

FCC Test Report

Report No.: AGC04094190401FE03

FCC ID 2AEWEP705251

APPLICATION PURPOSE Original Equipment

PRODUCT DESIGNATION Bobby tech(wireless charger)

BRAND NAME N/A

MODEL NAME P705.251

CLIENT Xindao B.V.

DATE OF ISSUE Apr. 30, 2019

STANDARD(S)

FCC Part 15 Rules TEST PROCEDURE(S)

REPORT VERSION

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results shown this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 💢 🗲, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

Page 2 of 28

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Apr. 30, 2019	Valid	Initial Release

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (SE), this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed et attp://www.agc.gett.com.

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	4
2. GENERAL INFORMATION	5
2.1. PRODUCT DESCRIPTION	
3. MEASUREMENT UNCERTAINTY	6
4. DESCRIPTION OF TEST MODES	7
5. SYSTEM TEST CONFIGURATION	ε
5.1. CONFIGURATION OF EUT SYSTEM	8
5.2. EQUIPMENT USED IN EUT SYSTEM	8
5.3. SUMMARY OF TEST RESULTS	3
6. TEST FACILITY	g
7. RADIATED EMISSION	10
7.1TEST LIMIT	10
7.2. MEASUREMENT PROCEDURE	
7.3. TEST SETUP	12
7.4. TEST RESULT	13
8. 20DB BANDWIDTH	16
8.1. MEASUREMENT PROCEDURE	16
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	16
8.3. MEASUREMENT RESULTS	17
9. FCC LINE CONDUCTED EMISSION TEST	18
9.1. LIMITS OF LINE CONDUCTED EMISSION TEST	18
9.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	18
9.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	19
9.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	19
9.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	20
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	22
APPENDIX B: PHOTOGRAPHS OF EUT	24

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 4 of 28

1. VERIFICATION OF CONFORMITY

11 V = 1 (11 10 / (11 0 11 0 1 0 1	
Applicant	Xindao B.V.
Address	P.O. Box 3082, 2280 GB, Rijswijk, The Netherlands
Manufacturer	Xindao B.V.
Address	P.O. Box 3082, 2280 GB, Rijswijk, The Netherlands
Factory	Xindao B.V.
Address	P.O. Box 3082, 2280 GB, Rijswijk, The Netherlands
Product Designation	Bobby tech(wireless charger)
Brand Name	N/A
Test Model	P705.251
Date of test	Apr. 17, 2019 to Apr. 28, 2019
Deviation	None
Condition of Test Sample	Normal
Test Result	Pass
Report Template	AGCRT-US-BR/RF

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with Section 15.207, 15.209, 15.203 of the FCC Part 15, Subpart C Rules. The results of testing in this report apply to the product/system which was tested only.

Tested By	Brik Joing	
	Erik Yang(Yang Jianmin)	Apr. 28, 2019
Reviewed By	Now Zhang	
	Max Zhang(Zhang Yi)	Apr. 30, 2019
Approved By	Forvert cei	
	Forrest Lei(Lei Yonggang) Authorized Officer	Apr. 30, 2019

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 5 of 28

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

A major technical description of EUT is described as following

Operation Frequency	127.6kHz
Maximum field strength	55.65dBuV/m(PK)@3m
Modulation	FSK
Number of channels	
Antenna Gain	0dBi
Antenna Designation	Integrated Antenna (Met 15.203 Antenna requirement)
Hardware Version	CD-1054P_V1.3
Software Version	V1.0
Power Supply	DC 5V 2A or DC 9V 1.67A by adaptor

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 6 of 28

3. MEASUREMENT UNCERTAINTY

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in measurement" (GUM) published by CISPR and ANSI.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB

The results spowth this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a titp://www.agc.goalt.com.

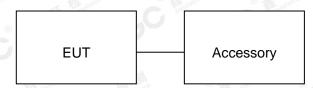
Page 7 of 28

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION	
海河 1 海	Wireless charging Mode(Full load)	100
© 2	Wireless charging Mode(half load)	报 测
3	Wireless charging Mode(Null load)	© ## Jahlor of Clobal C

Note:

1. The mode 1 was the worst case and only the data of the worst case record in this report.


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed a

Page 8 of 28

5. SYSTEM TEST CONFIGURATION 5.1. CONFIGURATION OF EUT SYSTEM

Configure:

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	Bobby tech(wireless charger)	P705.251	2AEWEP705251	EUT
2	Adapter	MDY-08-ES	DC 5.0V/3A, 9V/2A,12V/1.5A	Accessory
3	Wireless Load	N/A	10W	Accessory
4	USB cable	N/A	1m unshielded	Accessory

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.209	Radiated Emission	Compliant
§15.215	20dB bandwidth	Compliant
§15.207	Conducted Emission	Compliant

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gett.com.

