

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755-26648640

 Fax:
 +86-755-26648637

 Website:
 www.cga-cert.com

Report Template Version: V03 Revision Issue Date: Mar.1st,2017

Test Report

Report No.:

CQASZ20190400303E-02

Applicant:

Address of Applicant:

Manufacturer:

Address of Manufacturer:

Factory:

Address of Factory:

Equipment Under Test (EUT):					
EUT Name:	me: Smart Bracelet				
All Model No.:					
Test Model No.:					
Trade mark:	N/A				
Standards:	EN 300 328 V2.1.1 (2016-11)				
Date of Test:	2019-04-30 to 2019-05-08				
Date of Issue:	2019-05-08				
Test Result:	PASS *				

Martin Lee

Tested By: (Martin Lee) oron Лa **Reviewed By:** (Aaron Ma) PPROVE Approved By: (Jack Ai)

* In the configuration tested, the EUT complied with the standards specified above.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20190400303E-02	Rev.01	Initial report	2019-05-08

2 Test Summary

Radio Spectrum Matter (RSM) Part							
Transmitter Parameters							
Test Item	Test Requirement	Test Method	Limit	Result			
RF Output Power	EN 300 328 (2016-11) V2.1.1 Clause 4.3.2.2	EN 300 328 (2016-11) V2.1.1 Clause 5.4.2	Refer clause 4.3.2.2.3	PASS			
Power Spectral Density	EN 300 328 (2016-11) V2.1.1 Clause 4.3.2.3	EN 300 328 (2016-11) V2.1.1 Clause 5.4.3	Refer clause 4.3.2.3.3	PASS			
Duty Cycle, Tx- sequence, Tx-gap	EN 300 328 (2016-11) V2.1.1 Clause 4.3.2.4	EN 300 328 (2016-11) V2.1.1 Clause 5.4.2	Refer clause 4.3.2.4.3	Only for no- adaptive			
Medium Utilisation (MU) factor	EN 300 328 (2016-11) V2.1.1 Clause 4.3.2.5	EN 300 328 (2016-11) V2.1.1 Clause 5.4.2	Refer clause 4.3.2.5.3	Only for no- adaptive			
Adaptivity	EN 300 328 (2016-11) V2.1.1 Clause 4.3.2.6	EN 300 328 (2016-11) V2.1.1 Clause 5.4.6	Refer clause 4.3.2.6.3.2 and 4.3.2.6.4.2	Only for≥10dBm and adaptive			
Occupied Channel Bandwidth	EN 300 328 (2016-11) V2.1.1 Clause 4.3.2.7	EN 300 328 (2016-11) V2.1.1 Clause 5.4.7	Refer clause 4.3.2.7.3	PASS			
Transmitter unwanted emissions in the out- of-band domain	EN 300 328 (2016-11) V2.1.1 Clause 4.3.2.8	EN 300 328 (2016-11) V2.1.1 Clause 5.4.8	Refer clause 4.3.2.8.3	PASS			
Transmitter unwanted emissions in the spurious domain	EN 300 328 (2016-11) V2.1.1 Clause 4.3.2.9	EN 300 328 (2016-11) V2.1.1 Clause 5.4.9	Refer clause 4.3.2.9.3	PASS			
	Receive	r Parameters					
Receiver spurious emissions	EN 300 328 (2016-11) V2.1.1 Clause 4.3.2.10	EN 300 328 (2016-11) V2.1.1 Clause 5.4.10	Refer clause 4.3.2.10.3	PASS			
Receiver Blocking	EN 300 328 (2016-11) V2.1.1 Clause 4.3.2.11	EN 300 328 (2016-11) V2.1.1 Clause 5.4.11	Refer clause 4.3.2.11.3	PASS			
Geo-location capability	EN 300 328 (2016-11) V2.1.1 Clause 4.3.2.12	No need Test	No Limit	Only for equipment with geo-location capability			

Remark:

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp meansTemperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application.

CONTENTS

1 V	ERSION	2
2 T	EST SUMMARY	3
CONT	ENTS	4
		T
3 G	ENERAL INFORMATION	5
3.1	DETAILS OF CLIENT	5
3.2	DATASHEET OF EQUIPMENT UNDER TEST	
3.3	TEST ENVIRONMENT	6
3.4	TEST LOCATION	
3.5	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	7
4 E	QUIPMENT LIST	8
5 R	ADIO TECHNICAL SPECIFICATION IN EN 300 328 V2.1.1	9
5.1	TRANSMITTER REQUIREMENTS	9
5	.1.1 RF Output Power	
5	1.2 Power Spectral Density	
-	1.3 Occupied Channel Bandwidth	
•	1.4 Transmitter Unwanted Emissions in The Out-of-Band Domain	
-	1.5 Transmitter Unwanted Emissions in The Spurious Domain	
-	1.6 Receiver Spurious Emissions	
-	1.7 Receiver Blocking	
6 P	HOTOGRAPHS OF EQUIPMENT PROVIDED BY THE APPLICANT	22
6.1	TEST SETUP-RADIATED SPURIOUS EMISSIONS	22
6.2	CONSTRUCTIONAL DETAILS OF EQUIPMENT UNDER TEST	
APPEI	NDIX A: TEST DATA	23

3 General Information

3.1 Details of Client

Applicant:
Address of Applicant:
Manufacturer:
Address of Manufacturer:
Factory:
Address of Factory:

