THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

RADIO TEST REPORT For

Wireless light up logo speaker Test Model: XO-9561-1 Additional Model No.:/

Prepared for	:	
Address	:	
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,
		Bao'an District, Shenzhen, Guangdong, China
Tel	:	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	November 01, 2018
Number of tested samples	:	1
Serial number	:	Prototype
Date of Test	:	November 01, 2018~ November 09, 2018
Date of Report	:	November 20, 2018

CE

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 1 of 49

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

Wideband transmission systems; I using wide band modulation tech	RADIO TEST REPORT ETSI EN 300 328 V2.1.1 (2016-11) Data transmission equipment operating in the 2,4 GHz ISM band and niques; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU		
Report Reference No	: LCS181023019AEB		
Date of Issue	: November 20, 2018		
Testing Laboratory Name	: Shenzhen LCS Compliance Testing Laboratory Ltd.		
Address	: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China		
Testing Location/ Procedure	 Full application of Harmonised standards Partial application of Harmonised standards Other standard testing method 		
Applicant's Name	:		
Address	:		
Test Specification			
Standard	: ETSI EN 300 328 V2.1.1 (2016-11)		
Test Report Form No	: LCSEMC-1.0		
TRF Originator	: Shenzhen LCS Compliance Testing Laboratory Ltd.		
Master TRF	: Dated 2017-06		
This publication may be reproduced Shenzhen LCS Compliance Testing the material. Shenzhen LCS Compl	ng Laboratory Ltd. All rights reserved. d in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source of iance Testing Laboratory Ltd. takes no responsibility for and will not ng from the reader's interpretation of the reproduced material due to		
Test Item Description	: Wireless light up logo speaker		
Trade Mark	: N/A		
Test Model	: XO-9561-1		
Ratings	: DC 3.7V by Rechargeable Li-ion Battery(400mAh) Recharge Voltage: DC5V/.0.5A		
Result	: Positive		
Compiled by:	Supervised by: Approved by:		
Ryan the	Calvin Weng		
Ryan Hu/ Administrators	Calvin Weng/ Technique principal Gavin Liang/ Manager		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 2 of 49

Report No.: LCS181023019AEB

RADIO -- TEST REPORT

Test Report No. : LCS181023019AEB

November 20, 2018 Date of issue

Test Model	: XO-9561-1
EUT	: Wireless light up logo speaker
Applicant	:
Address	:
Telephone	: /
Fax	: /
Manufacturer	
Address	:
Telephone	: /
Fax	:/
Factory	:
Address	:
Telephone	: /
Fax	:/

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

Revision History

Revision	Issue Date	Revisions	Revised By
000	November 20, 2018	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 4 of 49

TABLE OF CONTENTS

Test Report Description

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

1. GENERAL INFORMATION	7
1.1. PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	7
1.2. OBJECTIVE	
1.3. Related Submittal(s)/Grant(s) 1.4. Test Methodology	
1.4. TEST METHODOLOGY 1.5. DESCRIPTION OF TEST FACILITY	
1.6. SUPPORT EQUIPMENT LIST	
1.7. External I/O	
1.9. MEASUREMENT UNCERTAINTY	
1.10. Test Environment	
2. SYSTEM TEST CONFIGURATION	
2.1. JUSTIFICATION 2.2. EUT Exercise Software	
2.2. EUT EXERCISE SOFTWARE	
2.4. BLOCK DIAGRAM/SCHEMATICS	
2.5. Equipment Modifications	
2.6. CONFIGURATION OF TEST SETUP	9
3. SUMMARY OF TEST RESULT	10
4. RF OUTPUT POWER	11
4.1. Limit	11
4.2. Test Setup	
4.3. Test Procedure	
4.4. Test Result	
5. DUTY CYCLE, TX-SEQUENCE, TX-GAP	
5.1. Limit 5.2. Test Setup	
5.2. TEST SETUP 5.3. TEST PROCEDURE	
5.4. Test Result	
6. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUEN	NCE 16
6.1. LIMIT	
6.2. Test Setup	
6.3. TEST PROCEDURE	
6.4. Test Result	
7. HOPPING FREQUENCY SEPARATION	21
7.1. Liмit	21
7.2. TEST SETUP	
7.3. TEST PROCEDURE	
7.4. Test Result	
8. MEDIUM UTILISATION (MU) FACTOR	
8.1. LIMIT	
8.2. Test Setup 8.3. Test Procedure	
8.4. TEST RESULT	
9. ADAPTIVITY (ADAPTIVE FREQUENCY HOPPING) 9.1. LIMIT	
9.1. LIMIT	
9.3. TEST PROCEDURE	
9.4. Test Result	
10. OCCUPIED CHANNEL BANDWIDTH	
10.1. Limit	
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing La	
Page 5 of 49	

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	Report No.: LCS181023019AE
10.2. Test Setup	27
10.2. TEST SETUP	
10.4. TEST PROCEDURE	
11. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOM	MAIN 30
11.1. Limit	
11.2. Test Setup	
11.3. Test Procedure	
11.5. Test Result	
12. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	N
12.1. Limit	
12.2. Test Setup	
12.3. Test Procedure	
12.4. Test Result	
13. RECEIVER SPURIOUS EMISSIONS	
13.1. LIMIT	
13.2. TEST SETUP	
13.3. Test Procedure	
13.4. Test Result	
14. RECEIVER BLOCKING	
14.1. Limit	
14.2. Test Setup	
14.3. Test Procedure	
14.4. Test Result	
15. LIST OF MEASURING EQUIPMENT	
16. PHOTOGRAPHS OF TEST SETUP	

1. GENERAL INFORMATION

1.1. Product Description for Equipment Under Test (EUT)

EUT Model No.	: Wireless light up logo speaker : XO-9561-1
Model Declaration	: /
Test Model	: XO-9561-1
Power Supply	: DC 3.7V by Rechargeable Li-ion Battery(400mAh) Recharge Voltage: DC5V/0.5A
Hardware Version	: V1.0
Software Version	: V1.0
Bluetooth	
Frequency Range	: 2.402-2.480GHz
Channel Number	 79 channels for Bluetooth (BDR/EDR) 40 channels for Bluetooth (BT LE)
Channel Spacing	: 1MHz for Bluetooth (BDR/EDR) 2MHz for Bluetooth (BT LE)
Modulation Type	: GFSK, π/4-DQPSK, 8-DPSK for Bluetooth (BDR/EDR) GFSK for Bluetooth (BT LE)
Bluetooth Version	: 5.0
Antenna Description	: Internal Antenna,-0.58dBi (Max.)

1.2. Objective

This Type approval report is prepared on behalf of **Dongguan Xing Yue Electronic co., Ltd.** in accordance with ETSI EN 300 328 V2.1.1 (2016-11), Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU.

The objective is to determine compliance with ETSI EN 300 328 V2.1.1 (2016-11).

1.3. Related Submittal(s)/Grant(s)

No Related Submittals.

1.4. Test Methodology

All measurements contained in this report were conducted with ETSI EN 300 328 V2.1.1 (2016-11).

1.5. Description of Test Facility

FCC Registration Number. is 254912.
Industry Canada Registration Number. is 9642A-1.
ESMD Registration Number. is ARCB0108.
UL Registration Number. is 100571-492.
TUV SUD Registration Number. is SCN1081.
TUV RH Registration Number. is UA 50296516-001
NVLAP Registration Code is 600167-0

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 7 of 49

1.6. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate

1.7. External I/O

I/O Port Description	Quantity	Cable
Micro USB	1	0.2m, unshielded

1.9. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Occupied Channel Bandwidth	5 %
RF output power, conducted	1,5 dB
Power Spectral Density, conducted	3 dB
Unwanted Emissions, conducted	3 dB
All emissions, radiated	6 dB
Temperature	1 °C
Humidity	5 %
DC and low frequency voltages	3 %
Time	5 %
Duty Cycle	5 %

1.10. Test Environment

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	23.5
Humidity (%RH)	25-75	52.3
Barometric pressure (mbar)	860-1060	950-1000

1.11. Description Of Test Modes

LCS has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode
Mode 1: Transmit by DH1
Mode 2: Transmit by 2DH1
Mode 3: Receive by DH1
Mode 4: Receive by 2DH1

Note:

- (1) For portable device, radiated spurious emission was verified over X, Y, Z Axis, and shown the worst case on this report.
- (2) Regards to the frequency band operation for systems using FHSS modulation: normal operation (hopping) was selected to test for conducted, and the lowest, highest frequency channel for radiation spurious test.
- (3) The extreme test condition for voltage and temperature were declared by the manufacturer.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 8 of 49

2. SYSTEM TEST CONFIGURATION

2.1. Justification

The system was configured for testing in engineering mode.

