EMC TEST REPORT For Power bank Test Model: UP-9148 Prepared for : Address : Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd. Address : 101, 601, Xingyuan Industrial Park, Gushu Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com Mail : webmaster@LCS-cert.com Date of receipt of test sample : June 05, 2019 Number of tested samples : 1 Serial number : Prototype Date of Test : June 05, 2019~ June 12, 2019 Date of Report : June 14, 2019 ### **EMC TEST REPORT** EN 55032: 2015 Electromagnetic compatibility of multimedia equipment - Emission Requirements EN 55035: 2017 Electromagnetic compatibility of multimedia equipment – Immunity requirements Report Reference No.: : LCS190604029AE Date of Issue : June 14, 2019 Testing Laboratory Name : Shenzhen LCS Compliance Testing Laboratory Ltd. Address : 101, 601, Xingyuan Industrial Park, Gushu Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China Testing Location/ Procedure ... : Full application of Harmonised standards Partial application of Harmonised standards Other standard testing method Applicant's Name: Address: **Test Specification** Standard..... : EN 55032: 2015 EN 55035: 2017 Test Report Form No.: LCSEMC-1.0 TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd. Master TRF : Dated 2011-03 Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Test Item Description.....: Power bank Trade Mark....: N/A Test Model : UP-9148 Ratings: Please Refer To Page 10 Result: Positive Compiled by: Supervised by: Approved by Skylly Shen Jeo Jee Skylly Shen/ File administrators Leo Lee/ Technique Principal Gavin Liang/ Manager Test Report No.: LCS190604029AE June 14, 2019 Date of issue # THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER. # **EMC -- TEST REPORT** | Test Model | : UP-9148 | | |--------------|--------------|----------| | EUT | : Power bank | | | Applicant | : | | | Address | : | | | Telephone | :/ | | | Fax | :/ | | | Manufacturer | : | | | Address | : | | | Telephone | :/ | | | Fax | : / | | | Factory | : | | | Address | : | | | Telephone | : / | | | Fax | :/ | | | | | | | Test Resul | t | Positive | The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. # **Revision History** | Revision | Issue Date | Revisions | Revised By | |----------|---------------|---------------|-------------| | 000 | June 14, 2019 | Initial Issue | Gavin Liang | | | | | | | | | | | # TABLE OF CONTENTS | Test Report Description | Page | |---|------| | 1. TEST STANDARDS | 6 | | 2.SUMMARY OF STANDARDS AND RESULTS | 7 | | 2.1. DESCRIPTION OF STANDARDS AND RESULTS | 7 | | 2.2. DESCRIPTION OF PERFORMANCE CRITERIA | 8 | | 3. GENERAL INFORMATION | | | 3.1. DESCRIPTION OF DEVICE (EUT) | 9 | | 3.2. DESCRIPTION OF TEST FACILITY | 9 | | 3.4. MEASUREMENT UNCERTAINTY | | | 4. MEASURING DEVICES AND TEST EQUIPMENT | 11 | | 5.TEST RESULTS | 12 | | 5.1. RADIATED EMISSION MEASUREMENT | 12 | | 5.2. ELECTROSTATIC DISCHARGE IMMUNITY TEST | 15 | | 5.3. RF FIELD STRENGTH SUSCEPTIBILITY TEST5.4. MAGNETIC FIELD SUSCEPTIBILITY TEST | | | | | | 6. PHOTOGRAPHS OF TEST SETUP | | | 7. PHOTOGRAPHS OF THE EUT | 25 | | SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. | Report No.: LCS190604029AE | |---|----------------------------------| | | | | 1. TEST STANDARDS | | | The tests were performed according to following standard | ds: | | EN 55032: 2015 Electromagnetic compatibility of multimedia ed | quipment - Emission Requirements | | EN 55035: 2017 Electromagnetic compatibility of multimedia eq | uipment – Immunity requirements | THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER. # 2.SUMMARY OF STANDARDS AND RESULTS ### 2.1. Description of Standards and Results The EUT have been tested according to the applicable standards as referenced below. | Emission (EN 55032: 2015) | | | | | | |---|------------------------------|-----------------------------|---------|--|--| | Description of Test