3.2 Datasheet of Equipment Under Test

Product Name:	Smart Bracelet
All Model No.:	
Test Model No.:	G20
Trade Mark:	N/A
Software version:	56
Hardware version:	RH122V03
Bluetooth Version:	V4.0
Type of Modulation:	GFSK
Transfer Rate:	1Mbps
Operating Frequency:	2402MHz to 2480MHz
Channel Number:	40
Channels Step:	2MHz
Sample Type:	Portable production
Test Software of EUT:	RTL8762C_RFTestTool_v1.0.1.1 (manufacturer declare)
Antenna Type:	PCB antenna
Antenna Gain:	0dBi
Power Supply:	lithium battery:DC3.7V, Charge by USB

Note:

All model: G18, G20, G20Plus, G21, G22, G26, G28, G29, G30, G30Pro, G100, G100Plus

Only the model G20 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color of appearance and model name.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Using test software was control EUT work in continuous transmitter and receiver mode.and select test channel as below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

3.3 Test Environment

Environment Parameter	Selected Values During Tests		
Relative Humidity	Ambient		
Value	Temperature(°C) Voltage(V)		
TNVN	25	DC3.7	
TLVN	-10	DC3.7	
THVN	45	DC3.7	

Note:

- 1) The EUT just work in such extreme temperature of -10°C~+45°C, so here the EUT is tested in the temperature of -10°C~+45°C.
- 2) VN: Normal Voltage
 - TN: Normal Temperature
 - TL: Low Extreme Test Temperature
 - TH: High Extreme Test Temperature

3.4 Test Location

Shenzhen Huaxia Testing Technology Co., Ltd.

Company: Address:

Shenzhen Huaxia Testing Technology Co., Ltd.

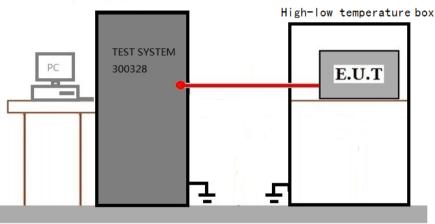
1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

3.5 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	±5.12dB
2	Radiated Emission (Above 1GHz)	±4.60dB
3	Conducted Disturbance (0.15~30MHz)	±3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %.
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8°C
11	Humidity test	2.0%
12	Supply voltages	0.5 %.
13	time	0.6 %.
14	Frequency Error	5.5 Hz

4 Equipment List

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Horn Antenna	R&S	HF906	CQA-012	2018/9/26	2020/9/25
Bilog Antenna	R&S	HL562	CQA-011	2018/9/26	2020/9/25
EMI Test Receiver	R&S	ESR7	CQA-005	2018/10/28	2019/10/27
Spectrum analyzer	R&S	FSU26	CQA-038	2018/10/28	2019/10/27
Preamplifier	MITEQ	AFS4- 00010300- 18-10P-4	CQA-035	2018/9/26	2019/9/25
Preamplifier	MITEQ	AMF-6D- 02001800- 29-20P	CQA-036	2018/11/2	2019/11/1
Universal Radio Communication Tester	Rohde & Schwarz	CMU200	CQA-015	2018/9/26	2019/9/25
BLUETOOTH TESTER	Rohde & Schwarz	СВТ	CQA-023	2018/9/26	2019/9/25
Universal Radio Communication Tester	Rohde & Schwarz	CMW500	CQA-022	2018/9/26	2019/9/25
high-low temperature chamber	Auchno	OJN-9606	CQA-CB2	2018/9/26	2019/9/25
Signal generator	ANRITSU	MG3692B	CQA-019	2018/9/26	2019/9/25
Signal generator	R&S	SME06	CQA-024	2018/9/26	2019/9/25
Vector signal generator	R&S	SMBV100A	CQA-039	2018/9/26	2019/9/25
DC power	KEYSIGHT	E3631A	CQA-028	2018/9/26	2019/9/25
Power probe	KEYSIGHT	U2021XA	CQA-030	2018/9/26	2019/9/25
RF Control Unit	Tonsced	JS0806-2	CQA-57	2018/9/26	2019/9/25
Coaxial Cable (Above 1GHz)	CQA	N/A	C019	2018/9/26	2019/9/25
Coaxial Cable (Below 1GHz)	CQA	N/A	C020	2018/9/26	2019/9/25
RF Cable (9KHz~40GHz)	CQA	N/A	C005	2018/9/26	2019/9/25


Radio Technical Specification in EN 300 328 V2.1.1 5

5.1 **Transmitter Requirements**

5.1.1 RF Output Power

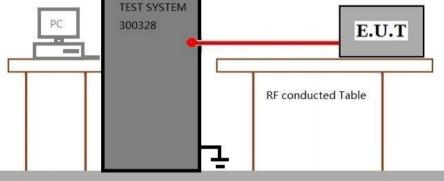
Test Requirement:	EN 300 328 C	Clause 4.3.2.2				
Test Method:	EN 300 328 C	Clause 5.4.2				
EUT Operation:						
Ambient:	Temp.: 23.0	°C	Humid.: 52	%	Press.: 1020	mbar
Test Status:	1) Keep the E	UT operating a	at the lowest,	middle and the	highest frequer	ncies.
	2) The measurements performed at both normalenvironmental conditions and at the extremes of the operating temperature range.					