2.2. EUT Exercise Software

N/A.

2.3. Special Accessories

N/A.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

2.4. Block Diagram/Schematics

Please refer to the related document.

2.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

2.6. Configuration of Test Setup

Please refer to the test setup photo.

3. SUMMARY OF TEST RESULT

 \boxtimes No deviations from the test standards

Deviations from the test standards as below description:

Technical requirements for Frequency Hopping equipment:

Performed Test Item	Normative References	Test Performed	Deviation
RF Output Power & Receiver Category	ETSI EN 300 328 V2.1.1 (2016-11)	Yes	No
Duty cycle, Tx-Sequence, Tx-gap	ETSI EN 300 328 V2.1.1 (2016-11)	N/A	N/A
Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	ETSI EN 300 328 V2.1.1 (2016-11)	Yes	No
Hopping Frequency Separation	ETSI EN 300 328 V2.1.1 (2016-11)	Yes	No
Medium Utilisation (MU) factor	ETSI EN 300 328 V2.1.1 (2016-11)	N/A	N/A
Adaptivity (Adaptive Frequency Hopping)	ETSI EN 300 328 V2.1.1 (2016-11)	N/A	N/A
Occupied Channel Bandwidth	ETSI EN 300 328 V2.1.1 (2016-11)	Yes	No
Transmitter unwanted emissions in the out-of-band domain	ETSI EN 300 328 V2.1.1 (2016-11)	Yes	No
Transmitter unwanted emissions in the spurious domain	ETSI EN 300 328 V2.1.1 (2016-11)	Yes	No
Receiver Spurious Emissions	ETSI EN 300 328 V2.1.1 (2016-11)	Yes	No
Receiver Blocking	ETSI EN 300 328 V2.1.1 (2016-11)	N/A	N/A

Note:

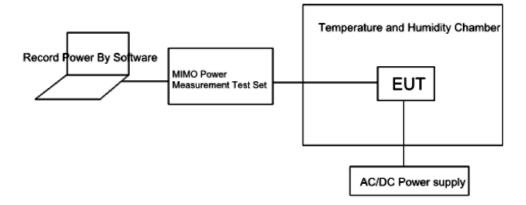
The EUT can operate in an adaptive mode, and can't operate in a non-adaptive mode which is stated by the supplier.

4. RF OUTPUT POWER

4.1. Limit

For non-adaptive frequency hopping systems

The maximum RF output power for non-adaptive Frequency Hopping equipment shall be declared by the supplier. The maximum RF output power for this equipment shall be equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.


For adaptive frequency hopping systems

The maximum RF output power for adaptive Frequency Hopping equipment shall be equal to or less than 20 dBm.

4.2. Test Setup

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

For Conducted Measurement

4.3. Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.2

Step 1:

• The fast power sensor use the following setting: Sample speed 1 MS/s.

Step 2:

• Connect the power sensor to the transmit port, sample the transmit signal and store the raw data. Use these stored samples in all following steps.

Step 3:

• Find the start and stop times of each burst in the stored measurement samples.

Step 4:

• Between the start and stop times of each individual burst calculate the RMS power over the burst. Save these P_{burst} values, as well as the start and stop times for each burst.

Step 5:

• The highest of all P_{burst} values (value "A" in dBm) will be used for maximum e.i.r.p. calculations.

Step 6:

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER

• Add the (stated) antenna assembly gain "G" in dBi of the individual antenna.

• If applicable, add the additional beamforming gain "Y" in dB.

The RF Output Power (P) shall be calculated using the formula below: P = A + G + Y

4.4. Test Result

Pass

***Note: 20 bursts had been captured for power measurement.

Product	:	Wireless light up logo speaker
Test Item	:	RF Output Power
Test Mode	:	Mode 1: Transmit by DH1
Test Engineer	:	Diamond Lu

Test Conditions		Frequency (MHz)	RF Output Power EIRP (dBm)	Limit (dBm)
	X 7	2402	1.16	
Tnom (25℃)	Vnom (DC 5V)	2441	1.75	20
		2480	1.22	
	Vnom (DC 5V)	2402	1.20	
Tmax (40°C)		2441	1.34	20
		2480	1.99	
	X X	2402	1.10	
Tmin (-10°C)	Vnom (DC 5V)	2441	1.93	20
		2480	1.42	

Product	:	Wireless light up logo speaker
Test Item	:	RF Output Power
Test Mode	:	Mode 2: Transmit by 2DH1
Test Engineer	:	Diamond Lu

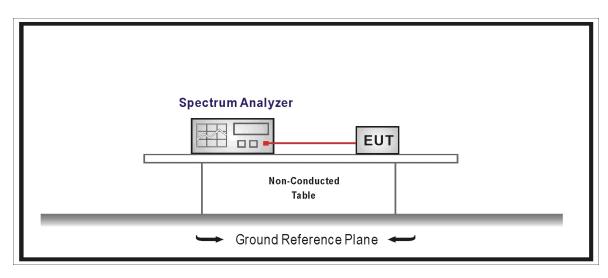
Test Conditions		Frequency (MHz)	RF Output Power EIRP (dBm)	Limit (dBm)
	X 7	2402	1.20	
Tnom (25°C)	Vnom (DC 5V)	2441	1.14	20
		2480	1.47	
	**	2402	1.32	
Tmax (40°C)) Vnom (DC 5V)	2441	1.58	20
		2480	1.30	
	**	2402	1.75	
Tmin (-10℃)	Vnom	2441 1.64	1.64	20
	(DC 5V)	2480	1.44	

4.5. Receiver Category

Receiver Category 1: Adaptive equipment with a maximum RF output power greater than 10 dBm e.i.r.p. shall be considered as receiver category 1 equipment.

Receiver Category 2:Non-adaptive equipment with a Medium Utilization (MU) factor greater than 1 % and less than or equal to 10 % or adaptive equipment with a maximum RF output power of 10 dBm e.i.r.p. shall be considered as receiver category 2 equipment.

Receiver Category 3: Non-adaptive equipment with a maximum Medium Utilization (MU) factor of 1 % or adaptive equipment with a maximum RF output power of 0 dBm e.i.r.p. shall be considered as receiver category 3 equipment.


As this is an adaptivity device with a maximum power of 1.99 it belongs to receiver category 2.

5. DUTY CYCLE, TX-SEQUENCE, TX-GAP

5.1. Limit

For non-adaptive FHSS equipment, the Duty Cycle shall be equal to or less than the maximum value declared by the supplier. In addition, the maximum Tx-sequence time shall be 5 ms while the minimum Tx-gap time shall be 5 ms.

5.2. Test Setup

5.3. Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.2

5.4. Test Result

These requirements apply to non-adaptive frequency hopping equipment or to adaptive frequency hopping equipment operating in a non-adaptive mode.

These requirements do not apply for equipment with a maximum declared RF Output power of less than 10dBm E.I.R.P. or for equipment when operating in a mode where the RF Output power is less than 10dBm E.I.R.P.

No applicable.

6. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND

HOPPING SEQUENCE

6.1. Limit

For non-adaptive frequency hopping systems

The Accumulated Transmit Time on any hopping frequency shall not be greater than 15 ms within any observation period of 15 ms multiplied by the minimum number of hopping frequencies (N) that have to be used.

In order for the equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options:

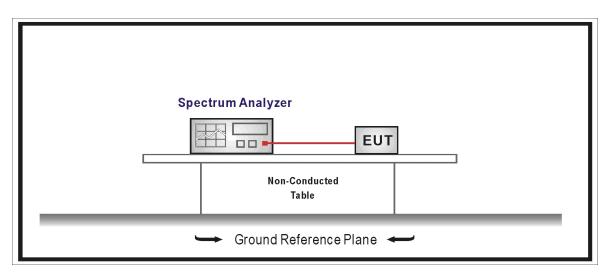
Option 1: Each hopping frequency of the hopping sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.

Option 2: The occupation probability for each frequency shall be between $((1 / U) \times 25 \%)$ and 77 % where U is the number of hopping frequencies in use.

The hopping sequence(s) shall contain at least N hopping frequencies where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.

For adaptive frequency hopping systems

Adaptive Frequency Hopping systems shall be capable of operating over a minimum of 70 % of the band. The Accumulated Transmit Time on any hopping frequency shall not be greater than 400 ms within any observation period of 400 ms multiplied by the minimum number of hopping frequencies (N) that have to be used.


In order for the equipment to comply with the Frequency Occupation requirement, it shall meet either of the following two options:

Option 1: Each hopping frequency of the hopping sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.

