

RED-EMC Test Report

For

Wireless power bank

Model No.: MSL-M617Q

Prepared For :

Address :

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW180524005-01E

Date of Test : May 24~Jun. 05, 2018

Date of Report : Jun. 05, 2018

Contents

1. General Information.	Moker.	Anbe		4
1.1. Client Information	Motek	Aupore,	Anv	4
1.2. Description of Device (EUT)				4
1.3. Auxiliary Equipment Used During Test				4
1.4. Description of Test Modes		V.u.	, dh	o ^{tek} . 5
1.4. Description of Test Modes		. M	, P.	6
1.6. Measurement Uncertainty				7
1.7. Description of Test Facility	PUpo.	b.	Mpofe.	A7
2. Summary of Test Results	Kipo _{fer}	Anb	Jotek	8
3. Emission Test	6k,	Anbore	7), 10/0/	·9
3.1. Conducted Emission Test at Main Ports		ek Rupote	Anbe	9
3.1.1. Test Standard and Limit	poter And		itek Anbo	9
3.1.2. Test Setup	botek Anl	00, 8,	"ofek	9
3.1.2. Test Setup	b. Marek	Asbote, A	Up. TAK	10
3 1 4 Test Data				10
3.2. Radiated Emission Test	Anbo	W. Crek	Kupo _{fe} ,	15
3.2.1. Test Standard and Limit				15
3.2.2. Test Setup				16
3.2.3. Test Procedure				16
3.2.4. Test Data	p.v			17
4. Immunity Test	""poter	Yupo K	Hotek	20
4.1. Electrostatic Discharge Test	note _k	Whose	Yu. Nok	21
3.2.4. Test Data	by.	Kupo _{fer}	Anbe	21
4.1.2. Test Setup	And	y Jotek	Aupore	21
4.1.3. Test Procedure			,o/c ₀ ,	22
4.1.4. Test Data		oter And		22
4.2. Radiated, RF Electromagnetic Fields Test	YUL TOK	700 ¹⁶ K	100 K	23
4.2.1. Test Standard and Specification	Anbo	POFEK	Kepoter	23
4.2.2. Test Setup	- Aupote	Aur Jak	. Naotek	23
4.2.3. Test Procedure	ktek	Aupo	W. Work	23
4.2.4. Test Data	ho hotel	k Aupoten	Anu	24
APPENDIX I TEST SETUP PHOTOGRAPH				
APPENDIX II EXTERNAL PHOTOGRAPH	moter Anb	D. Dr.	okek <u>k</u> al	27
ADDENDIY III INTERNAL DHOTOGRADH				21

TEST REPORT

Applicant :

Manufacturer :

Product Name : Wireless power bank

Model No. : MSL-M617Q

Trade Mark : N.A.

Input: DC 5V, 2A (with DC 3.7V, 5000mAh Battery inside)

Rating(s) USB Output: DC 5V, 2A

Type-C Output: DC 5V, 2A Wireless Output: DC 5V, 1A

Test Standard(s) : ETSI EN 301 489-1 V2.2.0 (2017-03)

ETSI EN 301 489-3 V2.1.1 (2017-03)

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the EN 301 489-1, EN 301 489-3 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Prepared By

Reviewer

(Supervisor / Calvin Liu)

Approved & Authorized Signer

(Manager / Tom Chen)

1. General Information

1.1. Client Information

Applicant	:		atek.	anbotek	Aupor N.
Address	:	N.	380		·
Manufacturer	:			K Ano	otek Anbotek
Address	:			ya.	\nbote

1.2. Description of Device (EUT)

Product Name	:	Wireless power bank					
Model No.	:	MSL-M617Q	Anbotek Anbotek Anbotek				
Trade Mark	:	N.A.	Anbotek Anbotek Anbote				
Test Power Supply	:	AC 110V, 50Hz for adapter / AC DC 3.7V, Battery inside	AC 110V, 50Hz for adapter / AC 230V, 50Hz for adapter OC 3.7V, Battery inside				
	on : M	Operation Frequency:	110-205KHz				
		Number of Channel:	20 Channels				
Product Description		Modulation Type:	FSK				
Description		Antenna Type:	Inductive loop coil Antenna				
		Antenna Gain(Peak):	0 dBi notek Arbot Ak notek				

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

ď	Adapter	:	Manufacturer: ZTE	
			M/N: STC-A2050I1000USBA-C	N
'n			S/N: 201202102100876	
			Input: 100-240V~50/60Hz 0.3A	
			Output: DC 5V, 1000mA	.Ys