Test Setup:

Ground Reference Plane

Limit:

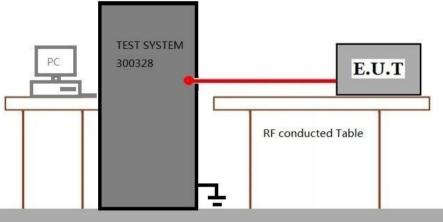
20dBm/(100mw) (e.i.r.p)


Test Data:

Refer to Appendix A_RF Output Power

5.1.2 Power Spectral Density

	•
Test Requirement:	EN 300 328 Clause 4.3.2.3
Test Method:	EN 300 328 Clause 5.4.3
EUT Operation:	
Ambient:	Temp.: 23.0 °C Humid.: 52 % Press.: 1020 mbar
Test Status:	1) Keep the EUT operating at the lowest, middle and the highest frequencies.
	2) Test EUT in normal conditions.
Test Setup:	
	IEST SYSTEM


Ground Reference Plane

Limit: Test Data: ≤10dBm Refer to Appendix A_ Power Spectral Density

5.1.3 Occupied Channel Bandwidth

Test Requirement:	EN 300 328 Clause 4	.3.2.7	
Test Method:	EN 300 328 Clause 5	5.4.7	
EUT Operation:			
Ambient:	Temp.: 23.0 °C	Humid.: 52 %	Press.: 1020 mbar
Test Status:	1) Keep the EUT op	erating at the lowest and the h	nighest frequencies.
	2) Test EUT in norm	nal conditions.	
Test Setup :			

Ground Reference Plane

Limit:

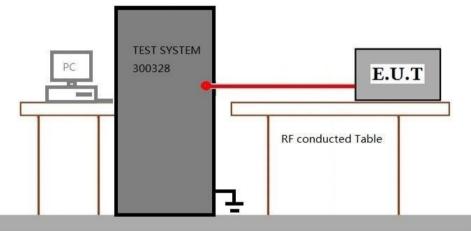
The Occupied Channel Bandwidth shall fall completely within the band given in clause 1.

In addition, for non-adaptive systems using wide band modulations other FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20MHz.

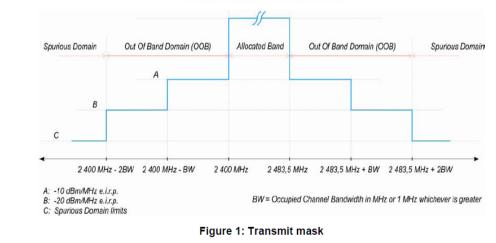
(99 % of the power of the signal)

Refer to Appendix A_ Occupied Channel Bandwidth

Test Data:


5.1.4 Transmitter Unwanted Emissions in The Out-of-Band Domain

Test Requirement:	EN 300 328 CI	ause 4.3.2.8		
Test Method:	EN 300 328 Clause 5.4.8			
EUT Operation:				
Ambient:	Temp.: 23.0	°C	Humid.: 52 %	Press.: 1020 mbar
Test Status:	1) Keep the E	UT operating	at the lowest and the high	nest frequencies.
	<i>,</i>	ment shall be ct to output po	•	der its worst case situation


3) Test EUT in normal condition.

Test Setup

Limit:

Ground Reference Plane

Test Data:Refer to Appendix A_Transmitter unwanted emissions in the out-of-band domainRemark: Cable loss and antenna gain was combined in the calculated result.

5.1.5 Transmitter Unwanted Emissions in The Spurious Domain

Test Requirement:	EN 300 328 Clause 4.3.	2.9		
Test Method:	EN 300 328 Clause 5.4.9			
EUT Operation:				
Ambient:	Temp.: 23.0 °C	Humid.: 52 %	Press.: 1020 mbar	
Test Status:		II kinds of modulation and al a data mode is recorded in the state of	I kinds of rate, the test worst he report .	
	 The equipment shal with respect to output 	e 1	under its worst case situation	
	3) Test EUT in normal	conditions.		

Test Setup

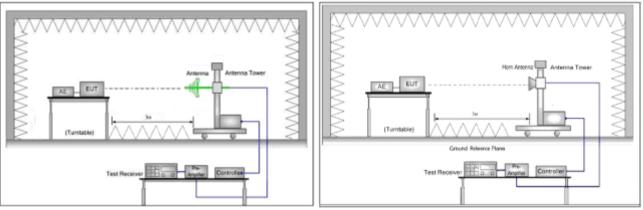


Figure 1. 30MHz to 1GHz

Test Procedure:

Figure 2. Above 1GHz

- 1. Scan from 30MHz to 12.75GHz, find the maximum radiation frequency to measure.
 - The technique used to find the Spurious Emissions of the transmitter was the antenna substitution method. Substitution method was performed to determine the actual ERP/EIRP emission levels of the EUT.

Below 1GHz test procedure as below:

- 1) The EUT was powered ON and placed on a table in the chamber. The antenna of the transmitter was extended to its maximum length. modulation mode and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 2) Rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 3) Steps 1) and 2) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 4) The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
- 5) A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 2) is obtained for this set of conditions.
- 6) The output power into the substitution antenna was then measured.
- 7) Steps 5) and 6)were repeated with both antennas vertically polarized.
- 8) Calculate power in dBm by the following formula:

ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd) where:

Pg is the generator output power into the substitution antenna.

Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and receiving antenna is moved from 1m to 2m.
- Calculate power in dBm by the following formula: EIRP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBi) EIRP=ERP+2.15dB

where:

Pg is the generator output power into the substitution antenna.

