

Test Report

Report No.: MTi190415E083

Date of issue: June 19, 2019

Sample Description:	Ontario 5W wireless charging stand
Model(s):	P308.48
Applicant:	
Address:	
Date of Test:	Apr. 09, 2019 - Apr. 20, 2019

This test report is valid for the tested samples only. It cannot be reproduced except in full without prior written consent of Shenzhen Microtest Co., Ltd.

- Page 2 of 24 -

Report No.: MTi190415E083

Table of Contents

4
5
5
5
5
6
6
6
7
8
9
9
 9 9
 9 9 11
 9 9 11 14
9 11 14 15
9 11 14 15 19
9 11 14 15 19 20

- Page 3 of 24 -

Report No.: MTi190415E083

Ontario 5W wireless charging stand
N/A
P308.48
N/A
N/A
EN 303 417 V1.1.1 (2017-09)

This device described above has been tested by Shenzhen Microtest Co., Ltd. and the test results show that the equipment under test (EUT) is in compliance with the Radio equipment directive requirements. And it is applicable only to the tested sample identified in the report.

Tested by:	Demyma		
	Demi Mu	Apr. 20, 2019	
Reviewed by:	13 lue. Zherg		
	Blue Zheng	June 19, 2019	
Approved by:	Snorthohen		
	Smith Chen	June 19, 2019	

- Page 4 of 24 -

Report No.: MTi190415E083

1. Summary of Test Result

No.	Description of Test	Reference: Clause No	Result
1	Permitted range of operating frequencies	4.3.2	Pass
2	Operating frequency ranges	4.3.3	Pass
3	H-field requirements	4.3.4	Pass
4	Transmitter spurious emissions	4.3.5	Pass
5	Transmitter out of band (OOB) emissions	4.3.6	Pass
6	WPT system unwanted conducted emissions	4.3.7	N/A*
7	Receiver blocking	4.4.2	Pass

^{**} This applies to all WPT systems where the cable to the primary coil exceeds a length of 3 m and where the cable is not installed in the ground or any metallic structures.

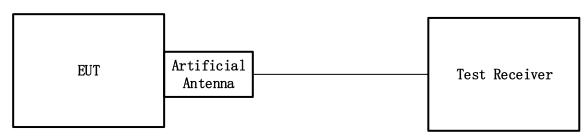
^{**} The EUT only work in mode 1.

- Page 5 of 24 -Report No.: MTi190415E083

2. General description

2.1. Feature of equipment under test (EUT)

Product name:	Ontario 5W wireless charging stand		
Brand name:	N/A		
Model name:	P308.48		
Series model:	N/A		
Deference in serial model:	N/A		
TX/RX frequency range:	110-205kHz		
Radiated H-Field:	-12.723dBuA/m(@3m)		
Operational mode:	Wireless charging		
Antenna designation:	Coil Antenna		
Power source:	DC 5V from adapter		
Adapter information:	N/A		
Note: The is a receiver device only use to energy transmission			


2.2. EUT operation mode

Testing shall be made under normal test conditions, and also, where stated, under extreme test conditions.

Test mode	Description	
Mode 1	Wireless charging	

2.3. EUT test setup

For Conducted test:

- Page 6 of 24 -

Report No.: MTi190415E083

For Radiated test:

See photographs of the test setup in the report for the actual setup and connections between EUT and support equipment.

2.4. Test conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15°C~35°C - Humidity: 20%~75%

Atmospheric pressure: 98kPa~101kPa

2.5. Ancillary equipment list

Equipment	Equipment Model S/N		Manufacturer
Adapter /		/	/
Load	/	/	/

2.6. Measurement uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in ETSI TR 100 028 [i.14]. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Parameters	Uncertainty		
RF frequency	±1.12 x 10 ⁻⁸		
RF power, conducted	± 1 dB		
Radiated emission of transmitter	±4.7 dB		
Radiated emission of receiver	±4.7 dB		
Temperature	±0.5 °C		
Humidity	±0.5 %		

- Page 7 of 24 - Report No.: MTi190415E083

3. Testing site

Test laboratory:	Shenzhen Microtest Co., Ltd.
Laboratory location:	No.102A & 302A, East Block, Hengfang Industrial Park, Xingye Road, Xixiang, Bao'an District, Shenzhen, Guangdong, China
CNAS Registration No.:	L5868
Telephone:	(86-755)88850135
Fax:	(86-755)88850136