Option 2: The occupation probability for each frequency shall be between $((1 / U) \times 25 \%)$ and 77 % where U is the number of hopping frequencies in use.

The hopping sequence(s) shall contain at least N hopping frequencies at all times, where N is 15 or 15 divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.

6.2. Test Setup

6.3. Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.4

Step 1:

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

- The output of the transmitter shall be connected to a spectrum analyzer or equivalent.
- The analyzer shall be set as follows:
- Centre Frequency: Equal to the hopping frequency being investigated
- Frequency Span: 0 Hz
- RBW: ~ 50 % of the Occupied Channel Bandwidth(we set RBW=510KHz)
- VBW: \geq RBW(we set RBW=1500KHz)
- Detector Mode: RMS
- Sweep time: Equal to the applicable observation period (we set 400ms \times 79=31600ms)
- Number of sweep points: 30 000
- Trace mode: Clear / Write
- Trigger: Free Run

Step 2:

• Save the trace data to a file for further analysis by a computing device using an appropriate software application or program.

Step 3:

• Indentify the data points related to the frequency being investigated by applying a threshold. The data points resulting from transmissions on the hopping frequency being investigated are assumed to have much higher levels compared to data points resulting from transmissions on adjacent hopping frequencies. If a clear determination between these transmissions is not possible, the RBW in step 1 shall be further reduced. In addition, a channel filter may be used.

• Count the number of data points identified as resulting from transmissions on the frequency being investigated and multiply this number by the time difference between two consecutive data points.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 17 of 49

Step 4:

• The result in step 3 is the Accumulated Transmit Time which shall comply with the limit provided in clause 4.3.1.4.3.1 or clause 4.3.1.4.3.2 and which shall be recorded in the test report.

Step 5:

• Make the following changes on the analyzer and repeat steps 2 and 3.

Sweep time: $4 \times D$ well Time \times Actual number of hopping frequencies in use

The hopping frequencies occupied by the equipment without having transmissions during the dwell time (blacklisted frequencies) should be taken into account in the actual number of hopping frequencies in use. If this number cannot be determined (number of blacklisted frequencies unknown) it shall be assumed that the equipment uses the maximum possible number of hopping frequencies.

• The result shall be compared to the limit for the Frequency Occupation defined in clause 4.3.1.4.3.1 or clause 4.3.1.4.3.2. The result of this comparison shall be recorded in the test report.

Step 6:

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER

- Make the following changes on the analyzer:
- Start Frequency: 2 400 MHz
- Stop Frequency: 2 483,5 MHz
- RBW: ~ 50 % of the Occupied Channel Bandwidth (single hop) (we set RBW=510KHz)
- VBW: \geq RBW (we set RBW=1500KHz)
- Detector Mode: RMS
- Sweep time: 1s
- Trace Mode: Max Hold
- Trigger: Free Run

• Wait for the trace to stabilize. Identify the number of hopping frequencies used by the hopping sequence.

• The result shall be compared to the limit (value N) defined in clause 4.3.1.4.3.1 or clause 4.3.1.4.3.2. This value shall be recorded in the test report. For equipment with blacklisted frequencies, it might not be possible to verify the number of hopping frequencies in use. However they shall comply with the requirement for Accumulated Transmit Time and Frequency Occupation assuming the minimum number of hopping frequencies (N) defined in clause 4.3.1.4.3.1 or clause 4.3.1.4.3.2 is used.

Step 7:

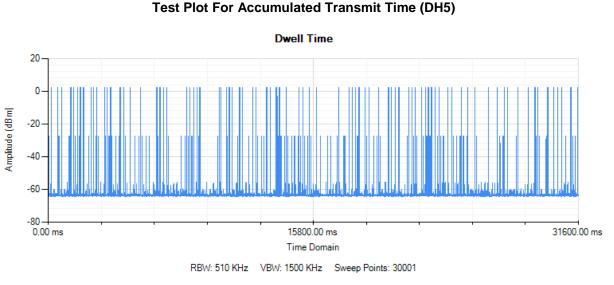
• For adaptive equipment, using the lowest and highest -20 dB points from the total spectrum envelope obtained in step 6, it shall be verified whether the equipment uses 70 % of the band specified in clause 1. The result shall be recorded in the test report.

6.4. Test Result

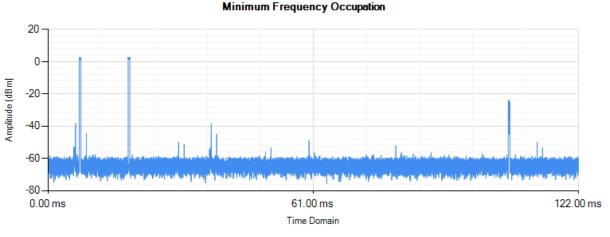
Product	:	Wireless light up logo speaker
Test Result	:	Pass
Test Engineer	:	Diamond Lu

Accumulated Transmit Time

Daalvat	One Pulse time	Accumulated	Measure Time	T insid	Construien	
Packet	(ms)	Dwell Time (ms)	(ms)	Limit	Conclusion	
DH1	0.38	121.60				
DH3	1.62	254.34	31600	<400ms	PASS	
DH5	2.87	318.57				
Remark: Only record the worst data.						

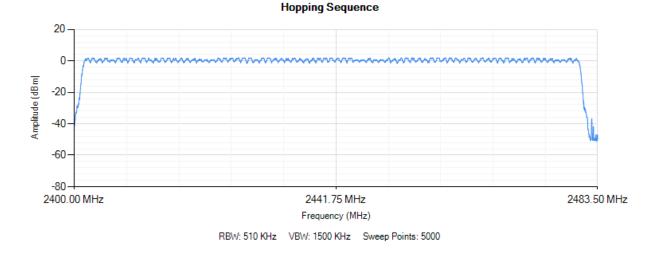

Min. Frequency Occupation Time

Mode	Min. frequency occupation Time(ms)	Measure Time (ms)	Conclusion	
DH1	0.76	120.08	PASS	
DH3	6.48	511.92	PASS	
DH5	14.35	906.92	PASS	
Remark: Only record the worst data.				


Hopping Channel & Hopping Sequence

Mode	Number of hopping channel	Limit	Conclusion
GFSK	79	>15	PASS
Mode	Hopping Sequence(%)	Limit	Conclusion
GFSK	95.33%	>70%	PASS

***Note: Only report the worst test plot



Test Plot For Min. Frequency Occupation Time(DH1)

RBW: 510 KHz VBW: 1500 KHz Sweep Points: 30001

Test Plot For Hopping channel & Hopping sequence(DH1)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 20 of 49

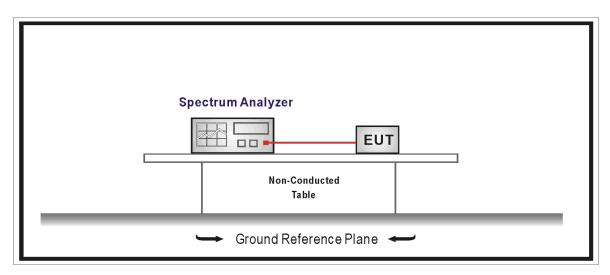
7. HOPPING FREQUENCY SEPARATION

7.1. Limit

For non-adaptive equipment

For non-adaptive Frequency Hopping equipment, the Hopping Frequency Separation shall be equal or greater than the Occupied Channel Bandwidth, with a minimum separation of 100 kHz. For equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for non-adaptive Frequency Hopping equipment operating in a mode where the RF Output power is less than 10 dBm e.i.r.p. only the minimum Hopping Frequency Separation of 100 kHz applies.

For adaptive equipment


For adaptive Frequency Hopping equipment, the minimum Hopping Frequency Separation shall be 100 kHz.

Adaptive Frequency Hopping equipment, which for one or more hopping frequencies, has switched to a non-adaptive mode because interference was detected on all these hopping positions with a level above the threshold level defined in clause 4.3.1.7.2.2 or clause 4.3.1.7.3.2, is allowed to continue to operate with a minimum Hopping Frequency Separation of 100 kHz on these hopping frequencies as long as the interference is present on these frequencies. The equipment shall continue to operate in an adaptive mode on other hopping frequencies.

Adaptive Frequency Hopping equipment which decided to operate in a non-adaptive mode on one or more hopping frequencies without the presence of interference, shall comply with the limit in clause 4.3.1.5.3.1 for these hopping frequencies as well as with all other requirements applicable to non-adaptive frequency hopping equipment.