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Charge Mode (By USB)
Mode 2	Charge Mode (By Type C)
Mode 3	Wireless Charge Mode
Mode 4	Full Load Mode
Mode 5	Type C Out Mode
	Mode 1 Mode 2 Mode 3 Mode 4

For Conducted Emission							
Final Test Mode	Description						
Mode 1	Charge Mode (By USB)						

For Radiated Emission								
Final Test Mode	Description							
Mode 1	Charge Mode (By USB)							
Mode 2	Charge Mode (By Type C)							
Mode 3	Wireless Charge Mode							
Mode 4	Full Load Mode							
Mode 5	Type C Out Mode							

1.5. Test Equipment List

Conducted Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
potek 1.	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 17, 2017	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 17, 2017	1 Year
o× 4.	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A	N/A

Radiated Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Vup.	EMI Test Receiver	Rohde & Schwarz	ESPI NO	101604	Nov. 17, 2017	1 Year
2. ^A	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 20, 2017	1 Year
3.	Pre-amplifier	SONOMA	310N	186860	Nov. 17, 2017	1 Year
4.ek	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A	N/A

Electrostatic Discharge Measurement

	Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
200	1.	ESD Simulators	3Ctest	ESD-30T	ES0131505	Nov. 17, 2017	1 Year

R/S Immunity Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
iek 1	RF Power Meter. Dual Channel	BOONTON	4232A	10539	May 19, 2018	1 Year
2	50ohm Diode Power Sensor	BOONTON	51011EMC	34236/36164	May 19, 2018	1 Year
An3ote	Broad-Band Horn Antenna	SCHWARZBECK	BBHA9120 L3F	Anbotel 332 Anb	May 19, 2018	1 Year
4.00	Power Amplifier (0.08-1G)	MILMEGA	80RF1000-175	1059345	May 19, 2018	1 Year
5	Power Amplifier (1-2G)	MILMEGA	AS0102-55	1018770	May 19, 2018	1 Year
e¥ 6	Power Amplifier (2-6G)	MILMEGA	AS1860-50	1059346	May 19, 2018	1 Year
7	Signal Generator	Agilent	N5181A	MY50145187	May 19, 2018	1 Year
8	Field Strength Meter	HOLADAY	HI-6005	N/A	May 19, 2018	1 Year
An 90 te	RS232 Fiber Optic Modem	HOLADAY	HI-4413P	N/A	May 19, 2018	1 Year
10	LogPer. Antenna	SCHWARZBECK	VULP 9118E	N/A	May 19, 2018	1 Year

1.6. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Horizontal)	abotek	Anbotek	Anbo otek		Anbot
		Ur = 3.8 dB (Vertical)	ibotek	Anbote.	Ano	tek	An
			hotek	Anbore	And	Y94_	
Conduction Uncertainty		Uc = 3.4 dB					4
Disturbance Uncertainty		Ud = 2.6 dB		An	o-	r ~\	otek

1.7. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

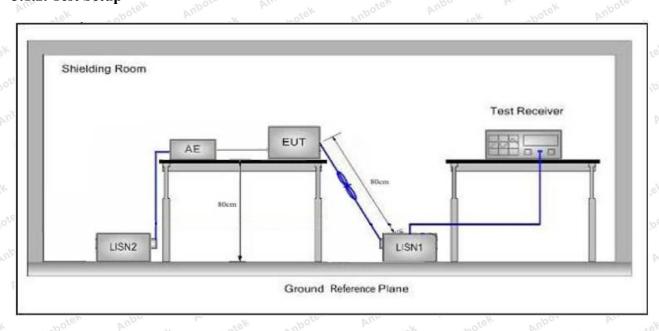
Anbote Anb	EMC Er	mission	inboten Ande	hotek
Γest Items	Standard	Basic Standard	Limit	Results
Conducted Emission	ETSI EN 301 489-1 V2.2.0 Clause 8.3 & 8.4	EN 55032: 2015	Class A or B NOTE (2)	PASS
Radiated Emission	ETSI EN 301 489-1 V2.2.0 Clause 8.2	EN 55032: 2015	Class A or B NOTE (2)	PASS
Harmonic Current Emission	ETSI EN 301 489-1 V2.2.0 Clause 8.5	EN 61000-3-2:2014	Class A	N/A
Voltage Fluctuations& Flicker	ETSI EN 301 489-1 V2.2.0 Clause 8.6	EN 61000-3-3:2013	ek Appotek	N/A
	EMC Im	munity botek Anbo		
Test Items	Standard	Basic Standard	Performance Criteria	Results
Electrostatic Discharge	ETSI EN 301 489-1 V2.2.0 Clause 9.3	EN 61000-4-2:2009	B	PASS
RF Electromagnetic	ETSI EN 301 489-1 V2.2.0 Clause 9.2	EN 61000-4-3:2006 +A1:2008+A2:2010	A	PASS
Fast transients,	ETSI EN 301 489-1 V2.2.0 Clause 9.4	EN 61000-4-4:2012	boten B Anb	N/A
Surges	ETSI EN 301 489-1 V2.2.0 Clause 9.8	EN 61000-4-5:2014	Aup B K	N/A
Radio frequency, common mode	ETSI EN 301 489-1 V2.2.0 Clause 9.5	EN 61000-4-6:2014	Anbotek	N/A
Volt. Interruptions Volt. Dips	ETSI EN 301 489-1 V2.2.0 Clause 9.7	EN 61000-4-11:2004	B/C/C NOTE (3)	N/A
OTE:	otek Anbotek Anbo	ok botek	Aupore Au	*ek
(1) "N/A" denotes	test is not applicable in this Te	est Report	Anbotek	Yupo ak
Vic.	for equipment intended to be tioncentre, the class A limits m	76.	industrial envir	ronment o
(3) Voltage dip: 10	0% reduction – Performance C	Criteria B	And	K - 21
P.V	0% reduction – Performance C	K 0 1X(1)	Josek Aupor	PI.
	% reduction – Performance Cri	107	botek Anb	oto
Voltage Interrup	otion: 0% Interruption – Perfor	mance Criteria C		