- Page 8 of 24 -

Report No.: MTi190415E083

[AX [X]] TE [X]

4. List of test equipment

Software Name: EMI Measurement Software

Manufacture Model:	er: Farad EZ-EMC					
Equipment No.	Equipment Name	Manufactur er	Model	Serial No.	Calibration date	Due date
MTI-E001	Spectrum Analyzer	Agilent	E4407B	MY41441082	2018/09/18	2019/09/17
MTI-E004	EMI Test Receiver	Rohde&schw arz	ESPI	1000314	2018/09/18	2019/09/17
MTI-E006	Broadband antenna	schwarabeck	VULB916 3	872	2018/09/18	2019/09/17
MTI-E007	Horn antenna	schwarabeck	BBHA912 0D	1201	2018/09/18	2019/09/17
MTI-E014	amplifier	America	8447D	3113A06150	2018/09/18	2019/09/17
MTI-E015	Conduction Immunity Signal Generator	Schloder	CDG6000	126A1343/20 15	2018/09/18	2019/09/17
MTI-E016	Coupled decoupling network	Schloder	CND M2/M3	A2210332/20 15	2018/09/18	2019/09/17
MTI-E034	amplifier	Agilent	8449B	3008A02400	2018/09/18	2019/09/17
MTI-E040	Spectrum analyzer	Agilent	N9020A	MY49100060	2018/09/18	2019/09/17
MTI-E041	Signal generator	Agilent	N5182A	MY49060455	2018/09/18	2019/09/17
MTI-E042	Analog signal generator	Agilent	E4421B	GB40051240	2018/09/18	2019/09/17
MTI-E043	Power probe	Dare Instruments	RPR3006 W	16I00054SN O16	2018/09/18	2019/09/17
MTI-E047	10dB attenuator	Mini-Circuits	UNAT-10+	15542	2018/09/18	2019/09/17
MTI-E049	spectrum analyzer	Rohde&schw arz	FSP-38	100019	2018/09/18	2019/09/17
MTI-E050	PSG Signal generator	Agilent	E8257D	MY46520873	2018/09/18	2019/09/17
MTI-E061	Active Loop Antenna 9kHz - 30MHz	Schwarzbeek	FMZB 1519 B	00044	2018/09/18	2019/09/17
MTI-E052	18-40GHz amplifier	Chengdu step Micro Technology	ZLNA-18- 40G-21	1608001	2018/09/18	2019/09/17
MTI-E053	15-40G Antenna	Schwarzbeek	BBHA917 0	BBHA91705 82	2018/09/18	2019/09/17

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

- Page 9 of 24 -

Report No.: MTi190415E083

5. Transmitter parameters

5.1. Permitted range of operating frequencies

5.1.1. Definition

The permitted range of operating frequencies denotes the frequency ranges set out in Table 1. It likewise denotes the respective frequency range for accommodation of the fundamental WPT frequency of the EUT within its operating frequency range (OFR).

5.1.2. Limits

The permitted range of operating frequency range(s) for intentional emissions shall be within 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz, see Table 2.

Table 2

Table 2						
Operational Mode	Set-up	Function of base station	Function of Mobile device	Test scenario	Conformance and Requirements	
Mode 1: base station in stand-by, idle mode	Single device	Transmitter	Not applicable	Single radiation test (TX) with the base station/charging pad. The test set-up as described in clause 6.1.2 shall be used.	Operating frequency range (clause 4.3.3) H-Field emission (clause 4.3.4) TX spurious (clauses 4.3.5, 4.3.6 and 4.3.7) Performance criteria test (RX test) (clause 4.4)	
Mode 2: Communication before charging, adjustment charging mode / position	In combination	TX and RX	TX and RX	Specific test setup, declared by the manufacturer. Manufacturer shall declare the maximal distance between base station and mobile device the WPT system is able to communicate (distance D). The test setup- up shall be performed with the largest communication distance. The test set-up as described in clause 6.1.3 shall be used.	Operating frequency range (clause 4.3.3) H-Field emission (clause 4.3.4) TX spurious (clauses 4.3.5, 4.3.6 and 4.3.7) Wanted performance criteria test (RX test) (clause 4.4)	
Mode 3: Communication	WPT system alignment	TX and RX	TX and RX	Worst case alignment		
Mode 4: energy transmission	WPT system alignment	TX and RX	TX and RX	Both tests can be performed within one set-up, worst-case alignment. The test set-up as described in clause 6.1.4 shall be used.	Operating frequency range (clause 4.3.3) H-Field emission (clause 4.3.4) TX spurious (clauses 4.3.5, 4.3.6 and 4.3.7) Wanted Performance criteria test (RX test) (clause 4.4)	

5.1.3. Test Procedures

Follow the test procedure as described in EN 303 417 V1.1.1 Clause 4.3.3.2 to measure the permitted range of operating frequencies at normal condition.