7.2. Test Setup

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER

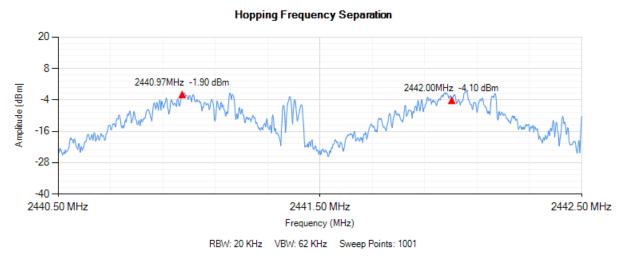
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 21 of 49

7.3. Test Procedure

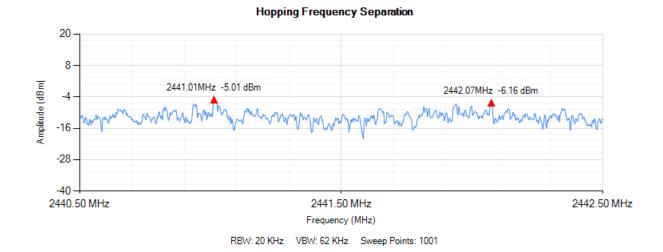
Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.5

The analyzer was setting as follow:

- Centre Frequency: Centre of the two adjacent hopping frequencies
- Frequency Span: Sufficient to see the complete power envelope of both hopping frequencies
- RBW: 1 % of the span (we set RBW=20KHz)
- VBW: 3 × RBW (we set VBW=60KHz)
- Detector Mode: RMS
- Trace Mode: Max Hold
- Sweep time: 1s

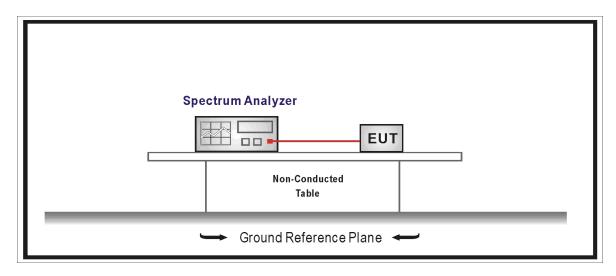

7.4. Test Result

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.


Product	:	Wireless light up logo speaker
Test Item	:	Hopping Frequency Separation
Test Result	:	Pass
Test Engineer	:	Diamond Lu

Mode	Result (MHz)	Limit (MHz)	Conclusion
DH1	1.03	>=0.1	PASS
2DH1	1.06	>=0.1	FASS

Test Plot For DH1


8. MEDIUM UTILISATION (MU) FACTOR

8.1. Limit

For non-adaptive equipment

The maximum Medium Utilization factor for non-adaptive Frequency Hopping equipment shall be 10 %.

8.2. Test Setup

8.3. Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.2

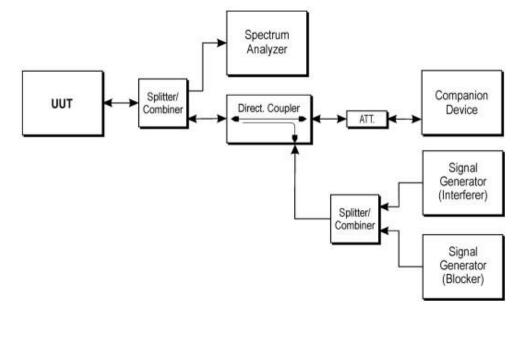
8.4. Test Result

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

This requirement does not apply to adaptive equipment unless operating in a non-adaptive mode. In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10dBm E.I.R.P. or for equipment when operating in a mode where the RF Output power is less than 10dBm E.I.R.P. No applicable.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 24 of 49

9. ADAPTIVITY (ADAPTIVE FREQUENCY HOPPING)


9.1. Limit

Adaptivity Limit					
LBT based Detect and Avoid					
The CCA observation time shall be not less than 0,2 % of the Channel Occupancy Time					
with a minimum of 18 µs.;					
$COT \le 60 \text{ ms};$					
Idle Period = 5% of COT with a minimum of 100 μ s;					
Detection threshold level = -70 dBm/MHz + (20 dBm - Pout e.i.r.p)/1 MHz (Pout in dBm)					
Non-LBT based Detect and Avoid					
The frequency shall remain unavailable for a minimum time equal to 1 second or 5 times					
the actual number of hopping frequencies in the current (adapted) channel map used by the					
equipment, multiplied with the Channel Occupancy Time whichever is the longest.					
$COT \le 40 \text{ ms};$					
For equipment using a dwell time > 40 ms that want to have other transmissions during the					
same hop (dwell time) an Idle Period (no transmissions) of minimum 5 % of the Channel					
Occupancy Period with a minimum of 100 µs shall be implemented.					
Detection threshold level = -70 dBm/MHz + (20 dBm - Pout e.i.r.p.)/1 MHz (Pout in dBm)					
Short Control Signalling Transmissions:					
Short Control Signalling Transmissions shall have a maximum TxOn / (TxOn + TxOff)					

ratio of 10 % within any observation period of 50 ms or within an observation period equal to the dwell time, whichever is the shorter.

9.2. Test Setup

Conducted measurements

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 25 of 49

9.3. Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.7

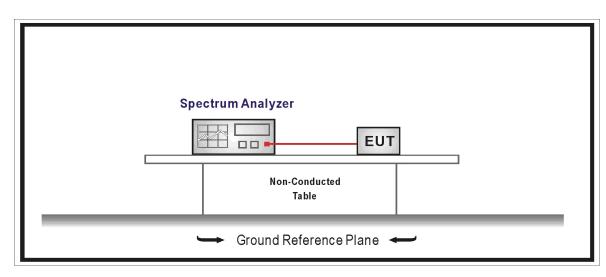
9.4. Test Result

This requirement does not apply to non-adaptive equipment or adaptive equipment operating in a non-adaptive mode providing the equipment complies with the requirements and/or restrictions applicable to non-adaptive equipment.

In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10dBm E.I.R.P. or for equipment when operating in a mode where the RF Output power is less than 10dBm E.I.R.P.

No applicable.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.


10. OCCUPIED CHANNEL BANDWIDTH

10.1. Limit

The Occupied Channel Bandwidth for each hopping frequency shall fall completely within the band 2.4GHz to 2.4835GHz.

For non-adaptive Frequency Hopping equipment with E.I.R.P greater than 10dBm, the Occupied Channel Bandwidth for every occupied hopping frequency shall be equal to or less than the value declared by the supplier. This declared value shall not be greater than 5 MHz.

10.2. Test Setup

10.3. Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.8

Step 1:

Connect the UUT to the spectrum analyser and use the following settings:

- Centre Frequency: The centre frequency of the channel under test
- Resolution BW: ~ 1 % of the span without going below 1 % (We set RBW=20KHz)
- Video BW: 3 × RBW (We set VBW=60KHz)
- Frequency Span: $2 \times \text{Occupied Channel Bandwidth}$ (We set Span=2MHz)
- Detector Mode: RMS
- Trace Mode: Max Hold

Step 2:

Wait until the trace is completed. Find the peak value of the trace and place the analyser marker on this peak.

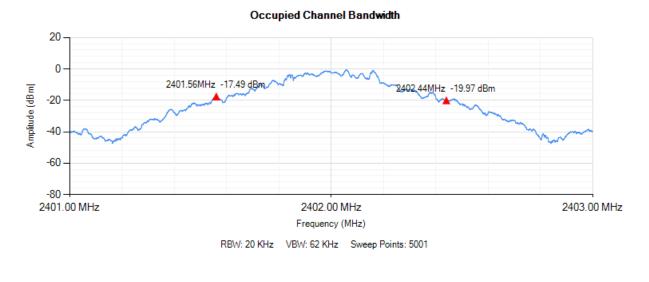
Step 3:

Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded.