3. Emission Test

3.1. Conducted Emission Test at Main Ports

3.1.1. Test Standard and Limit

Test Standard	ETSI EN 301 489-1 V2.2.0 Clause 8.3 & 8.4	 100		4
Basic Standard	EN 55032: 2015	Anb	1	*eK


Limits for conducted emissions

	T.	Maximum RF Lin	ne Voltage (dBuV)
	Frequency	Quasi-peak Level	Average Level
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
	500kHz~5MHz	56 K Anbores	46 Anbote
	5MHz~30MHz	60	And 50

Limits for conducted emissions of equipment intended to be used in telecommunication centres and industrial environment

	Engavanav	Maximum RF L	ine Voltage (dBuV)
T4 I ::4	Frequency	Quasi-peak Level	Average Level
Test Limit	150kHz~500kHz	Anbox 79 notek	66
c c	500kHz~30MHz	Anbote 73 Andrew	60

3.1.2. Test Setup

3.1.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ETSI EN 301 489-1 V2.2.0 & EN55032: 2015 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

For the actual test configuration, please refer to the related Item EUT Test Photos.

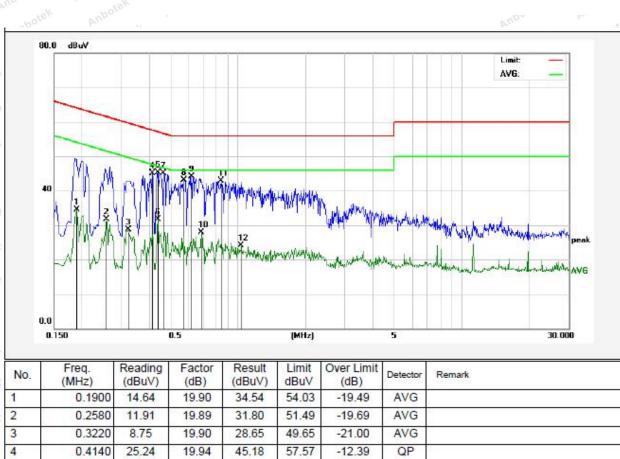
3.1.4. Test Data

PASS

The EUT should be compliance to the limit of Class B

Only the worst case data was showed in the report, please to see the following pages