- Page 10 of 24 - Report No.: MTi190415E083

5.1.4. Test Result

Permitted range of operating frequencies					
F _L (kHz)	F _H (kHz)	Limit (ł	Result		
110	205	F _L ≥100	F _H ≤300	Pass	

- Page 11 of 24 - Report No.: MTi190415E083

5.2. Operating frequency range(s) (OFR)

5.2.1. Definition

The operating frequency range is the frequency range over which the WPT system is intentionally transmitting (all operational modes, see clause 4.2.3, Table 2).

The operating frequency range(s) of the WPT system are determined by the lowest (fL) and highest frequency (f_H) as occupied by the power envelope.

The WPT system could have more than one operating frequency range.

For a single frequency systems the OFR is equal to the occupied bandwidth (OBW) of the WPT system.

For multi-frequency systems the OFR is described in Figures 2 and 3.

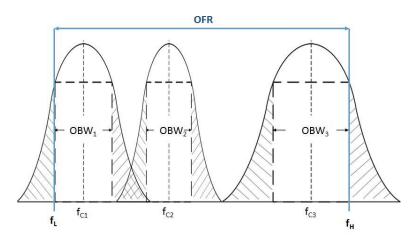


Figure 2: OFR of a multi - frequency WPT system within one frequency range of Table 2 and within one WPT system cycle time

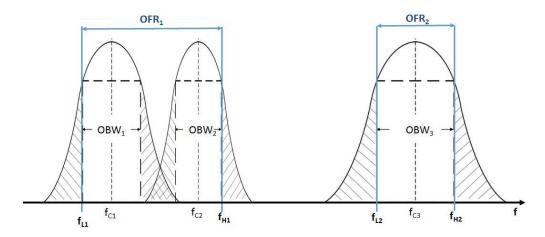


Figure 3: OFR of a multi - frequency WPT system within two frequency ranges of Table 2 and within one WPT system cycle time

Limits

The operating frequency range for emissions shall be within one of the following limits: 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz.

- Page 12 of 24 -

Report No.: MTi190415E083

5.2.2. Test Procedures

The conformance test suite for operating frequency ranges shall be as defined in clause 6.2.1. The manufacturer shall declare all necessary information (distance, orientation) which are necessary to set-up the different alignments as defined in clause 6.1.1 for each operational mode as defined in clause 4.2.3, Table 2.

Conformance shall be established under test conditions to be declared by the manufacturer according to clause 4.1. The interpretation of the results for the measurements uncertainty shall be as given in clause 5.11.

5.2.3. Test Result

Operating frequency range(s) (OFR)							
F _L (kHz) F _H (kHz) Limit (kHz)				Result			
106.8245	106.8245 208.1890 F _L ≥100 F _H ≤300						
Note: F _L (kHz) = F _{centre} F _H (kHz) = F _{centre}							

99% OBW

- Page 13 of 24 - Report No.: MTi190415E083

99% **OBW**

- Page 14 of 24 -

Report No.: MTi190415E083

5.3. H-field requirements

5.3.1. Definition

The radiated H-field is defined in the direction of maximum field strength under specified conditions of measurement.

5.3.2. Limits

The H-field limits are provided in Table 3.

Table 3: H-field limits

Frequency range [MHz]	H-field strength limit [dBμA/m at 10 m]	Comments	
0.019 ≤ f < 0.021	72		
0.059 ≤ f < 0.061	69.1 descending 10 dB/dec	Note 1	
0.079 ≤ f < 0.090	67.8 descending 10 dB/dec	Note 2	
0.100 ≤ f < 0.119	42		
0.119 ≤ f < 0.135	66 descending 10 dB/dec	Note 1	
0.135 ≤ f < 0.140	42		
0.140 ≤ f < 0.1485	37.7		
0.1485 ≤ f < 0.30	-5		
6.765 ≤ f < 6.795	42		

Note 1: Limit is 42 dBµA/m for the following spot frequencies: 60 kHz ± 250 Hz and 129,1 kHz ± 500 Hz.

