EMC TEST REPORT

For

Bamboo wireless charging powerbank

Test Model: UP-9121

Prepared for : Address :

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : January 11, 2019

Number of tested samples : 1

Serial number : Prototype

Date of Test : January 11, 2019 ~ January 14, 2019

Date of Report : January 17, 2019

EMC TEST REPORT

Final draft ETSI EN 301 489-3 V2.1.1 (2017-03)

ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 3: Specific conditions for Short-Range Devices (SRD) operating on frequencies between 9 kHz and 246 GHz; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU

covering the essential requirements of article 3.1(b) of Directive 2014	4/53/EU
Report Reference No: : LCS190109030AEA	
Date Of Issue: : January 17, 2019	
Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Address	, Bao'an Avenue,
Testing Location/ Procedure: Full application of Harmonised standards Partial application of Harmonised standards Other standard testing method □	
Applicant's Name : Address ::	
Test Specification Standard : ETSI EN 301 489-1 V2.1.1 (2017-02) Final draft ETSI EN 301 489-3 V2.1.1 (2017)	-03)
Test Report Form No: LCSEMC-1.0	
TRF Originator: Shenzhen LCS Compliance Testing Laborato	ry Ltd.
Master TRF: Dated 2017-06	
Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial p Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no respons assume liability for damages resulting from the reader's interpretation of the reproduplement and context.	owner and source of the ibility for and will no
Test Item Description: : Bamboo wireless charging powerbank	
Trade Mark: N/A	
Test Model: UP-9121	
Ratings:: Input: 5V=-,2A Wireless Output: 5W max.	

Compiled by:

Peter Xrao

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2019-01-31. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

Supervised by:

USB Output: 5V---,2.1A, Type-c Output:5V---,2.4A Battery: 3.7V---, 5000mAh

Positive

Calvin Weng

Peter Xiao / Administrators

Calvin Weng / Technique principal

Gavin Liang/Manager

Approved by:

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2019-01-31. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

EMC -- TEST REPORT

Test Model	: UP-9121
EUT	: Bamboo wireless charging powerbank
Applicant	:
Address	:
Telephone	:/
Fax	• /
Tax	• 1
Manufacturer	:
Address	:
Telephone	:/
Fax	• /
1 4/3	• /
Footowy	•
Factory	:
Address	:
Telephone	:/
Fax	• /
1 6/2	• /

Test Result	Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	January 17, 2019	Initial Issue	Gavin Liang

TABLE OF CONTENT

Test Report Description	Page
TABLE OF CONTENT	5
1. GENERAL INFORMATION	7
1.1. PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	7
1.2. Objective	
1.3. RELATED SUBMITTAL(S)/GRANT(S)	
1.4. TEST METHODOLOGY	
1.6. SUPPORT EQUIPMENT LIST	
1.7. External I/O.	
1.8. Measurement Uncertainty	
1.9. DESCRIPTION OF TEST MODES	8
2. SUMMARY OF TEST RESULTS	9
3. LINE CONDUCTED EMISSION	10
3.1. CONDUCTED EMISSION LIMIT	10
3.2. Test Configuration	
3.3. EMI TEST RECEIVER SETUP	
3.4. Test Procedure	
4. RADIATED DISTURBANCE	
4.1. RADIATED EMISSION LIMIT	
4.3. TEST PROCEDURE	
4.4. Test Data	
5. HARMONIC CURRENT EMISSIONS	16
5.1. Test Configuration	
5.2. TEST STANDARD	
5.3. TEST DATA	16
6. VOLTAGE FLUCTUATION AND FLICKER	17
6.1. Test Configuration	
6.2. TEST STANDARD	
6.3. Test Data	
7. GENERAL PERFORMANCE CRITERIA FOR IMMUNITY TEST	
7.1. PERFORMANCE CRITERIA FOR CONTINUOUS PHENOMENA APPLIED TO TRANSMITTER (CT)	
7.2. PERFORMANCE CRITERIA FOR TRANSIENT PHENOMENA APPLIED TO TRANSMITTER (TT)	18
7.3. PERFORMANCE CRITERIA FOR CONTINUOUS PHENOMENA APPLIED TO RECEIVER (CR)	
8. RF ELECTROMAGNETIC FIELD (80 MHZ - 6000 MHZ)	
8.1. Test Configuration	
8.3. SEVERITY LEVEL	
8.4. Test Procedure	20
5.5. Test Result	21
9. ELECTROSTATIC DISCHARGE	22
9.1. Test Configuration	22
9.2. Test Procedure	
9.3. Test Data	
10. ELECTRICAL FAST TRANSIENT IMMUNITY	25
10.1. Test Configuration	
10.2. TEST STANDARD	
10.3. Test Procedure	25

