 2019/06/08 | | Jye Bao | RF
Cable-R03m | RG142 | CB021 | 2018/06/17 | 2019/06/16 | | SUHNER | RF
Cable-HIGH | SUCOFLEX
106 | 03CH03-HY | 2018/06/17 | 2019/06/16 | # 12. TEST SETUP PHOTOGRAPHS Emission Below 30MHz Emission above 30MHz -----THE END OF REPORT-----