Note 2: At the time of preparation of the present document the feasibility of increased limits for high power wireless power transmission systems to charge vehicles [i.4] was prepared. New specific requirements for such systems (e.g. higher H-field emission limits in the 79 - 90 kHz band) will be reflected within a future revision of the present document.

5.3.3. Test Procedures

Follow the test procedure as described in EN 303 417 V1.1.1 Clause 6.2.1 to measure the H-field requirements at normal condition.

5.3.4. Test Result

Frequency	Level	C₃Factor	Level	Limit	Result
(MHz)	(dBuA/m)@3m	(dB)	(dBuA/m)@10m	(dBuA/m)@10m	
0.11	-13.561	31.471	-45.032	42	Pass

Frequency	Level	C₃Factor	Level	Limit	Result
(MHz)	(dBuA/m)@3m	(dB)	(dBuA/m)@10m	(dBuA/m)@10m	
0.205	-12.723	31.471	-44.194	-5	Pass

Note:1. H3_m=H10_m+C₃ refer to ETSI EN300 330 Annex H.2

Level(dBuA/m)@10m = Level(dBuA/m)@3m - C3

Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: http://www.mtitest.com E-mail: mti@51mti.com

- Page 15 of 24 - Report No.: MTi190415E083

5.4. Transmitter spurious emissions

5.4.1. Definition

The transmitter spurious emissions for a single frequency system are to be considered in frequency ranges defined in Figure 4 ($f < f_{SL}$ and $f > f_{SH}$).

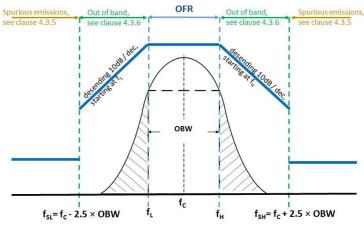


Figure 4: Out of band and spurious domain of a single frequency WPT system

The transmitter spurious emissions for a multi frequency system (within one WPT frequency range from Table 2) are to be considered in frequency ranges defined in Figure 5 ($f < f_{SL}$ and $f > f_{SH}$).

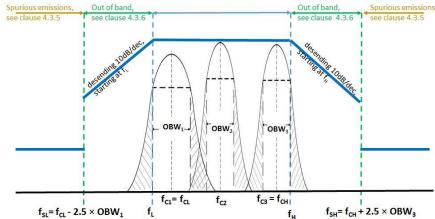


Figure 5: Out of band and spurious domain of a multi - frequency system (during one WPT system cycle time) 4.3.5.3

5.4.2. Limits

The radiated field strength of spurious emissions below 30 MHz shall not exceed the generated H-field given in Table 4.

- Page 16 of 24 -

Report No.: MTi190415E083

State (see note)	Frequency 9 kHz ≤ f < 10 MHz	Frequency 10 MHz ≤ f < 30 MHz				
Operating	27 dBµA/m at 9 kHz descending	-3.5 dBµA/m				
Standby	5.5 dBµA/m at 9 kHz descending	-25 dBμA/m				
Note: "Operating" means mode 2, 3 and 4 according to Table 2; "standby" means mode 1 according to Table 2.						

The power of any radiated spurious emission between 30 MHz and 1 GHz shall not exceed the values given in Table 5.

Table 5

State (see note)	47 MHz to 74 MHz 87.5 MHz to 118 MHz 174 MHz to 230 MHz 470 MHz to 790 MHz	Other frequencies between 30 MHz to 1 000 MHz				
Operating	4 nW	250 nW				
Standby	2 nW	2 nW				
Note: "Operating" means mode 2, 3 and 4 according to Table 2; "standby" means mode 1 according to Table						

Note: "Operating" means mode 2, 3 and 4 according to Table 2; "standby" means mode 1 according to Table 2.

5.4.3. Test Procedures

Follow the test procedure as described in EN 300 330 V2.1.1 Clause 6.2.1. to measure the transmitter spurious emissions at normal condition.