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. Report No.: LCS190109030AEA 13.2. Test Standard 32

1. GENERAL INFORMATION

1.1. Product Description for Equipment Under Test (EUT)

EUT : Bamboo wireless charging powerbank

Test Model : UP-9121

Hardware Version: V1.2

Software Version: V1.0

Operating

: 110.0~205.0KHz

Frequency

Modulation Type: Continuous Wave

Antenna Type : Coil Antenna

Ratings : Input: 5V==-,2A

Wireless Output: 5W max. USB Output: 5V=-,2.1A, Type-c Output:5V=-,2.4A Battery: 3.7V=-, 5000mAh

1.2. Objective

	ElectroMagnetic Compatibility (EMC) standard for radio equipment and services;
ETSI EN	Part 1: Common technical requirements; Harmonised Standard covering the essential
301 489-1	requirements of article 3.1(b) of Directive 2014/53/EU and the essential
	requirements of article 6 of Directive 2014/30/EU
Final draft	ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part
ETSI EN	3: Specific conditions for Short-Range Devices (SRD) operating on frequencies
301 489-3	between 9 kHz and 246 GHz; Harmonised Standard covering the essential
V2.1.1	requirements of article 3.1(b) of Directive 2014/53/EU

The objective is to determine compliance with ETSI EN 301 489-1 V2.1.1 (2017-02), Final draft ETSI EN 301 489-3 V2.1.1 (2017-03).

1.3. Related Submittal(s)/Grant(s)

No Related Submittals.

1.4. Test Methodology

All measurements contained in this report were conducted with ETSI EN 301 489-1 V2.1.1 (2017-02), Final draft ETSI EN 301 489-3 V2.1.1 (2017-03).

1.5. Description of Test Facility

FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

NVLAP Registration Code is 600167-0

1.6. Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
iPhone	Mobile Phone	iPhone X		CE

1.7. External I/O

I/O Port Description	Quantity	Cable
USB Port	1	N/A
Micro USB Port	1	N/A
Type-C USB Port	1	N/A

1.8. Measurement Uncertainty

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m chamber	3.54dB	Polarize: V
(30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	2.08dB	Polarize: H
(1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	0.01ppm	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2°C	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

1.9. Description Of Test Modes

There was 2 test Modes. TM1 to TM2 were shown below:

TM1 : Wireless charging mode

TM2 : Idle mode

***Note: All test modes were tested, but we only recorded the worst case in this report.

2. SUMMARY OF TEST RESULTS

Rule	Description of Test Items	Result
§7.1	Reference to clauses EN 301 489-1 §8.4 AC mains power input/output ports	Compliant
§7 . 1	Reference to clauses EN 301 489-1 §8.3 DC power input/output ports	N/A*
§7.1	Reference to clauses EN 301 489-1 §8.2 Enclosure of ancillary equipment measured on a stand alone basis	Compliant
§ 7. 1	Reference to clauses EN 301 489-1 §8.5 Harmonic current emissions (AC mains input port)	N/A*
§ 7. 1	Reference to clauses EN 301 489-1 §8.6 Voltage fluctuations and flicker (AC mains input port)	Compliant
§7 . 1	Reference to clauses EN 301 489-1 §8.7 Telecommunication ports	N/A*
§7.2	Reference to clauses EN 301 489-1 §9.3 Electrostatic discharge (EN 61000-4-2)	Compliant
§7.2	Reference to clauses EN 301 489-1 §9.2 Radio frequency electromagnetic field (80 MHz to 6 000 MHz)(EN 61000-4-3)	Compliant
§7.2	Reference to clauses EN 301 489-1 §9.4 Fast transients, common mode (EN 61000-4-4)	Compliant
§7.2	Reference to clauses EN 301 489-1 §9.8 Surges (EN 61000-4-5)	Compliant
§7.2	Reference to clauses EN 301 489-1 §9.5 Radio frequency, common mode (EN 61000-4-6)	Compliant
§7.2	Reference to clauses EN 301 489-1 §9.6 Transients and surges in the vehicular environment (ISO 7637-2)	N/A*
§7.2	Reference to clauses EN 301 489-1 §9.7 Voltage dips and interruptions (EN 61000-4-11)	Compliant