Page 9 of 28

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd			
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China			
Designation Number	CN1259			
FCC Test Firm Registration Number	975832			
A2LA Cert. No.	5054.02			
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA			

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Jun. 12, 2018	Jun. 11, 2019
LISN	R&S	ESH2-Z5	100086	Aug. 28, 2018	Aug. 27, 2019

TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2018	Jun. 11, 2019
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 20, 2018	Dec. 19, 2019
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 14, 2018	Jun. 13, 2020
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep. 28, 2017	Sep. 27, 2019

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 10 of 28

7. RADIATED EMISSION

7.1TEST LIMIT

Standard FCC 15.209

Frequency	Distance	Field St	Field Strengths Limit		
(MHz)	Meters	μ V/m	dB(μV)/m		
0.009 ~ 0.490	300	2400/F(kHz)	John Committee C		
0.490 ~ 1.705	30	24000/F(kHz)			
1.705 ~ 30	30	30	ail £h		
30 ~ 88	3	100	40.0		
88 ~ 216	3	150	43.5		
216 ~ 960	3 Control of the state of	200	46.0		
960 ~ 1000	3	500	54.0		
Above 1000	3	Other:74.0 dB(µV)/m (P	Peak) 54.0 dB(µV)/m (Average)		

Remark:

- (1) Emission level dB μ V = 20 log Emission level μ V/m
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

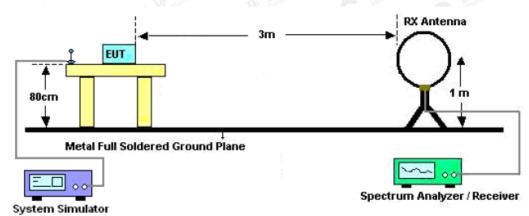
Page 11 of 28

7.2. MEASUREMENT PROCEDURE

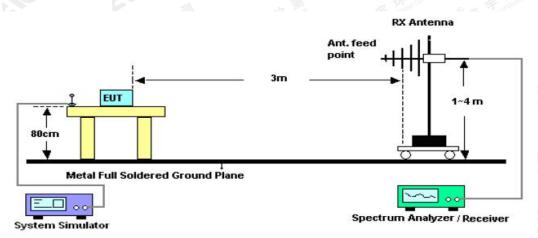
- The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

The following table is the setting of spectrum analyzer and receiver.

	Spectrum Parameter	Setting		
GC ***	Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP		
· init	Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP		
The Me Compliance	Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP		


Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.



7.3. TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

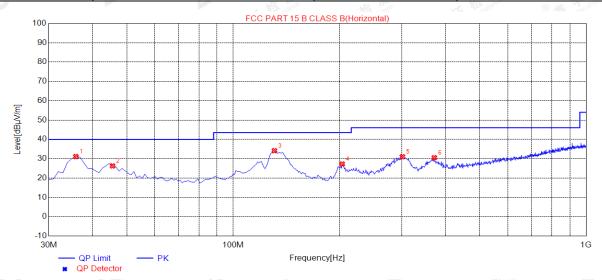
Page 13 of 28

7.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

00	Frequency MHz	Polarization	Reading dB(uV) PK	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) PK	Margin dB	Pass/Fail
	0.1276	Face	45.25	10.40	55.65	105.49	-49.84	Pass
	0.1276	Side	35.18	10.40	45.58	105.49	-59.91	Pass

Note: No other emissions found between lowest internal used/generated frequencies to 30MHz. The peak level of the emission is less than the average limit, so the average level shall be less than the limit without test.

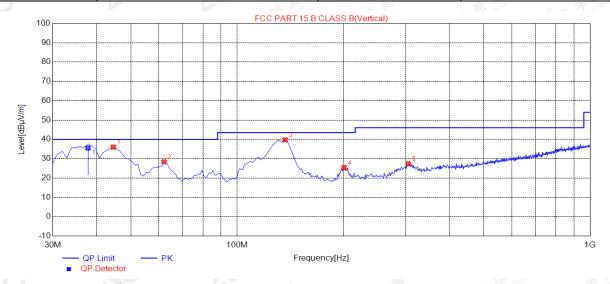

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 14 of 28

RADIATED EMISSION 30MHz-1GHz

EUT:	Bobby tech(wireless charger)	Model Name. :	P705.251
Temperature :	20.8℃	Relative Humidity:	47.8%
Pressure :	1010 hPa	Test Voltage :	DC 9V
Test Mode :	Mode 1	Polarization :	Horizontal

	NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
(8)	1	35.8200	31.11	13.93	40.00	8.89	100	355	Horizontal
	2	45.5200	26.26	14.80	40.00	13.74	100	357	Horizontal
	3	130.8800	34.14	14.21	43.50	9.36	150	228	Horizontal
	4	203.6300	27.25	12.29	43.50	16.25	200	218	Horizontal
iji)	5	301.6000	31.02	15.96	46.00	14.98	100	137	Horizontal
an,	6	371.4400	30.50	18.67	46.00	15.50	100	358	Horizontal


RESULT: PASS

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 15 of 28

EUT:	Bobby tech(wireless charger)	Model Name. :	P705.251
Temperature:	20.8℃	Relative Humidity:	47.8%
Pressure :	1010 hPa	Test Voltage :	DC 9V
Test Mode :	Mode 1	Polarization:	Vertical

	NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
6	1	44.5500	36.01	14.82	40.00	3.99	100	44	Vertical
8	2	44.5500	36.01	14.82	40.00	3.99	100	44	Vertical
4	3	62.0100	28.41	13.58	40.00	11.59	100	13	Vertical
	4	136.7000	39.75	14.64	43.50	3.75	100	357	Vertical
	5	200.7200	25.42	12.11	43.50	18.08	100	354	Vertical
an	6	305.4800	27.32	16.10	46.00	18.68	200	323	Vertical

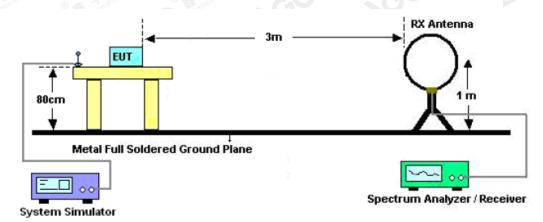
RESULT: PASS

Note:

Factor=Antenna Factor + Cable loss, Margin=Level-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.


Page 16 of 28

8. 20DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2, Set the EUT Work on operation frequency.
- 3. Set Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a channel
 The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video
 bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 17 of 28

8.3. MEASUREMENT RESULTS

TEST ITEM	20DB BANDWIDTH	inclinate (S. Allectation of the	(S) Altestation of Glub	a C Allestation of
TEST MODULATION	FSK	100	GO D	G

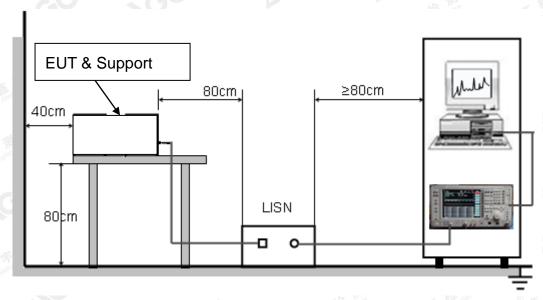
Test Data (Hz)	Criteria	
Operate Channel	851	PASS

TEST PLOT OF BANDWIDTH

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 18 of 28

9. FCC LINE CONDUCTED EMISSION TEST


9.1. LIMITS OF LINE CONDUCTED EMISSION TEST

F	Maximum RF Line Voltage					
Frequency	Q.P.(dBuV)	Average(dBuV)				
150kHz~500kHz	66-56	56-46				
500kHz~5MHz	© 48 miles of the control of the con	46				
5MHz~30MHz	60	50				

Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50MHz.

9.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

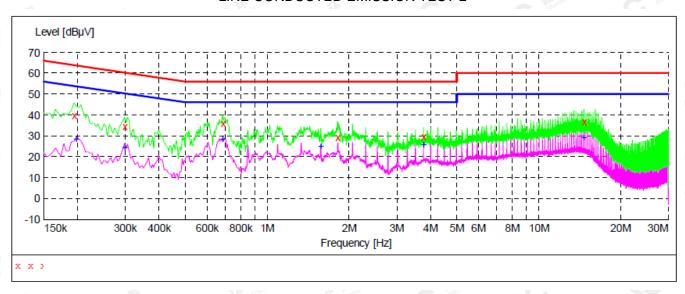
Page 19 of 28

9.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received charging voltage by adapter which received 120V/60Hzpower by a LISN...
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

9.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST


- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.agc.gent.com.