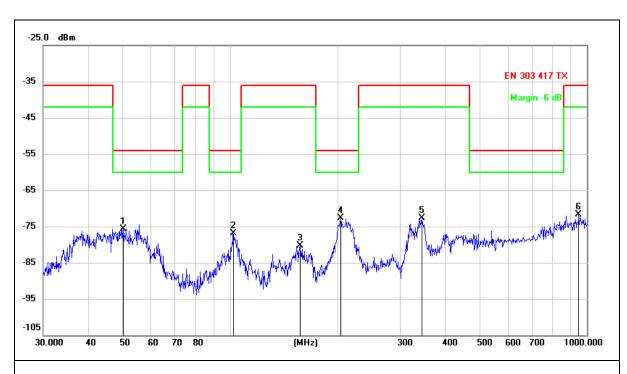
5.4.4. Test Result

9KHz-30MHz:

No.	Frequency	Result@3m	C ₃	Result @10m	Limit@10m	Margin	Rem
	(MHz)	dBuA/m	(dB)	dBuA/m	dBuA/m	(dB)	ark
1	16.7142	-25.41	22.45	-47.86	-3.6	-44.26	Peak

Note: H_{3m}=H_{10m}+C₃ refer to ETSI EN300 330 Annex H.2

Result @10m= Result@3m - C₃ Margin= Result @10m - Limit@10m

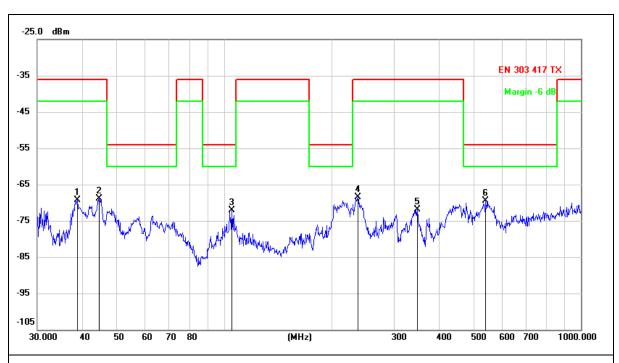


- Page 17 of 24 -

Report No.: MTi190415E083

30MHz-1000MHz:

1 - 111	Ontario 5W wireless charging stand	Model name:	P308.48
Temperature:	25℃	Relative Humidity:	56%
Pressure:	101kPa	Phase:	Н
Test voltage:	DC 5V form AC 230V/50Hz	Test mode:	Mode 1


No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBm	dBm	dBm	dBm	dB	Detector
1		50.2324	-75.37	-0.36	-75.73	-54.00	-21.73	peak
2		102.0014	-73.76	-3.21	-76.97	-54.00	-22.97	peak
3		157.5586	-74.99	-5.38	-80.37	-36.00	-44.37	peak
4	*	204.2375	-70.28	-2.37	-72.65	-54.00	-18.65	peak
5		344.3854	-74.35	1.69	-72.66	-36.00	-36.66	peak
6		948.7608	-81.65	9.93	-71.72	-36.00	-35.72	peak

- Page 18 of 24 -

Report No.: MTi190415E083

EUT	Ontario 5W wireless charging stand	Model name:	P308.48
Temperature:	25℃	Relative Humidity:	56%
Pressure:	101kPa	Phase:	V
LIAST MOITANA:	DC 5V form AC 230V/50Hz	Test mode:	Mode 1

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBm	dBm	dBm	dBm	dB	Detector
1		38.8878	-68.12	-1.21	-69.33	-36.00	-33.33	peak
2		44.7433	-68.73	-0.19	-68.92	-36.00	-32.92	peak
3		105.2716	-70.08	-2.07	-72.15	-54.00	-18.15	peak
4		237.4755	-66.98	-1.43	-68.41	-36.00	-32.41	peak
5		348.0274	-73.86	2.06	-71.80	-36.00	-35.80	peak
6	*	541.3721	-74.72	5.26	-69.46	-54.00	-15.46	peak

- Page 19 of 24 -

Report No.: MTi190415E083

5.5. Transmitter out of band (OOB) emissions

5.5.1. Definition

The WPT system out of band emissions are to be considered in frequency ranges defined in Figure 4 and Figure 5 (between f_{SL} and f_{L} and between f_{H} and f_{SH}).

5.5.2. Limits

The OOB limits are visualized in Figures 4 and 5; they are descending from the intentional limits from Table 3 at f_H/f_L with 10 dB/decade.