3. LINE CONDUCTED EMISSION

3.1. Conducted Emission Limit

ETSI EN 301 489-1 V2.1.1 (2017-02)/EN 55032 Class B

Limits for Line Conducted Emission

Frequency	Limit (dBμV)	
(MHz)	Quasi-peak Level	Average Level
0.15~0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *
0.50~5.00	56.0	46.0
5.00~30.00	60.0	50.0

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.2. Test Configuration

The setup of EUT is according with per ETSI EN 301 489-1 measurement procedure. The specification used was with the ETSI EN 301 489-1 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The EUT received AC 230V/50Hz power through a LISN supplying power of AC 230V/50Hz.

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range 150 kHz – 30 MHz

IFBW 9 kHz

3.4. Test Procedure

Power on the EUT, the EUT begins to work. Make sure the EUT operates normally during the test.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

3.5. Test Data

Note: For conducted emission and radiated emission test, a power supply of 230VAC and 120VAC was used for testing respectively, and only recorded the worst case of 230VAC.

4. RADIATED DISTURBANCE

4.1. Radiated Emission Limit

ETSI EN 301 489-1 V2.1.1 (2017-02)/EN 55032 Class B

Limits for radiated disturbance Blow 1GHz

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT
(MHz)	(Meters)	$(dB\mu V/m)$
30 ~ 230	3	40
230 ~ 1000	3	47

Note: (1) The smaller limit shall apply at the combination point between two frequency bands. (2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.

Limits for radiated disturbance Above 1GHz

	FREQUENCY (MHz)	DISTANCE (Meters)	Average Limit (dBµV/m)	Peak Limit (dBµV/m)			
	1000-3000	3	50	70			
	3000-6000	3	54	74			
ĺ	Note: The lower limit ap	Note: The lower limit applies at the transition frequency.					

4.2. Test Configuration

Below 1GHz

Above 1GHz Above 1000MHz

4.3. Test Procedure

Please refer to ETSI EN 301 489-1 V2.1.1 (2017-02) Clause 8.2.3 and EN 55032 Annex A.2 for the measurement methods.

4.4. Test Data

PASS

Please refer to the following page

Iodel No.	J	UP-9121		Test	Test Mode		TM1	
nvironmental Condi	tions 2	22.9°C, 52.8	3% RH	Dete	ctor Func	ction Quasi-peak		
ol	I	Horizontal		Dista	ance		3m	
est Engineer		Diamond Lu	1					
80 Level (dBu\	//m)							
70								
60								
50						E	N 55032B	
40								
30								
20	_ 2		4	5 6		للمدال	And the Control of th	
d. education	M. A. Men		∧Λ	Name of the last	hande the state of	WANTED THE		
Manual Alban								
10		No.	A PARTY OF THE PAR					
	- The state of the		The state of the s					
030	50	100	Frequency	200 (MHz)		500	1000	
	22	100 2.9°C/52.	Frequency 8%			500	1000	
0 30	22 H0	2.9°C/52. DRIZONTAI	Frequency 8 %				1000	
0 30 Env./Ins: pol:	22 Ho Reading	2.9°C/52. DRIZONTAI	Frequency 8 %	(MHz)		Over		
env./Ins: pol: Freq	22 Ho Reading dBuV	2.9°C/52. DRIZONTAI Cablos	Frequency 88 Antfac dB/m	(MHz) Measured dBuV/m	Limit dBuV/m	Over dB	Remark	
030 Env./Ins: pol: Freq MHz 1 47.99	Reading dBuV	2.9°C/52. DRIZONTAI CabLos dB	Antfac dB/m	Measured dBuV/m	Limit dBuV/m	Over dB -24.32	Remark	
env./Ins: pol: Freq	Reading dBuV 1.96 5.31	2.9°C/52. DRIZONTAI Cablos	Frequency 88 Antfac dB/m	(MHz) Measured dBuV/m	Limit dBuV/m 40.00 40.00	Over dB	Remark ————————————————————————————————————	
0 30 Env./Ins: pol: Freq MHz 1 47.99 2 54.45 3 74.14 4 179.39	22 Ho Reading dBuV 1.96 5.31 7.90 9.50	2.9°C/52. DRIZONTAI CabLos dB 0.35 0.46 0.54 0.89	Antfac dB/m 13.37 13.05 7.95 9.64	Measured dBuV/m 15.68 18.82 16.39 20.03	Limit dBuV/m 40.00 40.00 40.00 40.00	Over dB -24.32 -21.18	Remark ———————————————————————————————————	
0 30 Env./Ins: pol: Freq MHz 1 47.99 2 54.45 3 74.14	22 Ho Reading dBuV 1.96 5.31 7.90 9.50 7.79	2.9°C/52. DRIZONTAI CabLos dB 0.35 0.46 0.54	Antfac dB/m 13.37 13.05 7.95	Measured dBuV/m 15.68 18.82 16.39 20.03	Limit dBuV/m 40.00 40.00 40.00 40.00	Over dB -24.32 -21.18 -23.61	Remark — QP QP QP QP QP QP	