Item | Standard | Limits | Results | | | | Conducted disturbance at mains terminals | EN 55032: 2015 | Class B | N/A | | | | Conducted disturbance at telecommunication port | EN 55032: 2015 | Class B | N/A | | | | Radiated disturbance | EN 55032: 2015 | Class B | PASS | | | | Harmonic current emissions | EN 61000-3-2: 2014 | Class A | N/A | | | | Voltage fluctuations & flicker | EN 61000-3-3: 2013 | | N/A | | | | | Immunity (EN 55035: 2017) | | | | | | Description of Test
Item | Basic Standard | Performanc
e
Criteria | Results | | | | Electrostatic Discharge (ESD) | EN 61000-4-2: 2009 | В | PASS | | | | Radio-frequency,
Continuous Radiated
Disturbance | EN 61000-4-3: 2006+A2: 2010 | Α | PASS | | | | Electrical Fast Transient (EFT) | EN 61000-4-4: 2012 | В | N/A | | | | Surge
(Input a.c. Power Ports) | | В | N/A | | | | Surge
(Telecommunication
Ports) | EN 61000-4-5: 2014+A1: 2017 | В | N/A | | | | Radio-frequency,
Continuous Conducted
Disturbance | EN 61000-4-6: 2014 | А | N/A | | | | Power Frequency Magnetic Field | EN 61000-4-8: 2010 | Α | PASS | | | | Voltage Dips, >95%
Reduction | | В | N/A | | | | Voltage Dips, 30%
Reduction | EN 61000-4-11: 2004+A1: 2017 | С | N/A | | | | Voltage Interruptions | | С | N/A | | | | ***Note: N/A is an abbreviat | ion for Not Applicable. | | | | | | Test mode: | | | | | |--|-------------|----------|--|--| | Mode 1 | Discharging | Record | | | | Mode 2 | Charging | Pre-scan | | | | ***Note: All test modes were tested, but we only recorded the worst case in this report. | | | | | ### 2.2. Description of Performance Criteria General Performance Criteria Examples of functions defined by the manufacturer to be evaluated during testing include, but are not limited to, the following: - essential operational modes and states; - tests of all peripheral access (hard disks, floppy disks, printers, keyboard, mouse, etc.); - quality of software execution; - quality of data display and transmission; - quality of speech transmission. ### 2.2.1. Performance criterion A The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacture when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deriver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended. ### 2.2.2. Performance criterion B After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacture, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operation state or stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be deriver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended. ### 2.2.3. Performance criterion C Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacture's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be loss. ### 3. GENERAL INFORMATION ### 3.1. Description of Device (EUT) EUT : Power bank Trade Mark : N/A Test Model : UP-9148 : Micro USB Input: 5V==2A Type C Input: 5V==2A Power Supply Lightning Input: 5V==1.5A USB Output 1: 5V---1A USB Output 2: 5V---2A | Highest internal frequency (Fx) | Highest measured frequency | |---------------------------------|---------------------------------| | Fx ≤ 108 MHz | 1 GHz | | 108 MHz < Fx ≤ 500 MHz | 2 GHz | | 500 MHz < Fx ≤ 1 GHz | 5 GHz | | Fx > 1 GHz | 5 × Fx up to a maximum of 6 GHz | NOTE 1 For FM and TV broadcast receivers, Fx is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies. NOTE 2 Fx is defined in EN 55032 Section 3.1.19. Where Fx is unknown, the radiated emission measurements shall be performed up to 6 GHz ### 3.2. Description of Test Facility FCC Registration Number is 254912. Industry Canada Registration Number is 9642A-1. ESMD Registration Number is ARCB0108. UL Registration Number is 100571-492. TUV SUD Registration Number is SCN1081. TUV RH Registration Number is UA 50296516-001 NVLAP Registration Code is 600167-0. ### 3.3. Statement of The Measurement Uncertainty The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. ### 3.4. Measurement Uncertainty | Test | Test Parameters | | Expanded