5.5.3. Test Procedures

Follow the test procedure as described in EN 303 417 V1.1.1 Clause 6.2.1 to measure the transmitter out of band (OOB) emissions at normal condition.

5.5.4. Test Result

No.	Frequency	Result@3 m	C ₃	Result @10m	Limit@10m	Margin	Remark
	(MHz)	dBuA/m	(dB)	dBuA/m	dBuA/m	(dB)	
1	FcL-2.5 X OBW ₁	-13.69	31.2	-44.89	16.77	61.66	Peak
2	F∟	-4.97	31.2	-36.17	16.64	52.81	Peak
3	F _H	-5.56	31.2	-36.76	16.24	53	Peak
4	FcH-2.5 X OBW ₂	-10.15	31.2	-41.35	16.08	57.43	Peak

Note: H_{3m}=H_{10m}+C₃ refer to ETSI EN300 330 Annex H.2

5.6. WPT system unwanted conducted emissions

WPT system unwanted conducted emissions are based on the emissions of the unwanted common mode current on the cable between the off board power supply and the primary coil seen as a monopole radiator driven against the power supply.

5.6.2. Limits

The common mode current (ICM) between 1 MHz and 30 MHz shall not exceed the following limit:

$$ICM = 47 - 8 \times log(f) dB\mu A$$

Note: f is the frequency in MHz.

5.6.3. Test Procedures

Follow the test procedure as described in EN 303 417 V1.1.1 Clause 6.2.4 to measure the WPT system unwanted conducted emissions.

5.6.4. Test Result

Not application.

- Page 21 of 24 -

Report No.: MTi190415E083

5.7. Receiver blocking

5.7.1. Definition

Blocking is a measure of the capability of the receiver to receive a wanted signal without exceeding a given degradation due to the presence of an unwanted input signal at any frequencies other than those of the receiver spurious responses.

The test shall be performed in the relevant operational modes (see clause 4.2.3).

The wanted performance criteria from clause 4.2.2 shall be used as criterion for the receiver blocking tests.

5.7.2. Limits

The receiver blocking limits in Table 6 shall be fulfilled

	In-band signal	OOB signal	Remote-band signal				
Frequency	Centre frequency (fc) of the WPT	f = fc ± F (see note)	$f = fc \pm 10 \times F$ (see note)				
Signal level field strength at the EUT	72 dBμA/m	72 dBμA/m	82 dBμA/m				
Note: F = OFR see clause 4.3.3.							

5.7.3. Test Procedures

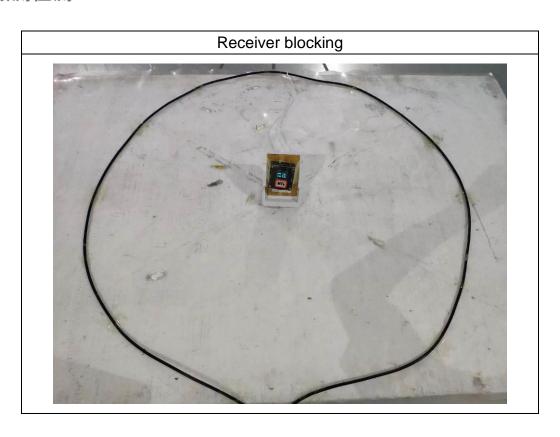
Follow the test procedure as described in EN 303 417 V1.1.1 Clause 6.3.2 to measure Receiver blocking.

5.7.4. Test Result

Test Frequency	Blocking Signal (dBuA/m)	Performance Criterion	Result
Fc-10 X OFR	71	Without degradation of Performance	Pass
Fc-OFR	64	Without degradation of Performance	Pass
Fc	67	Without degradation of Performance	Pass
Fc+ OFR	63	Without degradation of Performance	Pass
Fc+10 X OFR	73	Without degradation of Performance	Pass

- Page 22 of 24 -Report No.: MTi190415E083

Photographs of the Test Setup


Radiated emission above 30MHz

Micr©test 微测检测

- Page 23 of 24 -

Report No.: MTi190415E083

- Page 24 of 24 - Report No.: MTi190415E083

Photographs of the EUT

See the APPENDIX 1: EUT PHOTO in the report No.: MTi190415E083-1.

----END OF REPORT----