Note: For conducted emission and radiated emission test, a power supply of 230VAC and 120VAC was used for testing respectively, and only recorded the worst case of 230VAC.

5. HARMONIC CURRENT EMISSIONS

5.1. Test Configuration

5.2. Test Standard

According to EN 301489-1 V2.1.1 (2017-02) & EN 61000-3-2: 2014

5.3. Test Data

Because power of EUT less than 75W, According standard EN 61000-3-2, Harmonic current unnecessary to test.

6. VOLTAGE FLUCTUATION AND FLICKER

6.1. Test Configuration

6.2. Test Standard

According to EN 301489-1 V2.1.1 (2017-02) & EN 61000-3-3: 2013

6.3. Test Data

Model No.		UP-9121		Test Mode	TM1
Test result		Pass		Test Engineer	Diamond Lu
	Notes:				
PASS	Measureme	nt method	- Voltage		
	Ps	st	dc (%)	dmax (%)	d(t) > 3.3%(ms)
Limit	1.0	00	3.300	4.000	500
Reading 1	0.0	89	0.006	0.206	0

7. GENERAL PERFORMANCE CRITERIA FOR IMMUNITY TEST

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

7.1. Performance criteria for Continuous phenomena applied to Transmitter (CT)

For equipment of type II or type III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence.

Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur.

7.2. Performance criteria for Transient phenomena applied to Transmitter (TT)

For equipment of type II or type III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur.

7.3. Performance criteria for Continuous phenomena applied to Receiver (CR)

For equipment of type II or III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

7.4. Performance criteria for Transient phenomena applied to Receiver (TR)

For equipment of type II or type III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

Performance criteria for Final draft ETSI EN 301 489-3 V2.1.1 (2017-03)

Criterion	During test	After test
	Operate as intended	Operate as intended
Α	No loss of function	No loss of function
^	No unintentional responses	No degradation of performance
		No loss of stored data or user programmable functions
	May show loss of function	Operate as intended
В	No unintentional responses	Lost function(s) shall be self-recoverable
В		No degradation of performance
		No loss of stored data or user programmable functions

8. RF ELECTROMAGNETIC FIELD (80 MHZ - 6000 MHZ)

8.1. Test Configuration

ETSI 301 489-1,(EN 61000-4-3: 2006+A1: 2008+A2: 2010)

Test level 2 at 3V / m.

8.3. Severity Level

Level	Field Strength V/m
1.	1
2.	3
3.	10
X	Special

Performance criterion: A

8.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD camera is used to monitor EUT screen. All the scanning conditions are as follows:

(Condition of Test	Remarks		
1.	Fielded Strength	3 V/m (Severity Level 2)		
2.	Radiated Signal	Unmodulated		
3.	Scanning Frequency	80 - 6000 MHz		
4.	Dwell time of radiated	0.0015 decade/s		
5.	Waiting Time	3 Sec.		