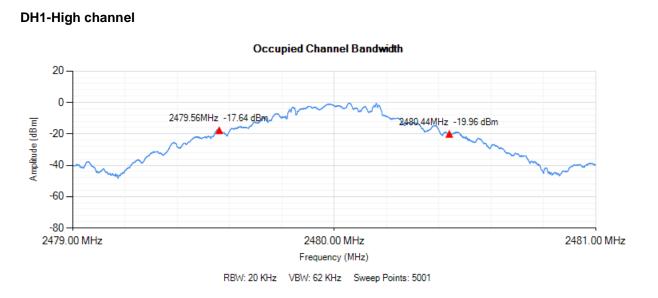
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 27 of 49

10.4. Test Result

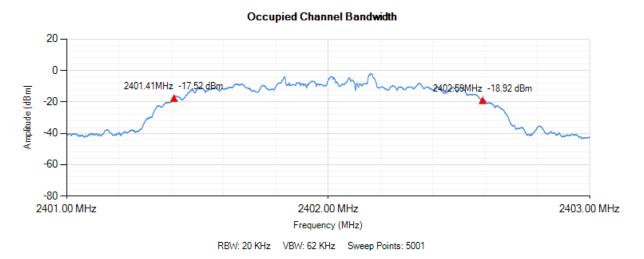
Product	:	Wireless light up logo speaker		
Test Item	:	Occupied Channel Bandwidth		
Test Mode	:	Mode 1: Transmit by DH1		
Test Engineer	:	Diamond Lu		

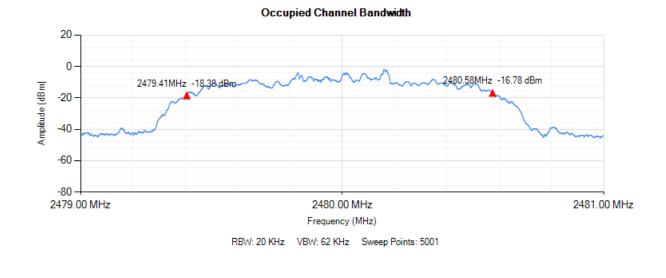

Channel No.	Frequency (MHz)	99% Bandwidth (MHz)	Limit	
00	2402	0.88	Within the band	
79	2480	0.88	2400.0MHz~2483.5MHz	

Product	:	Vireless light up logo speaker		
Test Item	:	ccupied Channel Bandwidth		
Test Mode	:	Mode 2: Transmit by 2DH1		
Test Engineer	:	Diamond Lu		


Channel No.	Frequency (MHz)	99% Bandwidth (MHz)	Limit
00	2402	1.18	Within the band
79	2480	1.17	2400.0MHz~2483.5MHz

Test Result	:	Pass


DH1-Low channel


Report No.: LCS181023019AEB

2DH1-High channel

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 29 of 49

11. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND

DOMAIN

11.1. Limit

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure 1.

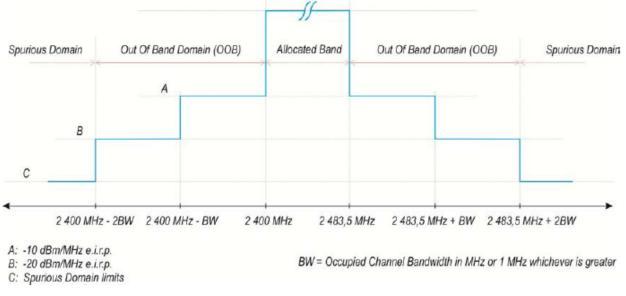
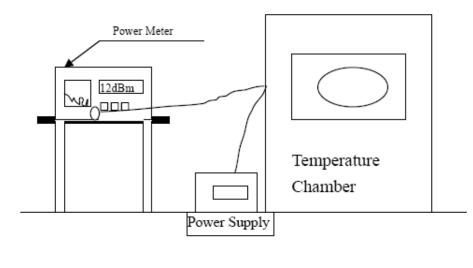



Figure 1: Transmit mask

11.2. Test Setup

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

For Conducted Measurement

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 30 of 49

11.3. Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.9

Step 1:

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER

- Connect the UUT to the spectrum analyser and use the following settings:
- Centre Frequency: 2 484 MHz
- Span: 0 Hz
- Resolution BW: 1 MHz
- Filter mode: Channel filter
- Video BW: 3 MHz
- Detector Mode: RMS
- Trace Mode: Clear / Write
- Sweep Mode: Continuous
- Sweep Points: Sweep Time [s] / (1 µs) or 5 000 whichever is greater
- Trigger Mode: Video trigger
- NOTE 1: In case video triggering is not possible, an external trigger source may be used.
- Sweep Time: > 120 % of the duration of the longest burst detected during the measurement of the RF Output Power

Step 2: (segment 2 483,5 MHz to 2 483,5 MHz + BW)

- Adjust the trigger level to select the transmissions with the highest power level.
- For frequency hopping equipment operating in a normal hopping mode, the different hops will result in signal bursts with different power levels. In this case the burst with the highest power level shall be selected.
- Set a window (start and stop lines) to match with the start and end of the burst and in which the RMS power shall be measured using the Time Domain Power function.
- Select RMS power to be measured within the selected window and note the result which is the RMS power within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with the applicable limit provided by the mask.
- Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 MHz segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + BW 0,5 MHz (which means this may partly overlap with the previous 1 MHz segment).

Step 3: (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)

• Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW - 0,5 MHz.

Step 4: (segment 2 400 MHz - BW to 2 400 MHz)

• Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz - BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz.

Step 5: (segment 2 400 MHz - 2BW to 2 400 MHz - BW)

• Change the centre frequency of the analyser to 2 399,5 MHz - BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz.

Step 6:

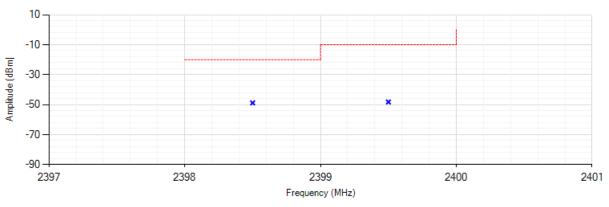
• In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figures 1 or 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.

• In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:

- Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain "Y" in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figures 1 or 3.

- Option 2: the limits provided by the mask given in figures 1 or 3 shall be reduced by 10 x log10(Ach) and the additional beamforming gain "Y" in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.

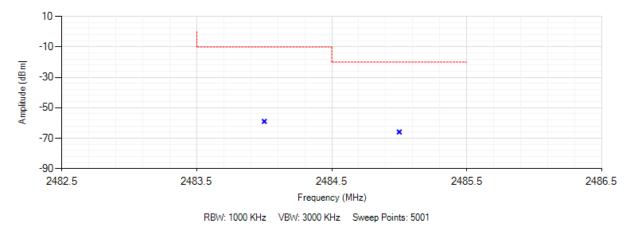
NOTE 2: Ach refers to the number of active transmit chains.


It shall be recorded whether the equipment complies with the mask provided in figures 1 or 3.

11.5. Test Result

Product	:	Wireless light up logo speaker
Test Item	:	Transmitter unwanted emissions in the out-of-band domain
Test Mode	:	Mode 1: Transmit by DH1
Test Engineer	:	Diamond Lu

Frequency (MHz)	Test Conditions (°C)	Max measured Values (dBm/MHz)	Limit (dBm/MHz)	
2400–2BW~ 2400-BW	25	-48.838	-20	
2400–BW~2400	25	-48.218	-10	
2483.5~ 2483.5+BW	25	-58.931	-10	
2483.5+BW~ 2483.5+2BW	25	-65.852	-20	


Note: All modulations of EUT have been tested and only record the worst data in the report.

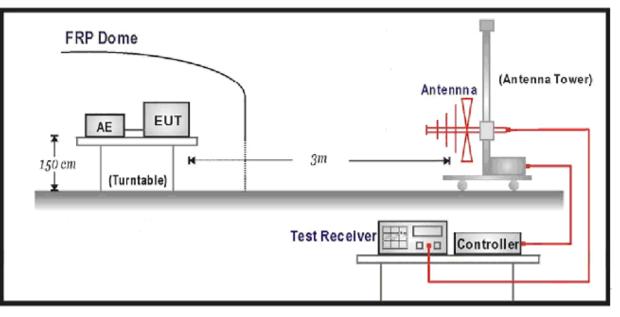
Transmitter unwanted emissions in the out-of-band domain

RBW: 1000 KHz VBW: 3000 KHz Sweep Points: 5001

Transmitter unwanted emissions in the out-of-band domain

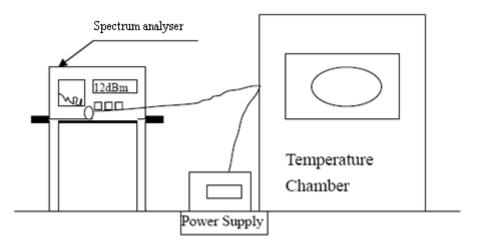
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 33 of 49

12. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN


12.1. Limit

Transmitter Limits for Spurious Emissions						
	Maximum power					
Frequency Range	E.R.P. (≤ 1GHz)	Bandwidth				
	E.I.R.P. (> 1GHz)					
30 MHz to 47 MHz	-36 dBm	100 kHz				
47 MHz to 74 MHz	-54 dBm	100 kHz				
74 MHz to 87,5 MHz	-36 dBm	100 kHz				
87,5 MHz to 118 MHz	-54 dBm	100 kHz				
118 MHz to 174 MHz	-36 dBm	100 kHz				
174 MHz to 230 MHz	-54 dBm	100 kHz				
230 MHz to 470 MHz	-36 dBm	100 kHz				
470 MHz to 862 MHz	-54 dBm	100 kHz				
862 MHz to 1 GHz	-36 dBm	100 kHz				
1 GHz to 12,75 GHz	-30 dBm	1 MHz				

12.2. Test Setup


THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

For Radiated Measurement

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 34 of 49

For Conducted Measurement

12.3. Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.10

Step 1:

The sensitivity of the spectrum analyser should be such that the noise floor is at least 12 dB below the limits given in tables 1 or 4.