Uncertainty (U _{cispr}) | |--|---|------------------------|---| | Conducted Emission | Level accuracy
(9kHz to 150kHz)
(150kHz to 30MHz) | ± 2.63 dB
± 2.35 dB | ± 3.8 dB
± 3.4 dB | | Power Disturbance | Level accuracy
(30MHz to 300MHz) | ± 2.90dB | ± 4.5 dB | | Electromagnetic
Radiated Emission
(3-loop) | Level accuracy
(9kHz to 30MHz) | ± 3.60 dB | ± 3.3 dB | | Radiated Emission | Level accuracy
(9kHz to 30MHz) | ± 3.68 dB | N/A | | Radiated Emission | Level accuracy
(30MHz to 1000MHz) | ± 3.48 dB | ± 5.3 dB | | Radiated Emission | Level accuracy
(above 1000MHz) | ± 3.90 dB | ± 5.2 dB | | Mains Harmonic | Voltage | ± 0.510% | N/A | | Voltage Fluctuations & Flicker | Voltage | ± 0.510% | N/A | | EMF | / | ± 21.59% | N/A | ¹⁾ Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus. ²⁾ The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # 4. MEASURING DEVICES AND TEST EQUIPMENT | Tes | Test Item: Radiated Disturbance (Electric Field) | | | | | | | |----------|--|-------------------|-----------------|-------------|------------|--|--| | Ite
m | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | | | | 1 | EMI Test Software | AUDIX | E3 | / | 2018-06-16 | | | | 2 | 3m Semi Anechoic
Chamber | SIDT
FRANKONIA | SAC-3M | 03CH03-HY | 2018-06-16 | | | | 3 | Positioning
Controller | MF | MF-7082 | / | 2018-06-16 | | | | 4 | By-log Antenna | SCHWARZBECK | VULB9163 | 9163-470 | 2018-07-26 | | | | 5 | Horn Antenna | SCHWARZBECK | BBHA 9120D | 9120D-1925 | 2018-07-02 | | | | 6 | EMI Test Receiver | R&S | ESR 7 | 101181 | 2018-06-16 | | | | 7 | RS SPECTRUM
ANALYZER | R&S | FSP40 | 100503 | 2018-11-15 | | | | 8 | AMPLIFIER | QuieTek | QTK | CHM/0809065 | 2018-11-15 | | | | 9 | RF Cable-R03m | Jye Bao | RG142 | CB021 | 2018-06-16 | | | | 10 | RF Cable-HIGH | SUHNER | SUCOFLEX
106 | 03CH03-HY | 2018-06-16 | | | | Test Item: Electrostatic Discharge | | | | | | | |------------------------------------|---------------|--------------|-----------|------------|------------|--| | Ite | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | | | m | | | | | | | | 1 | ESD Simulator | SCHLODER | SESD 230 | 604035 | 2018-07-02 | | | Test Item: RF Field Strength Susceptibility | | | | | | | | |---|--|--------------------|-----------|------------|------------|--|--| | Ite
m | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | | | | 1 | RS Test Software | Tonscend | / | 1 | 2018-06-16 | | | | 2 | ESG Vector Signal
Generator | Agilent | E4438C | MY42081396 | 2018-11-15 | | | | 3 | 3m Semi Anechoic
Chamber | SIDT
FRANKONIA | SAC-3M | 03CH03-HY | 2018-06-16 | | | | 4 | RF POWER
AMPLIFIER | OPHIR | 5225R | 1052 | NCR | | | | 5 | RF POWER
AMPLIFIER | OPHIR | 5273F | 1019 | NCR | | | | 6 | Stacked
Broadband Log
Periodic Antenna | SCHWARZBECK | STLP 9128 | 9128ES-145 | NCR | | | | 7 | Stacked
Mikrowellen
LogPer Antenna | SCHWARZBECK | STLP 9149 | 9149-484 | NCR | | | | 8 | Electric field probe | Narda
S.TS./PMM | EP601 | 611WX80208 | 2019-03-25 | | | | Note | Note: NCR means no calibration requirement | | | | | | | | Test Item: Power Frequency Magnetic Field Susceptibility | | | | | | |--|--|--------------|-------------|------------|------------| | Ite
m | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | | 1 | Power frequency mag-field generator System | EVERFINE | EMS61000-8K | 906003 | 2018-06-16 | ### **5.TEST RESULTS** ### **5.1. RADIATED EMISSION MEASUREMENT** ### 5.1.1. Block Diagram of Test Setup **Below 1GHz** Above 1GHz ### 5.1.2. Test Standard EN 55032: 2015 Class B All emanations from a class B device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below: | Limits for Radiated Emission Below 1GHz | | | | |---|----------------------|-----------------------------------|--| | Frequency
(MHz) | Distance
(Meters) | Field Strengths Limit
(dBµV/m) | | | 30 ~ 230 | 3 | 40 | | | 230 ~ 1000 | 3 | 47 | | ^{***}Note: ⁽¹⁾ The smaller limit shall apply at the combination point between two frequency bands.(2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT. | Limits for Radiated Emission Above 1GHz | | | | |---|----------|------------|---------------| | Frequency | Distance | Peak Limit | Average Limit | | (MHz) | (Meters) | (dBµV/m) | (dBµV/m) | | 1000 ~ 3000 | 3 | 70 | 50 | | 3000 ~ 6000 | 3 | 74 | 54 | | 44481 (TI I I' ' | | | • | ^{***}Note: The lower limit applies at the transition frequency. ### 5.1.3. EUT Configuration on Test The EN 55032 regulations test method must be used to find the maximum emission during radiated emission measurement. ### 5.1.4. Operating Condition of EUT - 5.1.4.1. Turn on the power. - 5.1.4.2. Let the EUT work in the test mode (1) and measure it. ### 5.1.5. Test Procedure The EUT is placed on a turntable, which is 0.8 meter high above the ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna, which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. By-log antenna is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test. The bandwidth of the EMI test receiver is set at RBW/VBW=120kHz/1000kHz. The frequency range from 30MHz to 1000MHz is checked. The bandwidth of the Spectrum analyzer is set at RBW/VBW=1MHz/3MHz. The frequency range from 1GHz to the frequency which about 5th carrier harmonic or 6GHz is checked. ### 5.1.6. Test Results ### PASS. The test result please refer to the next page. ### SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. Report No.: LCS190604029AE | est Model | | UP-91 | 48 | | Test Mo | de | l N | /lode 1 | |-----------------------|---|-----------------------------------|------------------------------|--|-------------------------------------|--|--|--| | nvironmental C | onditions | 23.9℃ | 5, 54.1% | RH | Detector | Function | on C | Quasi-peak | | ol. | | Horizo | ntal | | Distance |) | | Sm . | | est Engineer | | Jay Li | | | Test Vol | | | OC 5V | | | | | | | | | | | | 80 <mark>L</mark> | evel (dBuV/m) | 60.0 | EN 5 | 5032B | | 40.0 | | | 3 | | | | | | | | | | 1 | | | | | | | 1 | | | 1 M | | | | | | | | | | | | 5. 6 | | | | | 20.0 | | 2 | | ىر 4 | شر کسر | Marrie . | grant of market and the state of | and the | | 20.0 | 1 | New House of Party of the | | ant manuscrape | ~~\^\^\^\ | The way we will be a few or the control of cont | production and the second | and the | | 20.0 | ware we also | Khar <mark>harit j</mark> iraa (1 | | and the same of th | | Marrie . | garante for management that the | a de la companya l | | - | wante water | Hararian Partin | 100 | | ~~^^ | New York Control of the | grantly of many and the of | 1000 | | 20.0 | 0 50 | Massian Fry (*) | 100 F | 200
Frequency (MI | ~~~\^\ | Marrie . | grante de mario de deservicio de deservicio de deservicio de de deservicio deservic | 1000 | | • | | | F | requency (Mi | tz) | 500 | | | | • | | Reading | F | requency (Mi | ~~~\^\ | 500 | | 1000
Remark | | • | | Reading
dBuV | F | requency (Mi | tz) | 500 | | | | 03 | Freq
MHz | dBuV | CabLos
dB | Antfac | Hz) Measured dBuV/m | 500
Limit
dBuV/m | Over
dB | Remark | | 03 | Freq
MHz | dBuV
 | CabLos dB | Antfac dB/m 13.21 | Measured dBuV/m 19.43 | 500
Limit
dBuV/m | Over
dB
-20.57 | Remark
———— | | 0 ₃ | Freq
MHz
 | dBuV
5.68