5.5. Test Result

RF ELECTROMAGNETIC FIELD						
Standard						
Applicant	SHENZHEN UNIWINS TECHNOLOGY CO.,LTD					
EUT	Bamboo wireless charging powerbank	Temperature	22.9℃			
M/N	UP-9121	Humidity	52.8%			
Test Mode	TM1-TM2	Criterion	В			
Test Engineer	Diamond Lu					

TM1 Test Result:

EUT Working Mode	Antenna Polarity	Frequency (MHz)	Field Strength (V/m)	Observation	Position	Conclusion
Operating	Vertical	80-1000, 1000-6000	3	CT,CR	Front, Right, Left, Back	Pass
Mode	Horizontal	80-1000, 1000-6000	3	CT,CR	Front, Right, Left, Back	Pass
ldle	Vertical	80-1000, 1000-6000	3	See Note	Front, Right, Left, Back	Pass
idle	Horizontal	80-1000, 1000-6000	3	See Note	Front, Right, Left, Back	Pass

TM2 Test Result:

EUT Working Mode	Antenna Polarity	Frequency (MHz)	Field Strength (V/m)	Observation	Position	Conclusion
Operating	Vertical	80-1000, 1000-6000	3	See Note	Front, Right, Left, Back	Pass
Mode	Horizontal	80-1000, 1000-6000	3	See Note	Front, Right, Left, Back	Pass
Idlo	Vertical	80-1000, 1000-6000	3	See Note	Front, Right, Left, Back	Pass
Idle	Horizontal	80-1000, 1000-6000	3	See Note	Front, Right, Left, Back	Pass

***Note: Unintentional transmission is not founded from the EUT.

9. ELECTROSTATIC DISCHARGE

Please refer to ETSI EN 301 489-1 V2.1.1 (2017-02) and EN 61000-4-2.

9.1. Test Configuration

EN 61000-4-2 specifies that a tabletop EUT shall be placed on a non-conducting table which is 80 centimeters above a ground reference plane and that floor mounted equipment shall be placed on a insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement.

For tabletop equipment, a 1.5 by 1.0-meter metal sheet (HCP) is placed on the table and connected to the ground plane via a metal strap with two 470 k Ohms resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material. A Vertical Coupling Plane (VCP) grounded on the ground plane through the same configuration as in the HCP is used.

9.2. Test Procedure

ETSI EN 301 489-1 V2.1.1 (2017-02)/ EN 61000-4-2: 2009 Test level 3 for Air Discharge at ±8 kV Test level 2 for Contact Discharge at ±4 kV

9.2.1. Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

9.2.2. Contact Discharge

All the procedure shall be same as Section 6.2.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

9.2.3. Indirect Discharge For Horizontal Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

9.2.4. Indirect Discharge For Vertical Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

9.3. Test Data

PASS.

Please refer to the following page.

Electrostatic Discharge Test Results							
Standard	Standard □ IEC 61000-4-2 ☑ EN 61000-4-2						
Applicant	plicant SHENZHEN UNIWINS TECHNOLOGY CO.,LTD						
EUT	Bamboo wireless charging powerbank	Temperature	24.4℃				
M/N	UP-9121	Humidity	53.3%				
Criterion B Pressure 1021mbar							
Test Mode	TM1-TM2	Test Engineer	Diamond Lu				

TEST RESULT OF TM1

Test Voltage	Coupling	Observation	Result (Pass/Fail)
±2KV, ±4kV	Contact Discharge	TT, TR	Pass
±2KV, ±4kV, ±8kV	Air Discharge	TT, TR	Pass
±2KV, ±4kV	Indirect Discharge HCP	TT, TR	Pass
±2KV, ±4kV	Indirect Discharge VCP	TT, TR	Pass

TEST RESULT OF TM2

Test Voltage	Coupling	Result (Pass/Fail)
±2KV, ±4kV	Contact Discharge	Pass
±2KV, ±4kV, ±8kV	Air Discharge	Pass
±2KV, ±4kV	Indirect Discharge HCP	Pass
±2KV, ±4kV	Indirect Discharge VCP	Pass

Note: The EUT performance complied with performance criteria for CT&CR to MS Function and there is no any degradation of performance and function.