Conducted Emission Test Data


Test Site: 1# Shielded Room

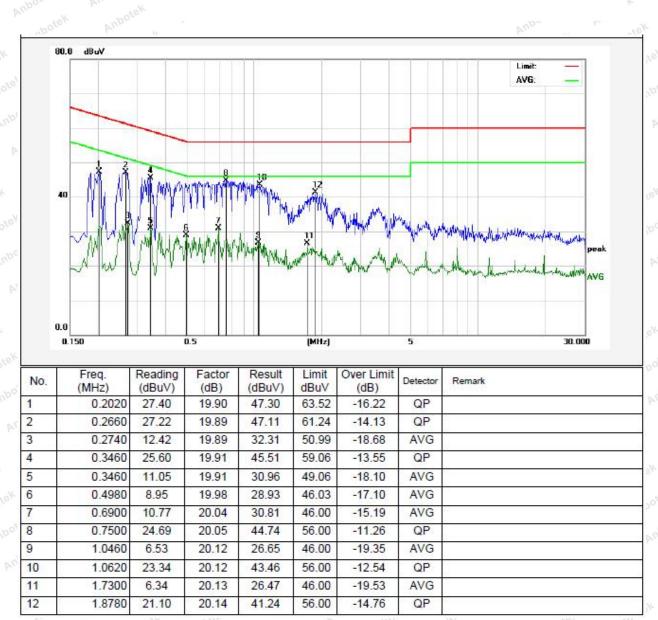
Operating Condition: Mode 1

Test Specification: AC 110V, 50Hz for adapter

Comment: Live Line

Tem.:24.7℃ Hum.:51%

Conducted Emission Test Data


Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 110V, 50Hz for adapter

Comment: Neutral Line

Tem.:24.7°C Hum.:51%

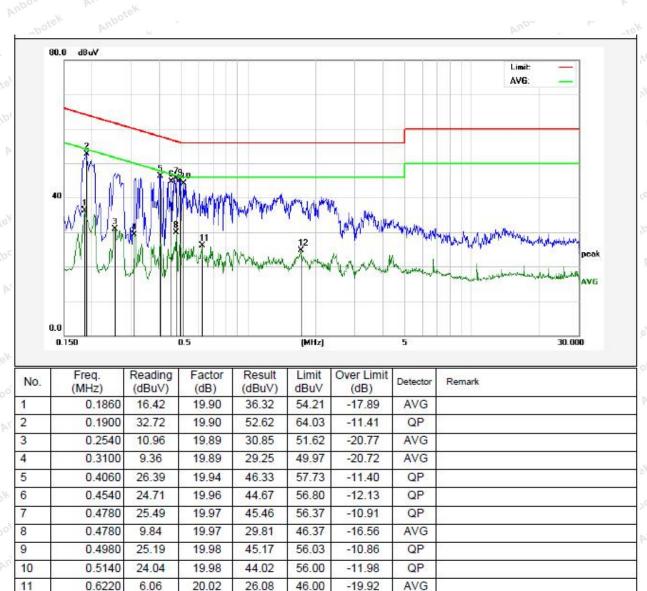
12

1.7220

4.62

Conducted Emission Test Data

Test Site: 1# Shielded Room


Operating Condition: Mode 1

Test Specification: AC 230V, 50Hz for adapter

20.13

Comment: Live Line

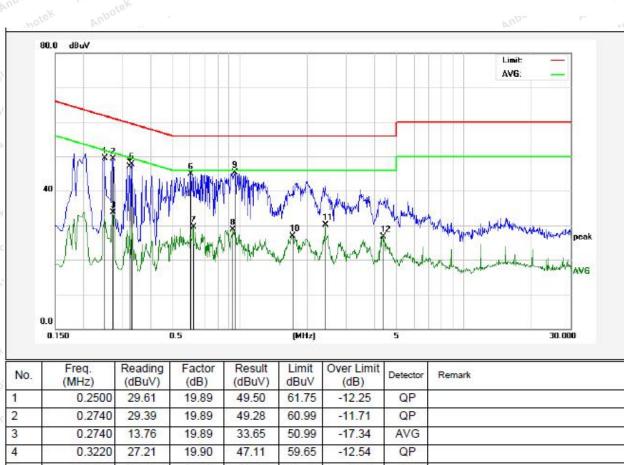
Tem.:24.7°C Hum.:51%

-21.25

46.00

AVG

Conducted Emission Test Data


Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 230V, 50Hz for adapter

Comment: Neutral Line

Tem.:24.7°C Hum.:51%

3.2. Radiated Emission Test

3.2.1. Test Standard and Limit

Test Standard	ETSI EN 301 489-1 V2.2.0 Clause 8.2	'pote	Amendotek	Anbotek	Pulc
Basic Standard	EN 55032: 2015	NOT	V.,	76/	,

Radiated Emission Test Limit (Below 1000MHz)

V O	· ·	-10			
Г	Limit (c	dBμV/m)			
Frequency (MHz)	Quasi-peak Level				
(IVIIIZ)	Class B	Class A			
30MHz~230MHz	And tek 40 anbotek Ant	not 50 Anboten			
230MHz~1000MHz	Anb tok47 potek	Anhotek Anhotek			
emark: 1. The lower limit shall apply a	t the transition frequency. 2. The test distan	ce is 3m.			