Limit:

Table 1: Transmitter limits for spurious emissions

Frequency range	Maximum power, e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Bandwidth
30 MHz to 47 MHz	-36dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36dBm	100 kHz
470 MHz to 862 MHz	-54 dBm	100 kHz
862 MHz to 1 GHz	-36dBm	100 kHz
1 GHz to 12,75 GHz	-30dBm	1MHz

Test Data

CH Lowest(2402MHz)

OTTLOWCO							
Fre. (MHz)	ANT. Pol.	Result (dBm)	Limit	Over	Conclusion		
752.26	V	-70.13	-54	-16.13	PASS		
744.67	Н	-70.93	-54	-16.93	PASS		
4804	н	-43.83	-30	-13.83	PASS		
4804	V	-42.85	-30	-12.85	PASS		
7206	н	-43.57	-30	-13.57	PASS		
7206	V	-44.40	-30	-14.40	PASS		
9608	Н	-44.88	-30	-14.88	PASS		
9608	V	-43.36	-30	-13.36	PASS		

CH Highest(2480MHz)

Fre. (MHz)	ANT. Pol.	Result (dBm)	Limit	Over	Conclusion
644.41	V	-68.32	-54	-14.32	PASS
642.87	н	-68.21	-54	-14.21	PASS
4960	н	-44.74	-30	-14.74	PASS
4960	V	-42.45	-30	-12.45	PASS
7440	н	-42.44	-30	-12.44	PASS
7440	V	-43.48	-30	-13.48	PASS
9920	н	-44.20	-30	-14.20	PASS
9920	V	-42.71	-30	-12.71	PASS

5.1.6 Receiver Spurious Emissions

Test Requirement:	ΕN	1 300 328 Clause 4.3.2.1	0		
Test Method:	ΕN	EN 300 328 Clause 5.4.10			
EUT Operation:					
Ambient:	Те	emp.: 23.0 °C	Humid.: 52 %	Press.: 1020 mbar	
Test Status:	1)			highest frequencies. When e performed during normal	
	2)	Testing shall be perform	ned when the equipment	is in a receive-only mode.	
	3)	Test EUT in normal cor	nditions.		

Test Setup:

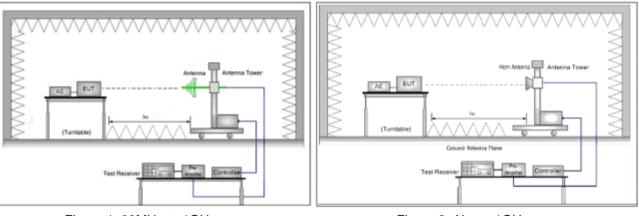


Figure 1. 30MHz to 1GHz

Test Procedure:

Figure 2. Above 1GHz

- 1. Scan from 30MHz to 12.75GHz, find the maximum radiation frequency to measure.
 - The technique used to find the Spurious Emissions of the transmitter was the antenna substitution method. Substitution method was performed to determine the actual ERP/EIRP emission levels of the EUT.

Below 1GHz test procedure as below:

- 1) The EUT was powered ON and placed on a table in the chamber. The antenna of the transmitter was extended to its maximum length. Receiver mode and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 2) Rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 3) Steps 1) and 2) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 4) The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
- 5) A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 2) is obtained for this set of conditions.
- 6) The output power into the substitution antenna was then measured.
- 7) Steps 5) and 6) were repeated with both antennas vertically polarized.

Report No.: CQASZ20190400303E-02

8) Calculate power in dBm by the following formula:

ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd) where:

Pg is the generator output power into the substitution antenna.

Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and receiving antenna is moved from 1m to 2m.
- 2) Calculate power in dBm by the following formula:

EIRP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBi) EIRP=ERP+2.15dB

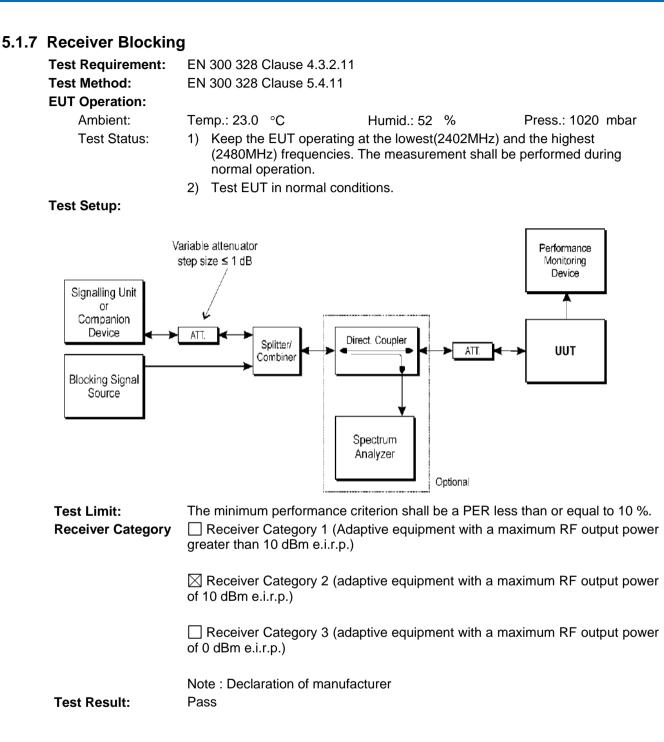
where:

Pg is the generator output power into the substitution antenna.