7.97 | CabLos dB 0.54 0.55 | Antfac dB/m 13.21 8.30 | Hz) Measured dBuV/m 19.43 16.82 | 500
Limit
dBuV/m
40.00
40.00 | Over
dB
-20.57
-23.18 | Remark ———————————————————————————————————— | | 0
3
1
2
3 | Freq
MHz
50.76
72.08
104.54 | dBuV
5.68
7.97
23.17 | CabLos dB 0.54 0.55 0.61 | Antfac
dB/m
13.21
8.30
12.75 | Heasured dBuV/m 19.43 16.82 36.53 | 500
Limit
dBuV/m
40.00
40.00
40.00 | Over
dB
-20.57
-23.18
-3.47 | Remark QP QP QP QP | | 0 ₃ | Freq
MHz
 | dBuV
5.68
7.97 | CabLos dB 0.54 0.55 | Antfac dB/m 13.21 8.30 | Hz) Measured dBuV/m 19.43 16.82 | 500
Limit
dBuV/m
40.00
40.00 | Over
dB
-20.57
-23.18 | QP
QP
QP
QP
QP | ### 5.2. ELECTROSTATIC DISCHARGE IMMUNITY TEST ### 5.2.1. Block Diagram of Test Setup ### 5.2.2. Test Standard EN 55035: 2017 (EN 61000-4-2: 2009, Severity Level: 3 / Air Discharge: ±8KV, Level: 2 / Contact Discharge: ±4KV) ### 5.2.3. Severity Levels and Performance Criterion ### 5.2.3.1. Severity level | Laval | Test Voltage | Test Voltage | | |-------|------------------------|--------------------|--| | Level | Contact Discharge (KV) | Air Discharge (KV) | | | 1 | ±2 | ±2 | | | 2 | ±4 | ±4 | | | 3 | ±6 | ±8 | | | 4 | ±8 | ±15 | | | X | Special | Special | | # 5.2.3.2. Performance Criterion Performance Criterion: B ### 5.2.4. EUT Configuration on Test The configuration of EUT is listed in Section 4. ### 5.2.5. Operating Condition of EUT Same as radiated emission measurement, which is listed in Section 5.1.1. Except the test set up replaced by Section 5.2.1 ### 5.2.6. Test Procedure ### 5.2.6.1. Air Discharge This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed ### 5.2.6.2. Contact Discharge All the procedure shall be same as Section 5.2.1. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated. ### 5.2.6.3. Indirect Discharge For Horizontal Coupling Plane At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge. ### 5.2.6.4. Indirect Discharge For Vertical Coupling Plane At least 10 single discharge (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated. ### 5.2.7. Test Results ### PASS. The test result please refer to the next page. | Electrostatic Discharge Test Results | | | | | | | |--------------------------------------|--------------------------------|--------------------------------------|----------|--|--|--| | Standard | □ IEC 61000-4-2 ☑ EN 61000-4-2 | | | | | | | Applicant | SHENZHEN UNIWINS TECHNOLO | SHENZHEN UNIWINS TECHNOLOGY CO., LTD | | | | | | EUT | Power bank Temperature 24.5°C | | | | | | | M/N | UP-9148 Humidity 54.1% | | | | | | | Criterion | В | Pressure | 1021mbar | | | | | Test Mode | Mode 1 | Test Engineer | Jay Li | | | | | Test Voltage | DC 5V | | | | | | | | | Ai | r Discharge | | | | |-------------|-------------|--------------------|--------------|-------------|--------|--------------------------| | | | Test Levels | | Results | | | | Test Points | ± 2kV | ± 4kV | ± 8kV | Passed | Fail | Performance
Criterion | | Front | \boxtimes | \boxtimes | \boxtimes | \boxtimes | | □A ⊠B | | Back | \boxtimes | \boxtimes | \boxtimes | \boxtimes | | □A ⊠B | | Left | | \boxtimes | | \boxtimes | | □A ⊠B | | Right | | \boxtimes | \square | \boxtimes | | □A ⊠B | | Тор | | \boxtimes | | \boxtimes | | □A ⊠B | | Bottom | \boxtimes | \boxtimes | | | | □A ⊠B | | | | Cont | tact Dischar | ge | | | | | | Test Levels | i | | Result | | | Test Points | ± 2 kV | , | ±4 kV | Passed | Fail | Performance
Criterion | | Front | \boxtimes | | \boxtimes | | | □A ⊠B | | Back | \boxtimes | | \boxtimes | \boxtimes | | □A ⊠B | | Left | | | \boxtimes | \boxtimes | | □A ⊠B | | Right | | | \boxtimes | \boxtimes | | □A ⊠B | | Тор | \square | | \boxtimes | \boxtimes | | □A ⊠B | | Bottom | | | \boxtimes | | | □A ⊠B | | | Disc | harge To H | orizontal C | oupling Pla | ne | | | | | Test Levels | | Results | | | | Side of EUT | ± 2 kV | , | ± 4 kV | Passed | Fail | Performance