Step 2:

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER

The emissions over the range 30 MHz to 1 000 MHz shall be identified. Spectrum analyser settings:

- Resolution bandwidth: 100 kHz
- Video bandwidth: 300 kHz
- Detector mode: Peak
- Trace Mode: Max Hold
- Sweep Points: \geq 19400

NOTE 1: For spectrum analysers not supporting this high number of sweep points, the frequency band may need to be segmented.

• Sweep time: For non continuous transmissions (duty cycle less than 100 %), the sweep time shall be sufficiently long, such that for each 100 kHz frequency step, the measurement time is greater than two transmissions of the UUT. For Frequency Hopping equipment operating in a normal operating (hopping not disabled) mode, the sweep time shall be further increased to capture multiple transmissions on the same hopping frequency in different hopping sequences. Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.10.2.1.3 and compared to the limits given in tables 1 or 4.

Step 3:

The emissions over the range 1 GHz to 12,75 GHz shall be identified. Spectrum analyser settings:

- Resolution bandwidth: 1 MHz
- Video bandwidth: 3 MHz
- Detector mode: Peak
- Trace Mode: Max Hold
- Sweep Points: ≥ 23500

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 35 of 49 NOTE 2: For spectrum analysers not supporting this high number of sweep points, the frequency band may need to be segmented.

• Sweep time: For non continuous transmissions (duty cycle less than 100 %), the sweep time shall be sufficiently long, such that for each 1 MHz frequency step, the measurement time is greater than two transmissions of the UUT.

12.4. Test Result

Product	:	Wireless light up logo speaker
Test Item	:	Transmitter spurious emissions(Radiated Measurement)
Test Mode	:	Mode 1: Transmit by DH1

Frequency	Polarization	Measure Level	Limit	Margin	Diri		
(MHz)	(H/V)	(dBm)	(dBm)	(dB)	Detector		
	Channel 0 (2402MHz)						
56.32	Н	-59.59	-54.00	-5.59	РК		
68.81	V	-58.66	-54.00	-4.66	PK		
379.84	Н	-47.29	-36.00	-11.29	PK		
547.25	V	-69.27	-54.00	-15.27	PK		
4804.81	Н	-41.78	-30.00	-11.78	PK		
4804.18	V	-40.21	-30.00	-10.21	PK		
7202.63	Н	-37.30	-30.00	-7.30	PK		
7203.79	V	-40.69	-30.00	-10.69	PK		
		Channel 78 (24	80MHz)				
34.78	Н	-44.84	-36.00	-8.84	PK		
85.28	V	-39.41	-36.00	-3.41	PK		
681.26	Н	-66.49	-54.00	-12.49	PK		
621.40	V	-60.78	-54.00	-6.78	PK		
4961.62	Н	-44.33	-30.00	-14.33	PK		
4960.64	V	-44.95	-30.00	-14.95	РК		
7442.88	Н	-38.87	-30.00	-8.87	РК		
7440.38	V	-44.59	-30.00	-14.59	РК		

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

Report No.: LCS181023019AEB

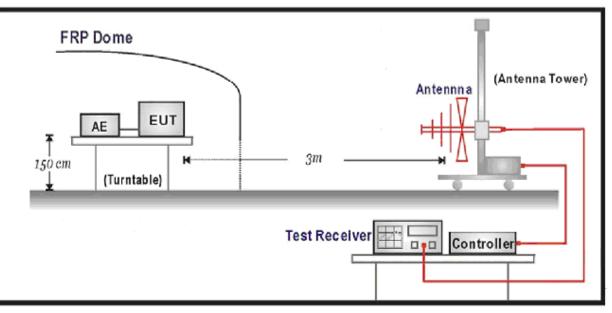
Product	:	Wireless light up logo speaker
Test Item	:	Transmitter spurious emissions (Conducted Measurement)
Test Mode	:	Mode 1: Transmit by DH1

Frequency(MHz)	Hz)Measure Level(dBm)Limit(dBm)Margin(dB)									
	Channel 0 (2402MHz)									
77.21	-40.96	-36.00	-4.96	PK						
383.69	-41.00	-36.00	-5.00	РК						
4802.40	-40.34	-30.00	-10.34	РК						
7205.86	-40.46	-30.00	-10.46	РК						
	Channel 78 (2480MHz)									
121.83	121.83 -41.17 -36.00 -5.17									
256.96	-45.39	-36.00	-9.39	РК						
4962.23	-38.37	-30.00	-8.37	РК						
7440.05	-41.41	-30.00	-11.41	PK						

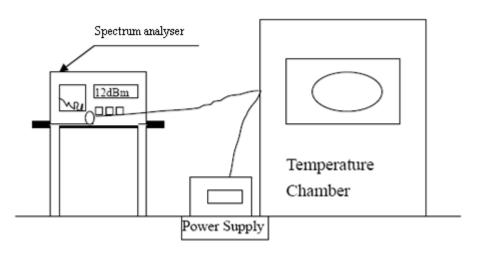
Note: All modulations of EUT have been tested and only record the worst data in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 37 of 49

13. RECEIVER SPURIOUS EMISSIONS


13.1. Limit

Spurious emissions limits for receivers							
	Maximum power						
Frequency Range	E.R.P. (≤ 1GHz)	Measurement bandwidth					
	E.I.R.P. (> 1GHz)						
30 MHz to 1 GHz	-57 dBm	100 kHz					
1 GHz to 12.75 GHz	-47 dBm	1 MHz					


13.2. Test Setup

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

For Radiated Measurement

For Conducted Measurement

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 38 of 49

13.3. Test Procedure

Refer to ETSI EN 300 328 V2.1.1 (2016-11) Clause 5.4.11

Step 1:

The sensitivity of the spectrum analyser should be such that the noise floor is at least 12 dB below the limits given in tables 2 or 5.

Step 2:

The emissions over the range 30 MHz to 1 000 MHz shall be identified.

Spectrum analyser settings:

- Resolution bandwidth: 100 kHz
- Video bandwidth: 300 kHz
- Detector mode: Peak
- Trace Mode: Max Hold
- Sweep Points: \geq 19400
- Sweep time: Auto

Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.11.2.1.3 and compared to the limits given in tables 2 or 5.

Step 3:

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER

The emissions over the range 1 GHz to 12,75 GHz shall be identified.

Spectrum analyser settings:

- Resolution bandwidth: 1 MHz
- Video bandwidth: 3 MHz
- Detector mode: Peak
- Trace Mode: Max Hold
- Sweep Points: ≥ 23500
- Sweep time: Auto

Allow the trace to stabilize. Any emissions identified during the sweeps above that fall within the 6 dB range below the applicable limit or above, shall be individually measured using the procedure in clause 5.3.11.2.1.3 and compared to the limits given in tables 2 or 5. Frequency Hopping equipment may generate a block (or several blocks) of spurious emissions anywhere within the spurious domain. If this is the case, only the highest peak of each block of emissions shall be measured using the procedure in clause 5.3.11.2.1.3.

Step 4:

• In case of conducted measurements on smart antenna systems (equipment with multiple receive chains), the steps 2 and 3 need to be repeated for each of the active receive chains (Ach). The limits used to identify emissions during this pre-scan need to be reduced with $10 \times \log 10$ (Ach) (number of active receive chains).