Radiated Emission Test Limit (Above 1000MHz)

T.		Limit (dBμV/m)		
Frequency (MHz)	Clas	ss B	Cla	ss A	
(IVIIIZ)	Peak	Average	Peak	Average	
1000 MHz -3000 MHz	70	50	76	56	ste ^V
3000 MHz -6000 MHz	74	54	80	60	

Radiated Emission Test Limit for FM Receivers

T.			Limit (c	dBμV/m)		
Frequency (MHz)			Quasi-p	eak Level		
(IVII1Z)	Fu	ndamental		На	rmonics	
30MHz~230MHz	Yu. Ofek	60	Anbo	hotek	52,000	And
230MHz~300MHz	Anbe	60	Aupote	K Am.	52 Anbotek	An
300MHz~1000MHz	Anbo	60 notek	Anbe	te. Vue	v56 abot	ek.

Frequency Range of Radiated Measurement

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5th harmonic of the highest frequency or 6 GHz, whichever is lower

3.2.2. Test Setup

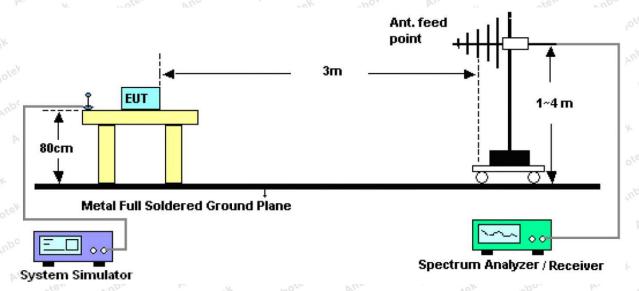


Figure 1. 30MHz to 1GHz

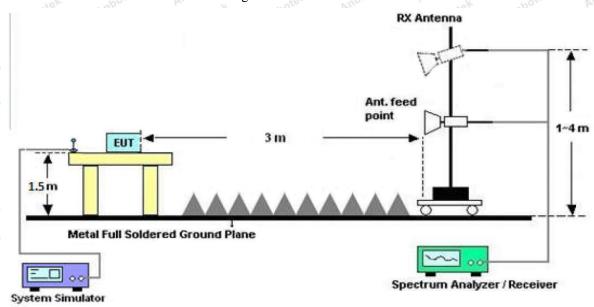


Figure 2. Above 1 GHz

3.2.3. Test Procedure

- 1) The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- 2) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 3) The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 5) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold

mode when the test frequency is below 1GHz.

The test receiver/spectrum was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.

6) For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.

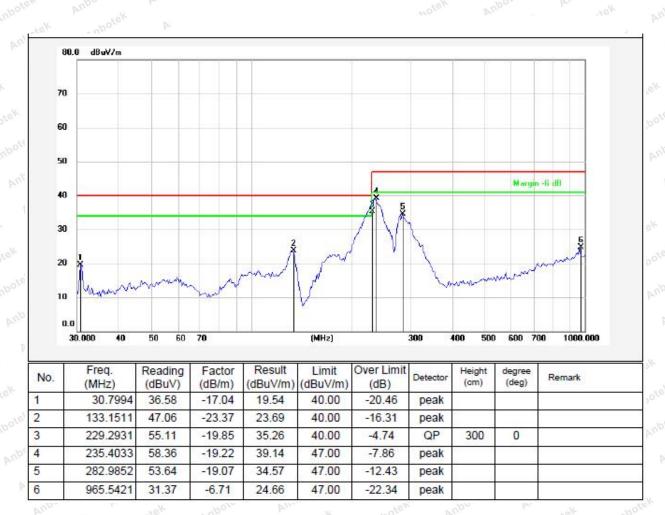
The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak/Average detection at frequency above 1GHz.

3.2.4. Test Data

PASS

The EUT should be compliance to the limit of Class B

Only the worst case data was showed in the report, please to see the following pages

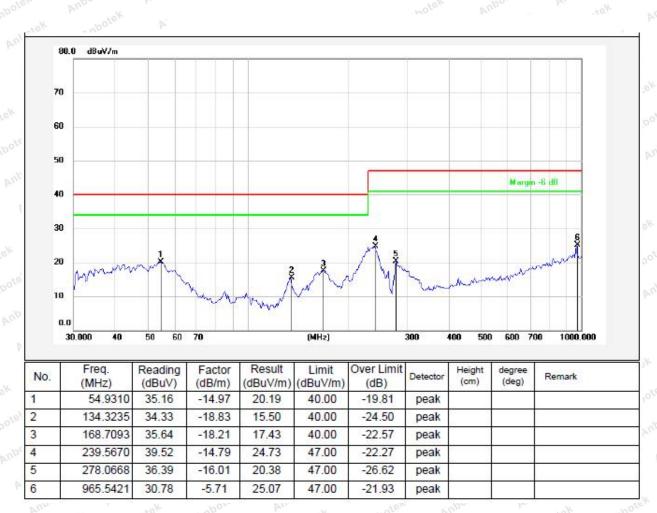


Test Results (30~1000MHz)