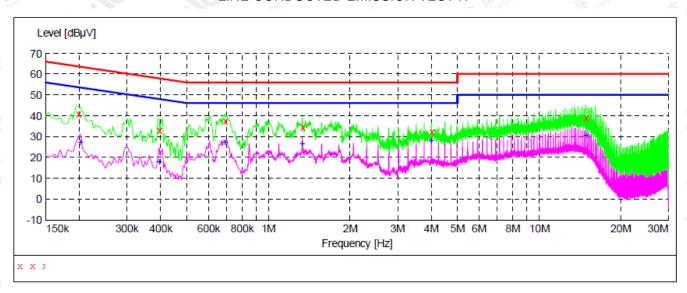
9.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

LINE CONDUCTED EMISSION TEST-L

MEASUREMENT RESULT

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line
0.194000	40.00	10.3	64	23.9	QP	L1
0.298000	34.50	10.2	60	25.8	QP	L1
0.686000	36.10	10.3	56	19.9	QP	L1
1.814000	29.10	10.4	56	26.9	QP	L1
3.762000	29.80	10.4	56	26.2	QP	L1
14.678000	36.70	10.9	60	23.3	QP	L1

MEASUREMENT RESULT


Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line
28.40	10.3	54	25.3	AV	L1
24.50	10.2	50	25.8	AV	L1
28.40	10.3	46	17.6	AV	L1
25.10	10.4	46	20.9	AV	L1
26.00	10.4	46	20.0	AV	L1
29.30	10.9	50	20.7	AV	L1
	dBμV 28.40 24.50 28.40 25.10 26.00	dBμV dB 28.40 10.3 24.50 10.2 28.40 10.3 25.10 10.4 26.00 10.4	dBμV dB dBμV 28.40 10.3 54 24.50 10.2 50 28.40 10.3 46 25.10 10.4 46 26.00 10.4 46	dBμV dB dBμV dB 28.40 10.3 54 25.3 24.50 10.2 50 25.8 28.40 10.3 46 17.6 25.10 10.4 46 20.9 26.00 10.4 46 20.0	dBμV dB dBμV dB 28.40 10.3 54 25.3 AV 24.50 10.2 50 25.8 AV 28.40 10.3 46 17.6 AV 25.10 10.4 46 20.9 AV 26.00 10.4 46 20.0 AV

RESULT: PASS

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

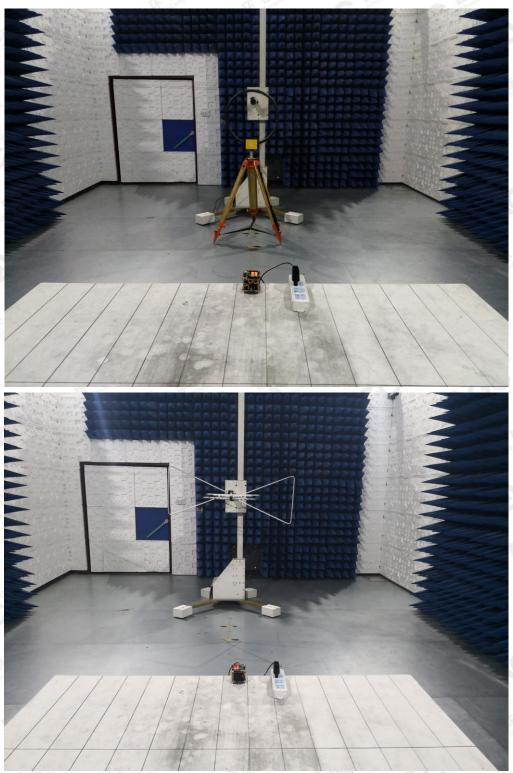
LINE CONDUCTED EMISSION TEST-N

MEASUREMENT RESULT

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line
0.198000	40.90	10.3	64	22.8	QP	N
0.394000	32.90	10.3	58	25.1	QP	N
0.690000	37.50	10.3	56	18.5	QP	N
1.334000	34.60	10.4	56	21.4	QP	N
3.998000	32.30	10.4	56	23.7	QP	N
14.914000	39.10	10.9	60	20.9	QP	N

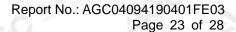
MEASUREMENT RESULT

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line
0.202000	27.40	10.3	54	26.1	AV	N
0.394000	18.20	10.3	48	29.8	AV	N
0.690000	27.30	10.3	46	18.7	AV	N
1.334000	26.80	10.4	46	19.2	AV	N
4.002000	28.00	10.4	46	18.0	AV	N
14.914000	30.70	10.9	50	19.3	AV	N