10. ELECTRICAL FAST TRANSIENT IMMUNITY

10.1. Test Configuration

10.2. Test Standard

EN 301 489-1 V2.1.1 (2017-02)/ EN61000-4-4: 2012 Test level 2 at 1 kV

Test level

	Open Circuit Output Test Voltage ±10%				
Level	On Power Supply Lines	On I/O (Input/Output) Signal data and control lines			
1	0.5 kV	0.25 kV			
2	1 kV	0.5 kV			
3	2 kV	1 kV			
4	4 kV	2 kV			
X	Special	Special			

Performance criterion: B

10.3. Test Procedure

The EUT is put on the table, which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

10.4.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device, which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.

- 10.4.2. For signal lines and control lines ports: No I/O ports. It's unnecessary to test.
- 10.4.3. For DC output line ports: It's unnecessary to test.

10.4. Test Data

PASS.

Please refer to the following page.

Electrical Fast Transient/Burst Test Results						
Standard	☐ IEC 61000-4-4 ☐ EN 61000-4	□ IEC 61000-4-4 □ EN 61000-4-4				
Applicant	SHENZHEN UNIWINS TECHNOLO	GY CO.,LTD				
EUT	Bamboo wireless charging powerbank	Bamboo wireless charging powerbank Temperature 24.9°C				
M/N	UP-9121	Humidity	53.1%			
Test Mode	TM1-TM2 Criterion B					
Test Engineer	Diamond Lu					

TEST RESULT OF TM1							
Line Test Voltage Polarity Observation Result (Pass/F							
L	1KV	+/-	TT, TR	Pass			
N	1KV	+/-	TT, TR	Pass			
L-N	1KV	+/-	TT, TR	Pass			

TEST RESULT OF TM2				
Line	Test Voltage	Polarity	Result (Pass/Fail)	
L	1KV	+/-	Pass	
N	1KV	+/-	Pass	
L-N	1KV	+/-	Pass	
· · · · · · · · · · · · · · · · · · ·				

11. RF COMMON MODE

11.1. Test Configuration

11.2. Test Standard

EN 301 489-1 V2.1.1 (2017-02)/ EN 61000-4-6: 2014 Test level 2 at 3 V (r.m.s.), 0.15 MHz ~ 80 MHz,

Modulation type: AM Modulation depth: 80% Modulation signal: 1 kHz

Test level

Level	Voltage Level (r.m.s)	
	(V)	
1	1	
2	3	
3	10	
X	Special	

Performance criterion: A

- 11.3.1. Let the EUT work in test mode and test it.
- 11.3.2. The EUT are placed on an insulating support 0.1 m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3 m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 11.3.3. The disturbance signal described below is injected to EUT through CDN.
- 11.3.4. The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 11.3.5. The frequency range is swept from 150 kHz to 80 MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.
- 11.3.6. The rate of sweep shall not exceed 1.5*10-3 decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 11.3.7. Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

11.4. Test Data

PASS.

Please refer to the following page.

Injected Currents Susceptibility Test Results						
Standard	☐ IEC 61000-4-6 ☐ EN 61000-4-	□ IEC 61000-4-6				
Applicant	SHENZHEN UNIWINS TECHNOLO	SHENZHEN UNIWINS TECHNOLOGY CO.,LTD				
EUT	Bamboo wireless charging powerbank	Bamboo wireless charging powerbank Temperature 23.8°C				
M/N	UP-9121	53.2%				
Test Mode	TM1-TM2 Criterion A					
Test Engineer	Diamond Lu					

TEST RESULT OF TM1					
Frequency Range (MHz) Injected Strength (Unmodulated) Observation Result (Pass/Fail					
0.15 ~ 80	AC Mains	3V	CT, CR	Pass	

TEST RESULT OF TM2					
Frequency Injected Strength Range (MHz) Position (Unmodulated) Result (Pass/Fail)					
0.15 ~ 80	AC Mains	3V	Pass		

Remark:

- 1. Modulation Signal:1kHz 80% AM
- 2. Measurement Equipment:

Simulator: CIT-10 (FRANKONIA)