Limit:

Table 2: Spurious emission limits for receivers

Frequency range	Maximum power e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz)	Bandwidth
30MHz to 1GHz	-57dBm	100kHz
1GHz to 12.75GHz	-47dBm	1MHz


Below 1GHz

Fre. (MHz)	ANT. Pol.	Result (dBm)	Limit	Over	Conclusion			
	CH Lowest (2402MHz)							
412.66	н	-65.67	-57	-8.67	PASS			
412.66	V	-65.35	-57	-8.35	PASS			
679.52	н	-64.65	-57	-7.65	PASS			
679.52	V	-64.88	-57	-7.88	PASS			
		CH Highest (24	80MHz)					
434.87	н	-64.65	-57	-7.65	PASS			
434.87	V	-64.88	-57	-7.88	PASS			
669.66	н	-65.44	-57	-8.44	PASS			
669.66	V	-65.76	-57	-8.76	PASS			

Above 1GHz

					·			
Fre. (MHz)	ANT. Pol.	Result (dBm)	Limit	Over	Conclusion			
	CH Lowest (2402MHz)							
1029.91	Н	-56.16	-47	-9.16	PASS			
1029.91	V	-55.70	-47	-8.70	PASS			
1226.61	Н	-55.36	-47	-8.36	PASS			
1226.61	V	-55.44	-47	-8.44	PASS			
		CH Highest (24	80MHz)					
1045.19	Н	-56.67	-47	-9.67	PASS			
1045.19	V	-55.68	-47	-8.68	PASS			
1222.04	Н	-56.68	-47	-9.68	PASS			
1222.04	V	-55.73	-47	-8.73	PASS			

Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal	
P _{min} + 6 dB	2 380 2 503,5	-53	CW	
P _{min} + 6 dB	2 300 2 330 2 360	-47	CW	
P _{min} + 6 dB	2 523,5 2 553,5 2 583,5 2 613,5 2 643,5 2 643,5 2 673,5	-47	CW	
 NOTE 1: P_{min} is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual 				

1) Receiver Blocking parameters receiver category 1 equipment

2) Receiver Blocking parameters receiver category 2 equipment

antenna assembly gain.

2) Receiver blocking parameters receiver category 2 equipment								
Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal					
P _{min} + 6 dB	2 380 2 503,5	-57	CW					
P _{min} + 6 dB	2 300 2 583,5	-47	CW					
NOTE 1: P _{min} is the minimum level of the wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of								

conducted measurements, the levels have to be corrected by the actual antenna assembly gain.

3) Receiver Blocking parameters receiver category 2 equipment

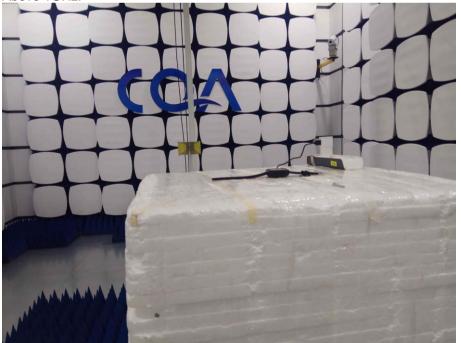
Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal			
P _{min} + 12 dB	2 380 2 503,5	-57	CW			
P _{min} + 12 dB	2 300 2 583,5	-47	CW			
NOTE 1: P _{min} is the minimu	im level of the wanted s	ignal (in dBm) rec	uired to meet the			
 minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. NOTE 2: The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain. 						

Test data

Receiver Category 2

Test channel	P _{min} (dBm)	Test result (PER)	Limit (PER)
lowest(2402MHz)	-83.78	9.50%	≤10 %
highest (2480MHz)	-82.63	9.30%	≤10 %

Test channel	Wanted signal mean power from companion device (dBm)	Blocking signal Frequency (MHz)	Blocking signal power (dBm)	Test result (PER)	Limit (PER)	Result
		2 380	-57	0.99%	≤10 %	PASS
lowest Pmin + 6 dB		2 300	-47	1.20%	≤10 %	PASS
		2 503.5	-57	0.78%	≤10 %	PASS
highest	Pmin + 6 dB	2583.5	-47	0.63%	≤10 %	PASS


6 Photographs of Equipment Provided by The Applicant

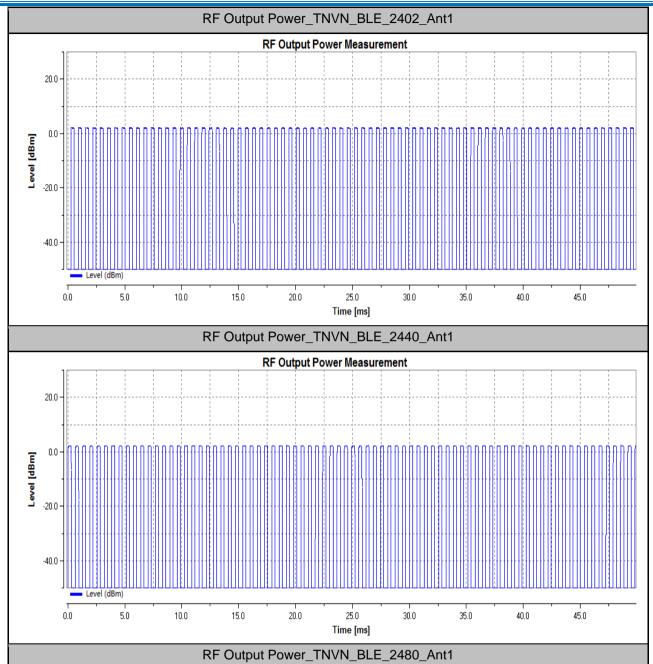
6.1 Test Setup-Radiated Spurious Emissions

Below 1GHz:

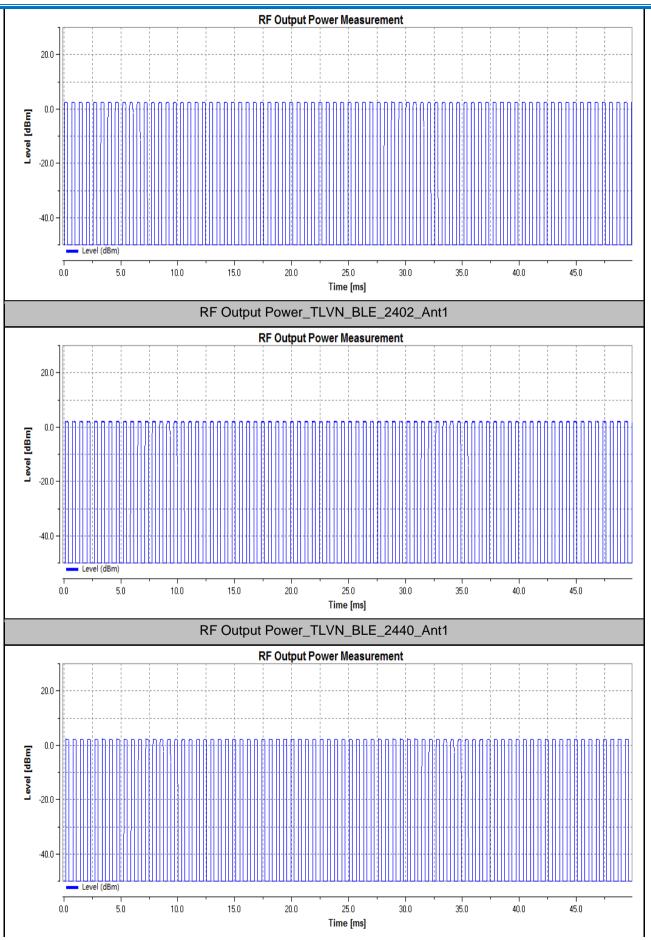
Above 1GHz:

6.2 Constructional Details of Equipment Under Test

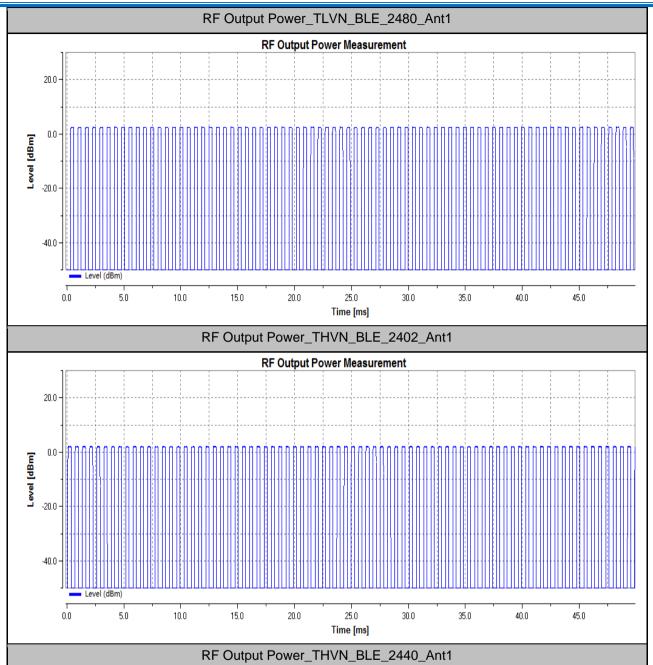
Refer to Photographs of EUT Constructional Details for CQASZ20190400303E-01.