Job No.: SZAWW180524005 Temp.(°C)/Hum.(%RH): 24.3 °C/55%RH

Standard: EN301489_Class B_3m Power Source: DC 3.7V, Battery inside

Test Mode: Mode 4 Polarization: Horizontal



Test Results (30~1000MHz)

Job No.: SZAWW180524005 Temp.(°C)/Hum.(%RH): 24.3 °C/55%RH

Standard: EN301489_Class B_3m Power Source: DC 3.7V, Battery inside

Test Mode: Mode 4 Polarization: Vertical

Shenzhen Anbotek Compliance Laboratory Limited Page 20 of 37 Report No.: SZAWW180524005-01E

4. Immunity Test

General Performance Criteria

◆ Performance criteria for continuous phenomena applied to transmitters and receivers (CT/CR)

During and after the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

During the test the EUT shall not unintentionally transmit or change its actual operating state and stored data.

If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

◆ Performance criteria for transient phenomena applied to transmitters and receivers (TT/TR)

After the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

During the EMC exposure to an electromagnetic phenomenon, a degradation of performance is, however, allowed. No change of the actual mode of operation (e.g. unintended transmission) or stored data is allowed.

If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

◆ Performance criteria for equipment which does not provide a continuous communication link

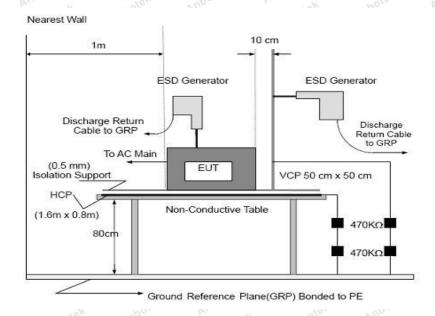
For radio equipment which does not provide a continuous communication link, the performance criteria described in CT/CR and TT/TR are not appropriate, then the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in CT/CR and TT/TR.

◆ Performance criteria for ancillary equipment tested on a stand alone basis

If ancillary equipment is intended to be tested on a stand alone basis, the performance criteria described in CT/CR and TT/TR are not appropriate, then the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in CT/CR and TT/TR.



4.1. Electrostatic Discharge Test

4.1.1. Test Standard and Specification

Pr. V	you All tell all
Test Standard	ETSI EN 301 489-1 V2.2.0 Clause 9.3
Basic Standard	EN 61000-4-2:2009
Discharge Impedance:	330 ohm / 150 pF
Performance Criterion:	CT/CR 4 And
Discharge Voltage:	Air Discharge: 2kV/4kV/8kV
Polarity:	Positive & Negative
Number of Discharge:	Air Discharge: min. 20 times at each test point
Discharge Mode:	Single Discharge
Discharge Period:	1 second minimum

4.1.2. Test Setup

Note:

TABLE-TOP EQUIPMENT:

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940kohm total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC /EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT:

The equipment under test was installed in a representative system as described in section 7 of IEC/EN 61000-4-2,

and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

4.1.3. Test Procedure

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

1) Contact discharge was applied to conductive surfaces and coupling planes of the EUT.

During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second.

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions $0.5m \times 0.5m$, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

2) Air discharges at insulation surfaces of the EUT.

It was at least ten single discharges with positive and negative at the same selected point.

3) For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.4. Test Data

Job No.: SZAWW180524005 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 23.2 $^{\circ}$ C/53.4 $^{\circ}$ RH

Standard: EN61000-4-2 Power Source: AC 230V, 50Hz for adapter

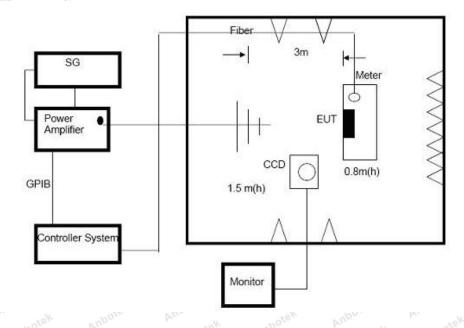
DC 3.7V, Battery inside

Test Mode: Mode 1, Mode 2, Mode 3, Mode 4, Mode 5

Item	N. K. Ofer.	conducted surfaces and ing planes	Air Discharge at insulating surfaces
Aupo	Direct Contact Discharge	Indirect Contact Discharge	Surfaces
Test Voltage	Reaction of EUT / Result	Reaction of EUT / Result	Reaction of EUT / Result
+2kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS
-2kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS
+4kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS
-4kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS
+6kV	And otek - nbotek	Anbott An hotek	n.r.r. PASS
-6kV	Anbo Lek botek	Anbore - And otek	n.r.r. PASS
+8kV	lek Aupor- K wote	K Anboten - Anbo	n.r.r. PASS
-8kV	hotek Anbote. And	tek nbotek Anbot	n.r.r. PASS

Remarks: n.r.r. = no reaction recognized

Performance Criteria B observed and No any function degraded during the tests.