CDN : ☑CDN-M2 (FRANKONIA) ☐CDN-M3 (FRANKONIA)

12. SURGES, LINE TO LINE AND LINE TO GROUND

12.1. Test Configuration

12.2. Test Standard

Ground Plane

ETSI EN 301 489-1 V2.1.1 (2017-02) / EN 61000-4-5: 2014

L-N: Test level 2 at 1 kV

L-PE, N-PE Test Level 3 at 2kV

Test Level

Open Circuit Output Test Voltage ±10%				
Level	On Power Supply Lines	On I/O (Input/Output) Signal data and control lines		
1	0.5 kV	0.25 kV		
2	1 kV	0.5 kV		
3	2 kV	1 kV		
4	4 kV	2 kV		
X	Special	Special		

Performance criterion: B

12.3. Test Procedure

- 12.3.1. For line to line coupling mode, provide a 0.5 kV 1.2/50us voltage surge (at open-circuit condition).
- 12.3.2. At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 12.3.3. Different phase angles are done individually.
- 12.3.4. Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

12.4. Test Data

PASS.

Please refer to the following page.

Surge Immunity Test Result					
Standard	Standard □ IEC 61000-4-5 □ EN 61000-4-5				
Applicant	SHENZHEN UNIWINS TECHNO	SHENZHEN UNIWINS TECHNOLOGY CO.,LTD			
EUT	Bamboo wireless charging powerbank	Temperature	24.4°C		
M/N	UP-9121	Humidity	53.1%		
Test Mode	TM1-TM2	Criterion	A		
Test Engineer	Diamond Lu				

TEST RESULT OF TM1						
Location	Polarity	Phase Angle	Number of Pulse	Pulse Voltage (KV)	Observation	Result (Pass/Fail)
L-N	+	0°, 90°, 180°, 270°	5	1.0	TT, TR	Pass
L-IN	-	0°, 90°, 180°, 270°	5	1.0	TT, TR	Pass

TEST RESULT OF TM2								
Location	Polarity	Phase Angle	Number of Pulse	Pulse Voltage (KV)	Result (Pass/Fail)			
L-N	+	0°, 90°, 180°, 270°	5	1.0	Pass			
L-IV	-	0°, 90°, 180°, 270°	5	1.0	Pass			
	-			-	-			

13. VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST

13.1. Test Configuration

13.2. Test Standard

ETSI EN 301 489-1 V2.1.1 (2017-02)/ EN 61000-4-11: 2004 Test levels and Performance Criterion

Test Level

Voltage Reduction %UT	Voltage dips %UT	Duration (in period)
100	0	0.5
100	0	1
30	70	5
Voltage Reduction %UT	Voltage Interruptions %UT	Duration (in period)
100	0	250

Performance criterion: B&C

13.3. Test Procedure

- 13.3.1. The interruption is introduced at selected phase angles with specified duration.
- 13.3.2. Record any degradation of performance.

13.4. Test Data

PASS.

Please refer to the following page.

Voltage Dips And Interruptions Test Results							
Standard	□ IEC 61000-4-11						
Applicant	SHENZHEN UNIWINS TECHNOLOGY	Y CO.,LTD					
EUT	Bamboo wireless charging powerbank	Temperature	24.9℃				
M/N	UP-9121	Humidity	53.1%				
Test Mode	TM1-TM2	Criterion	A				
Test Engineer	Diamond Lu						

TEST RESULT OF TM1										
Test Level % U _T	Voltage Dips & Short Interruptions % U _T	Duration (in periods)	Observation	Result (Pass/Fail)						
0	100	0.5P	TT, TR	Pass						
0	100	1P	TT, TR	Pass						
70	30	25P	TT, TR	Pass						
0	100	250P	TT, TR	Pass						

	TEST RESULT OF TM2								
Test Level % U _T	Voltage Dips & Short Interruptions $\% U_T$	Duration (in periods)	Result (Pass/Fail)						
0	100	0.5P	Pass						
0	100	1P	Pass						
70	30	25P	Pass						
0	100	250P	Pass						
	•								