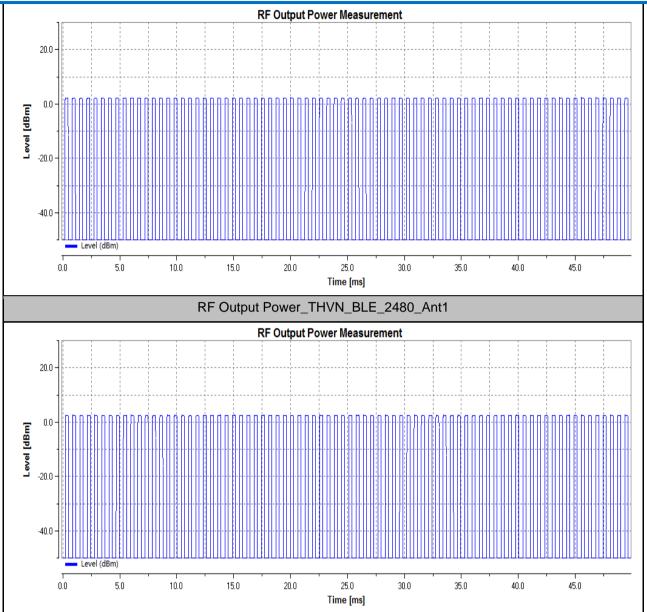


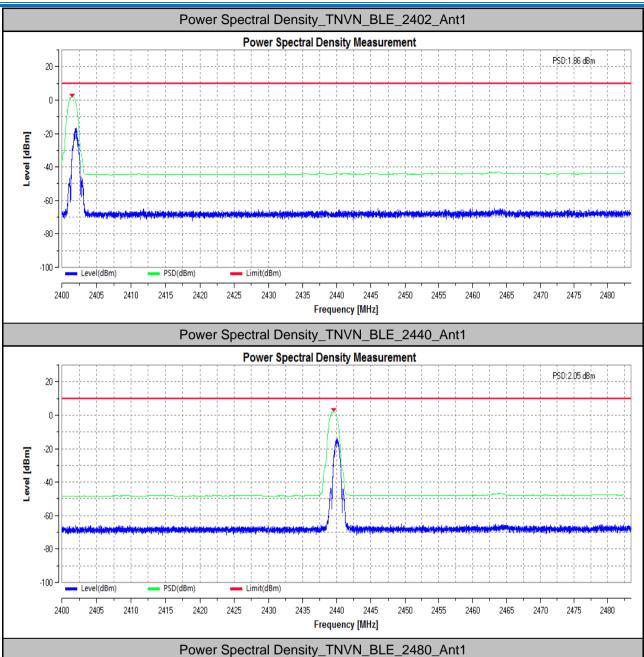
Appendix A: Test Data


1.RF Output Power

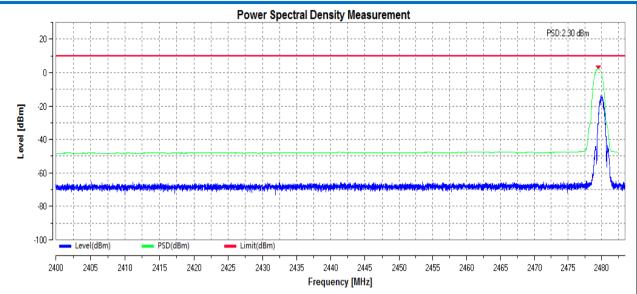
Test Condition	Test Mode	Test Channel	Ant	Power [dBm]	EIRP [dBm]	Limit [dBm]	Verdict
TNVN	BLE	2402	Ant1	1.93	1.93	<=20	PASS
TNVN	BLE	2440	Ant1	2.11	2.11	<=20	PASS
TNVN	BLE	2480	Ant1	2.37	2.37	<=20	PASS
TLVN	BLE	2402	Ant1	1.93	1.93	<=20	PASS
TLVN	BLE	2440	Ant1	2.12	2.12	<=20	PASS
TLVN	BLE	2480	Ant1	2.38	2.38	<=20	PASS
THVN	BLE	2402	Ant1	1.92	1.92	<=20	PASS
THVN	BLE	2440	Ant1	2.12	2.12	<=20	PASS
THVN	BLE	2480	Ant1	2.38	2.38	<=20	PASS



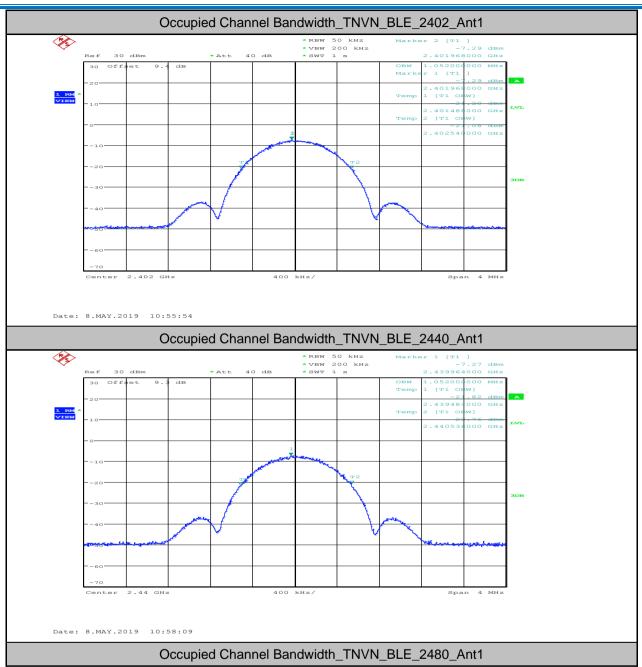



Report No.: CQASZ20190400303E-02

2. Power Spectral Density

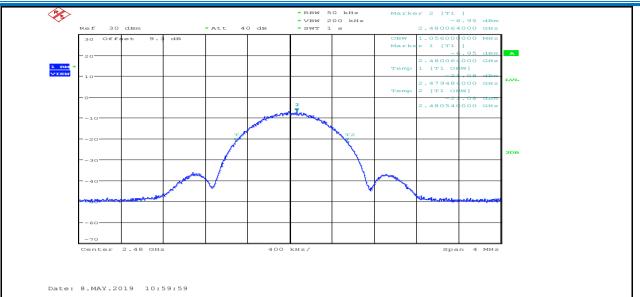

Test Condition	Test Mode	Test Channel	Ant	PSD [dBm]	Limit [dBm]	Verdict
TNVN	BLE	2402	Ant1	1.86	<=10	PASS
TNVN	BLE	2440	Ant1	2.05	<=10	PASS
TNVN	BLE	2480	Ant1	2.30	<=10	PASS