Criterion | | Front | \boxtimes | | \boxtimes | \boxtimes | | □A ⊠B | | Back | \boxtimes | | \boxtimes | \boxtimes | | □A ⊠B | | Left | | | \boxtimes | \boxtimes | | □A ⊠B | | Right | | | \boxtimes | | | □A ⊠B | | | Dis | charge To | Vertical Co | upling Plan | е | | | | | Test Levels | i | | Result | | | Side of EUT | ± 2 kV | , | ± 4 kV | Passed | Fail | Performance
Criterion | | Front | | | \boxtimes | \boxtimes | | □A ⊠B | | Back | \boxtimes | | \boxtimes | \boxtimes | | □A ⊠B | | Left | \boxtimes | | \boxtimes | \boxtimes | | □A ⊠B | | Right | \boxtimes | | | \boxtimes | | □A ⊠B | ### 5.3.1. Block Diagram of Test Setup ### 5.3.2. Test Standard EN 55035: 2017 (EN 61000-4-3: 2006+A2: 2010 Severity Level: 2, 3V/m) ### 5.3.3. Severity Levels and Performance Criterion ### 5.3.3.1. Severity level | Level | Field Strength (V/m) | |-------|----------------------| | 1 | 1 | | 2 | 3 | | 3 | 10 | | X | Special | ### 5.3.3.2. Performance Criterion Performance Criterion: A ### 5.3.4. EUT Configuration on Test The configuration of EUT is listed in Section 4. ### 5.3.5. Operating Condition of EUT Same as radiated emission measurement, which is listed in Section 5.1.1, except the test setup replaced as Section 5.3.1. ### 5.3.6. Test Procedure The EUT are placed on a table, which is 0.8 meter high above the ground. The EUT is set 3 meters away from the transmitting antenna, which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna is set on test. Each of the four sides of the EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD Recording is used to monitor its screen. All the scanning conditions are as following: | Condition of Test | Remark | |-----------------------------------|------------------------------------| | Fielded Strength | 3 V/m (Severity Level 2) | | Radiated Signal | Unmodulated | | Test Frequency Range (Swept Test) | 80-1000MHz | | Test Frequency (spot test) | 1800MHz, 2600MHz, 3500MHz, 5000MHz | | Dwell Time of Radiated | 0.0015 decade/s | | Waiting Time | 3 Sec. | ### 5.3.7. Test Results ### PASS. The test result please refer to the next page. | œ. | |--| | 岂 | | ≷ | | <u>⊢</u> | | Z
W | | ₹ | | ರ್ಷ | | 8 | | ш | | 픋 | | <u>.</u> | | ш | | 끪 | | ₹ | | ₹ | | ⋛ | | Щ | | ₽ | | Σ | | 出 | | ≻ | | Ξ | | 9 | | ፳ | | _ | | ORIGINAL CAN ONLY BE MADE AVAILABLE BY TI | | ō | | 쮼 | | Ü | | Ħ | | | | SC | | ٩L | | щ | | Ä | | ≱ | | Š | | Y Y | | ΑS | | > | | 눋 | | 믵 | | Ξ | | 8 | | INAL DOCI | | ₹ | | 롰 | | ä | | Ö | | 뿌 | | Ė | | | | Ę | | MENT | | COMENT | | OCUMENT | | E DOCUMENT | | THE DOCUMENT | | 3 THE DOCUMENT | | ING THE DOCUMENT | | ATING THE DOCUMENT | | ERATING THE DOCUMENT | | ENERATING THE DOCUMENT | | GENERATING THE DOCUMENT | | OF GENERATING THE DOCUMENT | | E OF GENERATING THE DOCUMENT | | IME OF GENERATING THE DOCUMENT | | E TIME OF GENERATING THE DOCUMENT | | THE TIME OF GENERATING THE DOCUMENT | | T THE TIME OF GENERATING THE DOCUMENT | | . AT THE TIME OF GENERATING THE DOCUMENT | | 16. AT THE TIME OF GENERATING THE DOCUMENT | | 07-16. AT THE TIME OF GENERATING THE DOCUMENT | | 19-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | N 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | OL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | ON TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | TION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | ACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | DACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | IP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | CTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | DUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | ODUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | PRODUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | IE PRODUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | THE PRODUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | TH THE PRODUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | WITH THE PRODUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | D WITH THE PRODUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | TED WITH THE PRODUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | ACTED WITH THE PRODUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER. | | :DACTED WITH THE PRODUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | AS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2019-07-16. AT THE TIME OF GENERATING THE DOCUMENT | | RF Field Strength Susceptibility Test Results | | | | | |---|--|---------------|--------|--| | Standard | □ IEC 61000-4-3 ☑ EN 61000-4-3 | | | | | Applicant | SHENZHEN UNIWINS TECHNOLO | OGY CO., LTD | | | | EUT | Power bank | Temperature | 23.9℃ | | | M/N | UP-9148 | Humidity | 54.1% | | | Field Strength | 3 V/m | Criterion | Α | | | Test Mode | Mode 1 | Test Engineer | Jay Li | | | Test Frequency | 80MHz to 1000MHz (Swept Test)
1800MHz, 2600MHz, 3500MHz,
5000MHz (spot test) | Test Voltage | DC 5V | | | Modulation | □None □ Pulse | ☑AM 1KHz 80% | | | | Steps | 1% | | | | | | Horizontal | Vertical | |-------|------------|----------| | Front | PASS | PASS | | Right | PASS | PASS | | Rear | PASS | PASS | | Left | PASS | PASS | Test Equipment: - 1. Signal Generator: 2031 (MARCONI) - 2. Power Amplifier: 500A100 & 100W/1000M1 (A&R) - 3. Power Antenna: 3108 (EMCO) & AT1080 (A&R) - 4. Field Monitor: FM2000 (A&R) Note: ### **5.4. MAGNETIC FIELD SUSCEPTIBILITY TEST** ### 5.4.1. Block Diagram of Test Setup ### 5.4.2. Test Standard EN 55035: 2017 (EN 61000-4-8: 2010, Severity Level: Level 1, 1A/m) ### 5.4.3. Severity Levels and Performance Criterion 5.4.3.1. Severity level | Level | Field Strength (A/m) | |-------|----------------------| | 1 | 1 | | 2 | 3 | | 3 | 10 | | 4 | 30 | | 5 | 100 | | X | Special | # 5.4.3.2. Performance Criterion Performance Criterion: A ### 5.4.4. EUT Configuration on Test The configuration of EUT is listed in Section 4. ### 5.4.5. Test Procedure The EUT is placed in the middle of a induction coil (1*1m), under which is a 1*1*0.1m (high) table, this small table is also placed on a larger table, 0.8 m above the ground. Both horizontal and vertical polarization of the induction coil is set on test, so that each side of the EUT is affected by the magnetic field. Also can reach the same aim by change the position of the EUT. ### 5.4.6. Test Results ### PASS. The test result please refer to the next page. | Magnetic Field Immunity Test Result | | | | | | |-------------------------------------|--------------------------------------|--------------|-------|--|--| | Standard | ☐ IEC 61000-4-8 ☑ EN 61000-4-8 | 3 | | | | | Applicant | SHENZHEN UNIWINS TECHNOLOGY CO., LTD | | | | | | EUT | Power bank | Temperature | 24.5℃ | | | | M/N | UP-9148 | Humidity | 54.1% | | | | Test Mode | Mode 1 | Criterion | A | | | | Test Engineer | Jay Li | Test Voltage | DC 5V | | | | Test Level
(A/M) | Testing
Duration | Coil Orientation | Criterion | Result | |---------------------|---------------------|------------------|-----------|--------| | 1 | 5 mins | X | Α | PASS | | 1 | 5 mins | Υ | А | PASS | | 1 | 5 mins | Z | А | PASS | # 6. PHOTOGRAPHS OF TEST SETUP Test Setup Photo of Radiated Measurement (30MHz~1GHz) Test Setup Photo of Electrostatic Discharge Test Test Setup Photo of RF Electromagnetic Field Measurement Test Setup Photo of Magnetic Field Immunity Test # 7. PHOTOGRAPHS OF THE EUT Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9