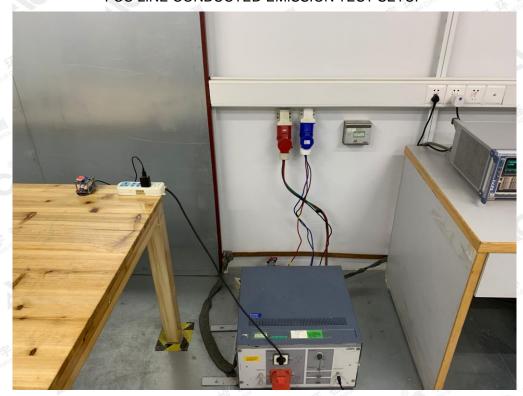

RESULT: PASS

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

APPENDIX A: PHOTOGRAPHS OF TEST SETUP


FCC RADIATED EMISSION TEST SETUP BELOW 1GHZ

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a titp://www.agc.gett.com.


Attestation of Global Compliance

AGC 8

FCC LINE CONDUCTED EMISSION TEST SETUP

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gent.com.

Attestation of Global Compliance

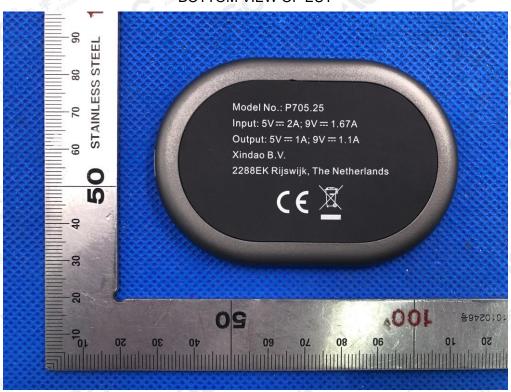
Tel: +86-755 2908 1955 Fax: +86

Fax: +86-755 2600 8484

E-mail: agc@agc-cert.com

400 089 2118

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China



APPENDIX B: PHOTOGRAPHS OF EUT

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

FRONT VIEW OF EUT

BACK VIEW OF EUT

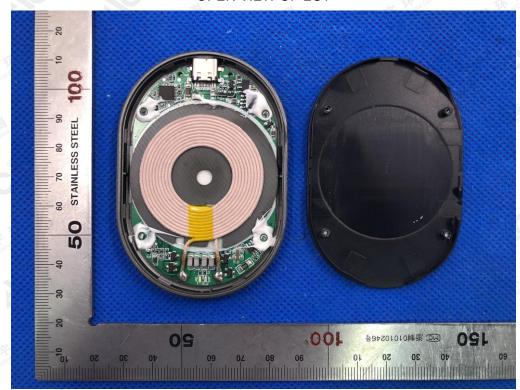
The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a titp://www.agc.gett.com.

Attestation of Global Compliance

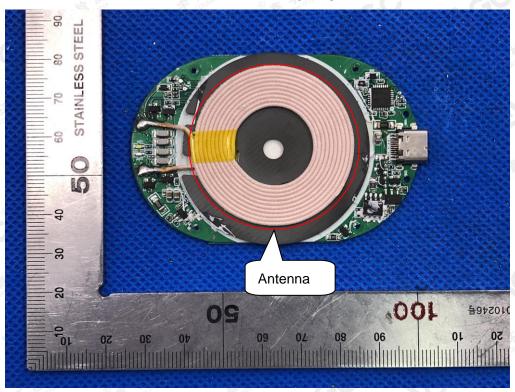
Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

LEFT VIEW OF EUT

RIGHT VIEW OF EUT

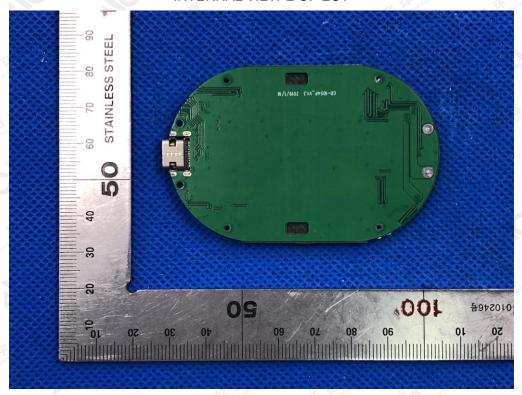

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at alther.//www.agc.gett.com.

Attestation of Global Compliance


Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

OPEN VIEW OF EUT

INTERNAL VIEW-1 OF EUT


The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

INTERNAL VIEW-2 OF EUT

----END OF REPORT----

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F. , Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China