4.2. Radiated, RF Electromagnetic Fields Test

4.2.1. Test Standard and Specification

Pr.	Not VII.
Test Standard	ETSI EN 301 489-1 V2.2.0 Clause 9.2
Basic Standard	EN 61000-4-3: 2006+A1:2008+A2:2010
Required Performance	A Anto-
Frequency Range	80MHz to 6GHz
Field Strength	3 V/m
Modulation	1kHz Sine Wave, 80%, AM Modulation
Frequency Step	1 % of preceding frequency value
Polarity of Antenna	Horizontal and Vertical
Test Distance	3 m hotek Anbotek Anbotek Anbotek Anbotek Anbotek
Antenna Height	1.5 mAnbot tek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
Dwell Time	at least 3 seconds
110	· · · · · · · · · · · · · · · · · · ·

4.2.2. Test Setup

4.2.3. Test Procedure

The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber. The testing distance from antenna to the EUT was 3 meters.

- 1) The field strength level was 3V/m
- 2) The frequency range is swept from 80 MHz to 6000 MHz with the signal 80%amplitude modulated with a 1kHz sine wave.
- 3) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond but shall in no case be less than 0.5s.

4) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

4.2.4. Test Data

Job No.: SZAWW180524005 Temp.(°C)/Hum.(%RH): 23.2°C/53.4%RH

Standard: EN61000-4-3 Power Source: AC 230V, 50Hz for adapter

DC 3.7V, Battery inside

Test Mode: Mode 1, Mode 2, Mode 3, Mode 4, Mode 5

0	Frequency Range (MHz)	RF Field Position	R.F. Field Strength	Azimuth	Observation	Perform. Criteria	Results
P	80~6000	Anbotek Anbotek Ahbotek Anbotek Anbotek	3 V/m (rms) AM Modulated 1000Hz, 80%	Front Rear Left Right	ek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	Anbotek Anbotek Otek A Anbo	PASS



APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Conducted Emission Test

Photo of Radiation Emission Test

Photo of Electrostatic Discharge Test

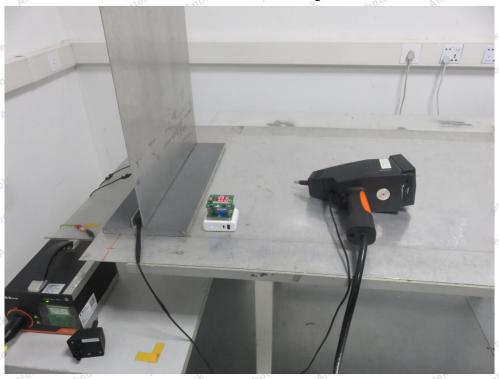
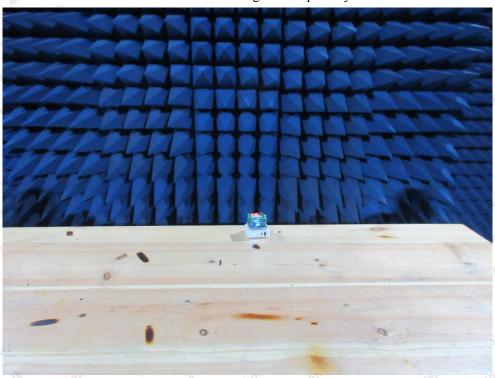
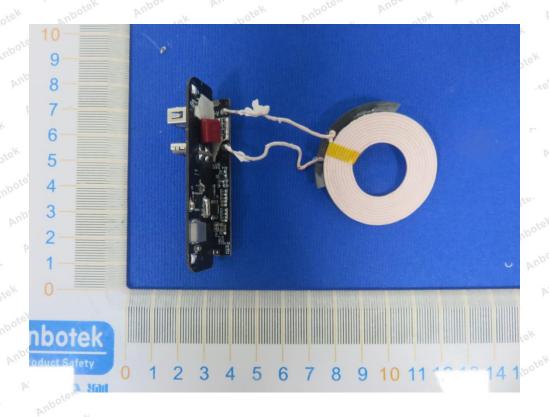
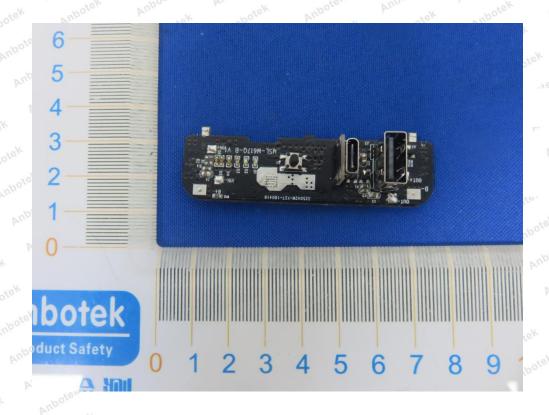