14. LIST OF MEASURING EQUIPMENT

LINE CONDUCTED EMISSION

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	AUDIX	E3	/	2018-06-16	2019-06-15
2	EMI Test Receiver	R&S	ESPI	101840	2018-06-16	2019-06-15
3	Artificial Mains	R&S	ENV216	101288	2018-06-16	2019-06-15
4	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2018-06-16	2019-06-15

RADIATED DISTURBANCE

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	AUDIX	E3	/	2018-06-16	2019-06-15
2	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2018-06-16	2019-06-15
3	Positioning Controller	MF	MF-7082	/	2018-06-16	2019-06-15
4	By-log Antenna	SCHWARZBEC K	VULB9163	9163-470	2018-07-26	2019-07-25
5	Horn Antenna	SCHWARZBEC K	BBHA 9120D	9120D-1925	2018-07-02	2019-07-01
6	EMI Test Receiver	R&S	ESR 7	101181	2018-06-16	2019-06-15
7	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2018-11-15	2019-11-14
8	AMPLIFIER	QuieTek	QTK	CHM/0809065	2018-11-15	2019-11-14
9	RF Cable-R03m	Jye Bao	RG142	CB021	2018-06-16	2019-06-15
10	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2018-06-16	2019-06-15

VOLTAGE FLUCTUATION AND FLICKER/HARMONIC CURRENT EMISSIONS

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Analyzer Test System	Voltech	PM6000	200006700523	2018-06-16	2019-06-15

RF ELECTROMAGNETIC FIELD

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	RS Test Software	Tonscend	/	/	2018-06-16	2019-06-15
2	ESG Vector Signal Generator	Agilent	E4438C	MY42081396	2018-11-15	2019-11-14
3	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2018-06-16	2019-06-15
4	RF POWER AMPLIFIER	OPHIR	5225R	1052	NCR	NCR
5	RF POWER AMPLIFIER	OPHIR	5273F	1019	NCR	NCR
6	Stacked Broadband Log Periodic Antenna	SCHWARZBECK	STLP 9128	9128ES-145	NCR	NCR
7	Stacked Mikrowellen LogPer Antenna	SCHWARZBECK	STLP 9149	9149-484	NCR	NCR
8	Electric field probe	Narda S.TS./PMM	EP601	611WX80208	2018-03-26	2019-03-25

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2019-01-31. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

ELECTROSTATIC DISCHARGE

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	ESD Simulator	SCHLODER	SESD 230	604035	2018-07-02	2019-07-01

ELECTRICAL FAST TRANSIENT IMMUNITY

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Immunity Simulative Generator	EM TEST	UCS500 M4	0101-34	2018-11-15	2019-11-14
2	CAPACITANCE COUPLING CLAMP	3CTEST	EFTC	EC0441098	2018-06-16	2019-06-15

RF COMMON MODE

	Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
	1	Simulator	FRANKONIA	CIT-10/75	A126A1195	2018-06-16	2019-06-15
ſ	2	CDN	FRANKONIA	CDN-M2+M3	A2210177	2018-06-16	2019-06-15
Ī	3	6dB Attenuator	FRANKONIA	DAM25W	1172040	2018-06-16	2019-06-15

SURGES, LINE TO LINE AND LINE TO GROUND

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Immunity Simulative Generator	EM TEST	UCS500 M4	0101-34	2018-11-15	2019-11-14

VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2018-06-16	2019-06-15

RADIATED ELECTROMAGNETIC DISTURBANCES

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Large Loop Antenna	LAPLACE	LLA-2	9161	2018-06-16	2019-06-15
2	10dB Attenuator	Mini-circuits	HAT-10	15542	2018-06-16	2019-06-15
3	EMI Test Software	AUDIX	E3	/	2018-06-16	2019-06-15
4	EMI Test Receiver	R&S	ESPI	101840	2018-06-16	2019-06-15

Note: All equipment is calibrated through GUANGZHOU LISAI CALIBRATION AND TEST CO.,LTD.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2019-01-31. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

15. TEST SETUP PHOTOGRAPHS

Conducted Emission

Radiated Emission below 30MHz

Radiated Emission Above 1GHz

Flicker

ESD

RS

Surge

Dips

16. EUT EXTERIOR AND INTERIOR PHOTOGRAPHS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 6

Fig. 7

Fig. 8

Fig. 10

-----THE END OF REPORT-----