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 39 of 49

13.4. Test Result

Product	:	Wireless light up logo speaker
Test Item	••	Receiver spurious emissions (Radiated Measurement)
Test Mode	••	Mode 3: Receive by DH1

Frequency	Polarization	Measure Level	Limit	Margin	_
(MHz)	(H/V)	(dBm) (dBm)		(dB)	Detector
		Channel 0 (24	02MHz)		
97.54	Н	-57.00	-17.15	РК	
135.46	V	-67.01	-57.00	-10.01	PK
931.44	Н	-61.38	-57.00	-4.38	PK
740.63	V	-68.86	-57.00	-11.86	PK
1275.03	Н	-50.84	-47.00	-3.84	PK
1429.83	V	-60.85	-47.00	-13.85	PK
2649.86	Н	-51.67	-47.00	-4.67	PK
2913.92	V	-51.35	-47.00	-4.35	PK
		Channel 78 (24	80MHz)		
181.26	Н	-63.80	-57.00	-6.80	PK
257.19	V	-60.98	-57.00	-3.98	PK
554.52	Н	-72.58	-57.00	-15.58	PK
538.23	V	-72.97	-57.00	-15.97	PK
1110.14	Н	-66.13	-47.00	-19.13	PK
1655.77	V	-52.77	-47.00	-5.77	PK
2156.21	Н	-55.78	-47.00	-8.78	PK
2573.52	V	-65.48	-47.00	-18.48	РК

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 40 of 49

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

Product	:	Wireless light up logo speaker
Test Item	:	Receiver spurious emissions (Conducted Measurement)
Test Mode	:	Mode 3: Receive by DH1

Frequency(MHz)	Measure Level(dBm)	Limit(dBm)	Margin(dB)	Detector
	Channe	el 0 (2402MHz)		
342.05	-69.06	-57.00	-12.06	РК
508.65	-65.14	-57.00	-8.14	РК
1005.51	-54.95	-47.00	-7.95	РК
2095.73	-67.44	-47.00	-20.44	РК
	Channe	el 78 (2480MHz)		
251.23	-72.14	-57.00	-15.14	РК
676.14	-72.69	-57.00	-15.69	РК
1738.07	-71.24	-47.00	-24.24	РК
2845.27	-64.56	-47.00	-17.56	РК

Note: All modulations of EUT have been tested and only record the worst data in the report.

14. RECEIVER BLOCKING

14.1. Limit

Adaptive Frequency Hopping equipment shall comply with the requirements defined in clause 4.3.1.12.4

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal
P _{min} + 6 dB	2 380 2 503,5	-53	CW
P _{min} + 6 dB	2 300 2 330 2 360	-47	CW
P _{min} + 6 dB	2 523,5 2 553,5 2 583,5 2 613,5 2 643,5 2 673,5	-47	CW
NOTE 1: P _{min} is the minimu	im level of wanted sign	al (in dBm) require	ed to meet the
minimum perform any blocking sign	ance criteria as defined	l in clause 4.3.1.12	2.3 in the absence of

Table 6: Receiver Blocking parameters for Receiver Category 1 equipment

NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain.

Table 7: Receiver Blocking parameters receiver category 2 equipment

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal	
P _{min} + 6 dB	2 380 2 503,5	-57	CW	
P _{min} + 6 dB	2 300 2 583,5	-47	CW	
NOTE 1: Pmin is the minimu	im level of the wanted	signal (in dBm) rec	uired to meet the	

minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain.

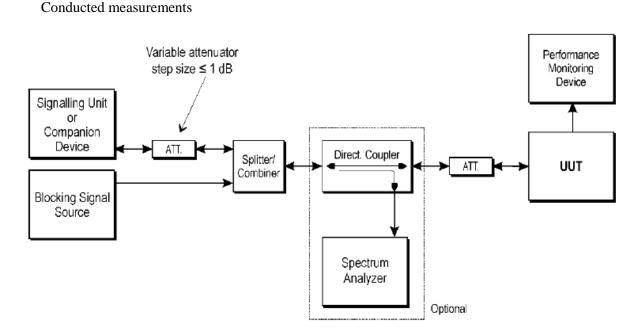

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 42 of 49

Table 8: Receiver Blocking parameters receiver category 3 equipment

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal					
P _{min} + 12 dB	2 380 2 503,5	-57	CW					
P _{min} + 12 dB	2 300 2 583,5	-47	CW					
NOTE 1: P _{min} is the minimu	im level of the wanted s	ignal (in dBm) red	uired to meet the					
 NOTE 1: P_{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual 								

antenna assembly gain.

14.2. Test Setup

14.3. Test Procedure

Step 1:

• For non-frequency hopping equipment, the UUT shall be set to the lowest operating channel. Step 2:

• The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.

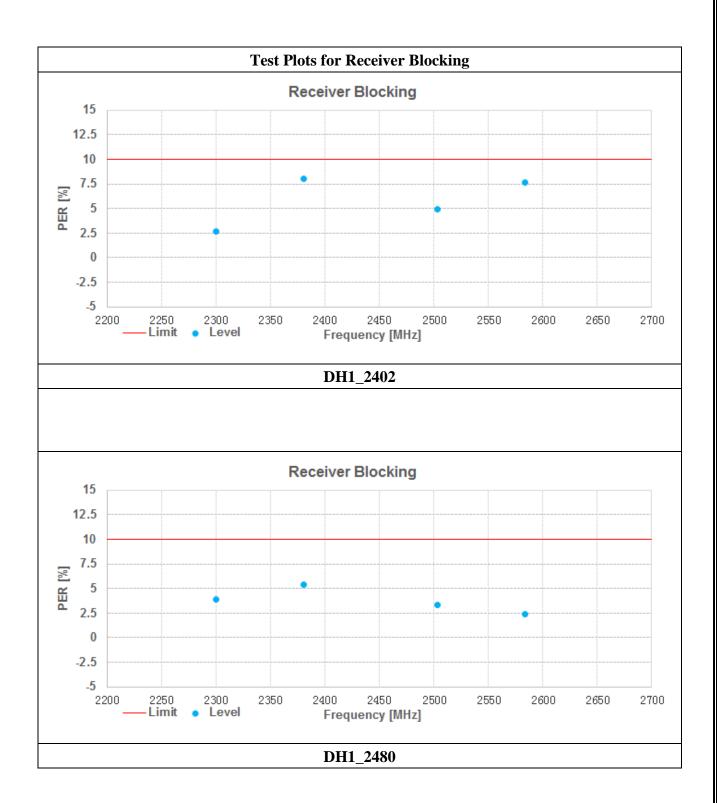
Step 3:

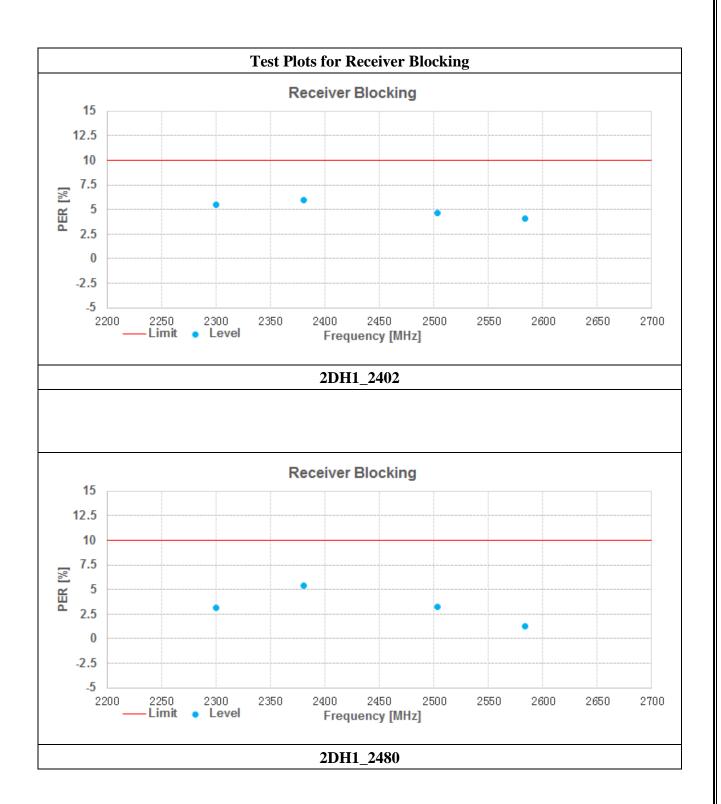
• With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device using the test setup shown in figure 6. The attenuation of the variable attenuator shall be increased in 1 dB steps to a value at which the minimum performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still met. The resulting level for the wanted signal at the input of the UUT is Pmin.