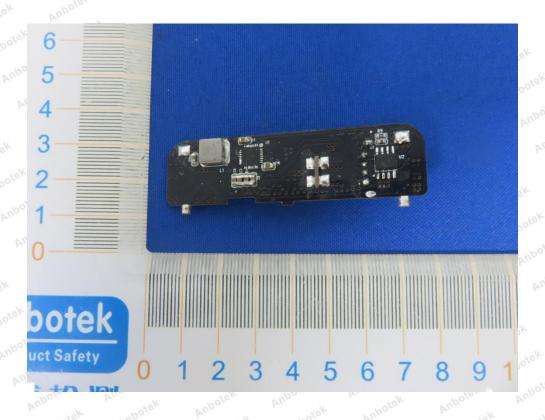

Photo of RF Field Strength Susceptibility Test

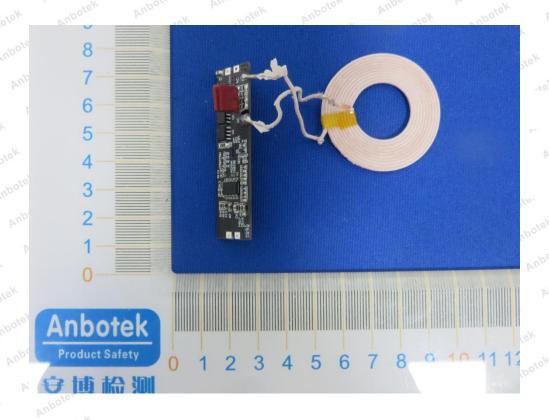
APPENDIX II -- EXTERNAL PHOTOGRAPH

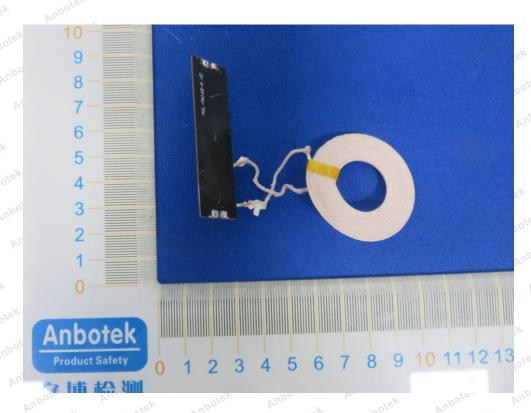


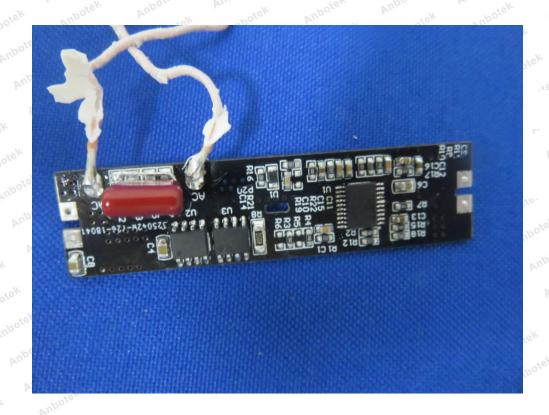
APPENDIX III -- INTERNAL PHOTOGRAPH

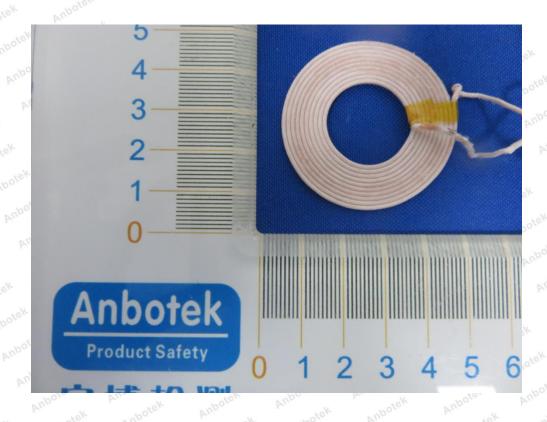












--- End of Report -----