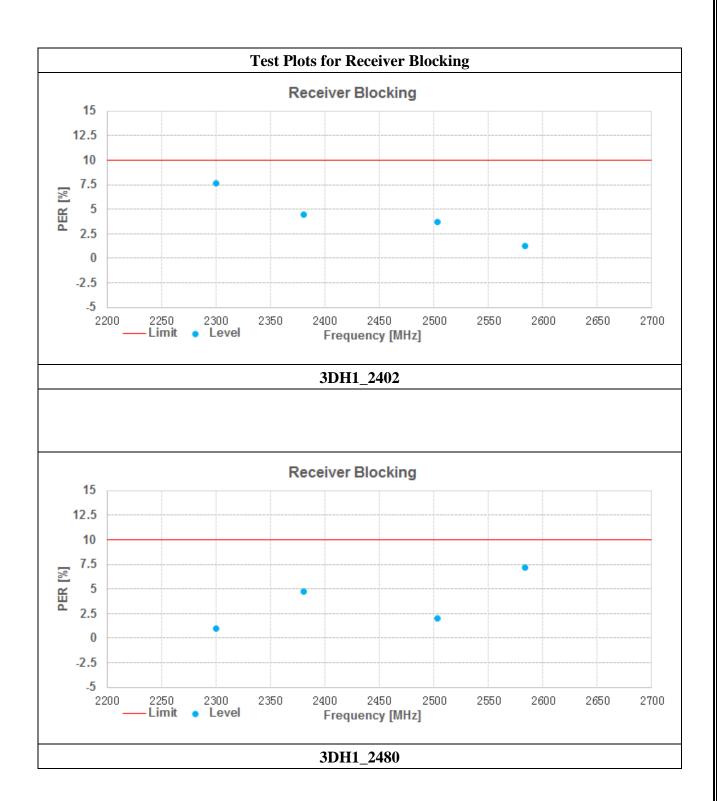
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 43 of 49 • This signal level (Pmin) is increased by the value provided in the table corresponding to the receiver category and type of equipment.

Step 4:

• The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment. It shall be verified and recorded in the test report that the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is met. Step 5:


• Repeat step 4 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment. Step 6:


• For non-frequency hopping equipment, repeat step 2 to step 5 with the UUT operating at the highest operating channel.

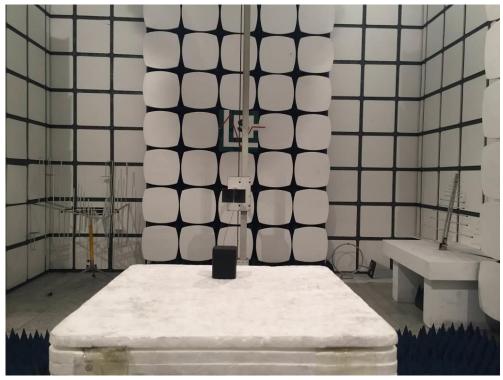

14.4. Test Result

Product	:	Wireless light up logo speaker		
Test Item	:	Receiver spurious emissions(conducted)		
Test Mode	:	Receiving		
Test Engineer	:	Diamond Lu		

Wanted Signal Mean Power from	Test Mode	Test Channel (MHz)	Blocking Signal Frequency	Pmin	Pov	Blocking Signal Power (dBm)		PER(%		Test
Companion Device (dBm)	Mode	(WITIZ)	(MHz)	ſ	Test Value	Limit	Blocking Signal	Test Value	Limit	Result
			2380	-94	-29	≥-57	CW	8.05	10	Pass
		2402	2503.5	-87	-30	≥-57	CW	4.94	10	Pass
		2402	2300	-89	-30	≥-47	CW	2.66	10	Pass
	DH1		2583.5	-90	-31	≥-47	CW	7.63	10	Pass
	DIII		2380	-93	-22	≥-57	CW	5.39	10	Pass
		2480	2503.5	-96	-36	≥-57	CW	3.34	10	Pass
		2480	2300	-96	-26	≥-47	CW	3.89	10	Pass
			2583.5	-94	-23	≥-47	CW	2.38	10	Pass
			2380	-88	-46	≥-57	CW	5.99	10	Pass
		2402	2503.5	-89	-30	≥-57	CW	4.61	10	Pass
			2300	-88	-31	≥-47	CW	5.44	10	Pass
Pmin + 6 dB	2DH1		2583.5	-91	-24	≥-47	CW	4.09	10	Pass
PIIIII + 0 dB	2DH1		2380	-88	-22	≥-57	CW	5.42	10	Pass
			2503.5	-91	-26	≥-57	CW	3.23	10	Pass
			2300	-88	-30	≥-47	CW	3.11	10	Pass
			2583.5	-95	-27	≥-47	CW	1.30	10	Pass
			2380	-95	-40	≥-57	CW	4.48	10	Pass
			2503.5	-90	-34	≥-57	CW	3.70	10	Pass
		2402	2300	-90	-24	≥-47	CW	7.65	10	Pass
	2011		2583.5	-89	-25	≥-47	CW	1.27	10	Pass
	3DH1		2380	-93	-20	≥-57	CW	4.73	10	Pass
		2490	2503.5	-94	-22	≥-57	CW	2.01	10	Pass
		2480	2300	-89	-22	≥-47	CW	0.97	10	Pass
			2583.5	-93	-27	≥-47	CW	7.14	10	Pass

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2018-11-22. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

15. LIST OF MEASURING EQUIPMENT


Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	X-series USB Peak and Average Power Sensor Aglient	Agilent	U2021XA	MY54080022	2018-10-26	2019-10-25
2	4 CH. Simultaneous Sampling 14 Bits 2MS/s	Agilent	U2531A	MY54080016	2018-10-26	2019-10-25
3	Test Software	Ascentest	AT890-SW	20160630	N/A	N/A
4	RF Control Unit	Ascentest	AT890-RFB	N/A	2018-06-16	2019-06-15
5	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2018-06-16	2019-06-15
6	SPECTRUM ANALYZER	R&S	FSP	100503	2018-06-16	2019-06-15
7	MXG Vector Signal Generator	Agilent	N5182A	MY47071151	2017-11-17	2018-11-16
8	ESG VECTOR SIGNAL GENERATOR	Agilent	E4438C	MY42081396	2017-11-17	2018-11-16
9	PSG Analog Signal Generator	Agilent	E8257D	MY4520521	2017-11-17	2018-11-16
10	Universal Radio Communication Tester	R&S	CMU 200	105788	2018-06-16	2019-06-15
11	WIDEBAND RADIO COMMUNICATION TESTER	R&S	CMW 500	103818	2018-06-16	2019-06-15
12	RF Control Unit	Tonscend	JS0806-1	N/A	2018-06-16	2019-06-15
13	DC Power Supply	Agilent	E3642A	N/A	2017-11-17	2018-11-16
14	LTE Test Software	Tonscend	JS1120-1	N/A	N/A	N/A
15	Temperature & Humidity Chamber	GUANGZHOU GOGNWEN	GDS-100	70932	2018-10-11	2019-10-10
16	DC Source	CHROMA	62012P-80-60	34782951	2018-10-11	2019-10-10
17	RF Filter	Micro-Tronics	BRC50718	S/N-017	2018-06-16	2019-06-15
18	RF Filter	Micro-Tronics	BRC50719	S/N-011	2018-06-16	2019-06-15
19	RF Filter	Micro-Tronics	BRC50720	S/N-011	2018-06-16	2019-06-15
20	RF Filter	Micro-Tronics	BRC50721	S/N-013	2018-06-16	2019-06-15
21	RF Filter	Micro-Tronics	BRM50702	S/N-195	2018-06-16	2019-06-15
22	Splitter/Combiner	Micro-Tronics	PS2-15	CB11-20	2018-06-16	2019-06-15
23	Splitter/Combiner	Micro-Tronics	CB11-20	N/A	2018-06-16	2019-06-15
24	Attenuator	Micro-Tronics	PAS-8-10	S/N23466	2018-06-16	2019-06-15
25	Exposure Level Tester	Narda	ELT-400	N-0713	2018-04-02	2019-04-01
26	B-Field Probe	Narda	ELT-400	M-1154	2018-04-10	2019-04-09
27	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2018-06-16	2019-06-15
28	Positioning Controller	MF	MF-7082	/	2018-06-16	2019-06-15
29	EMI Test Software	AUDIX	E3	N/A	2018-06-16	2019-06-15
30	EMI Test Receiver	R&S	ESR 7	101181	2018-06-16	2019-06-15
31	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-17	2018-11-16
32	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018-06-22	2019-06-21
33	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-05-01	2019-04-30
34	Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-1925	2018-07-02	2019-07-01
35	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2018-09-21	2019-09-20
36	Broadband Preamplifier	SCHWARZBECK	BBV 9719	9719-025	201809-21	2019-09-20
37	RF Cable-R03m	Jye Bao	RG142	CB021	2018-06-16	2019-06-15
		h	1			2019-06-15

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 48 of 49

16. PHOTOGRAPHS OF TEST SETUP

Spurious Emission below 1GHz

Spurious Emission above 1GHz

-----THE END OF REPORT------

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 49 of 49