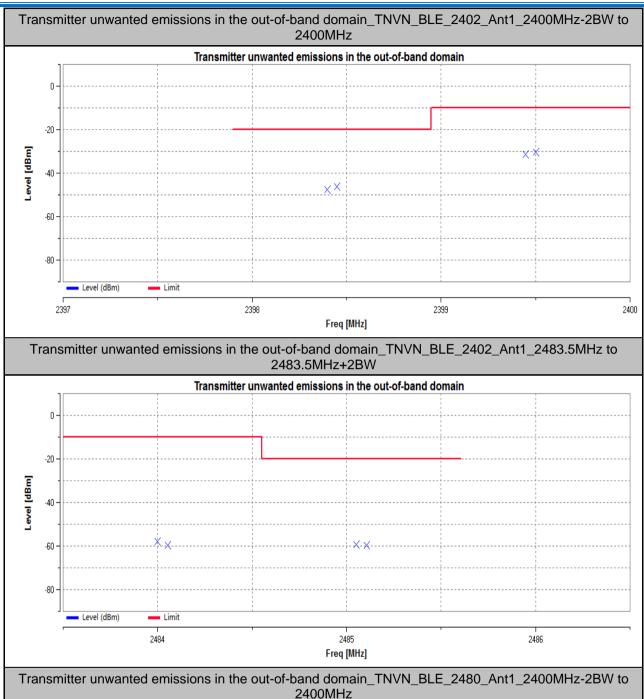
Report No.: CQASZ20190400303E-02



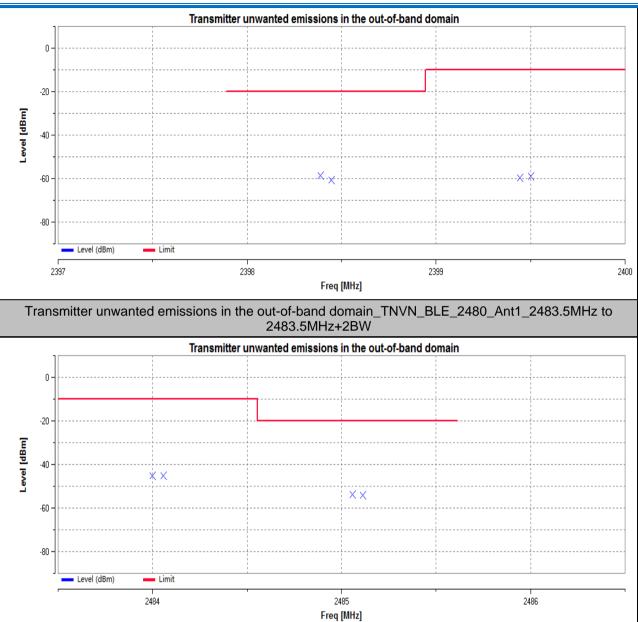
3.Occupied Channel Bandwidth

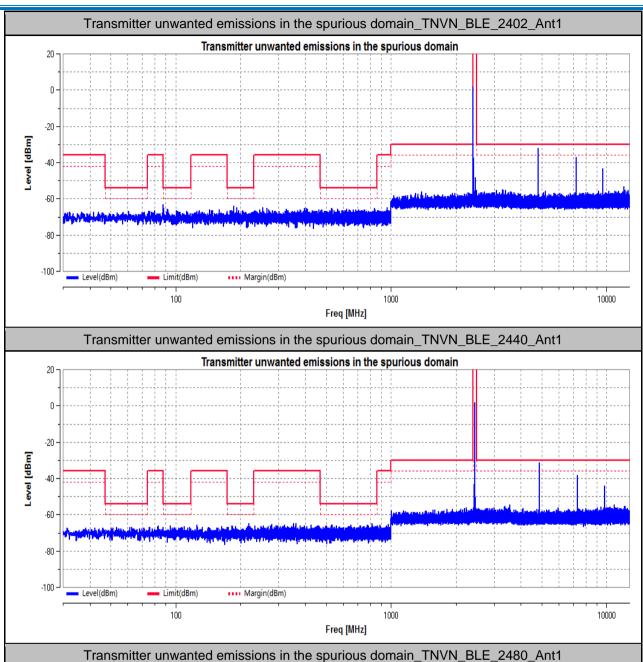
THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2019-08-28. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.


Test Condition	Test Mode	Test Channel	Ant	OBW [MHz]	FL OBW [MHz]	FH OBW [MHz]	Verdict
TNVN	BLE	2402	Ant1	1.052	2401.474		PASS
TNVN	BLE	2440	Ant1	1.052			PASS
TNVN	BLE	2480	Ant1	1.056		2480.528	PASS


Report No.: CQASZ20190400303E-02

4. Transmitter unwanted emissions in the out-of-band domain

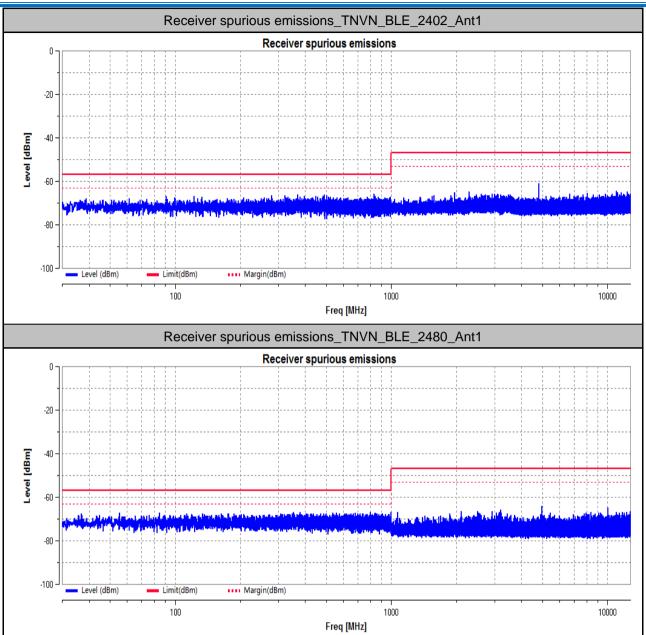

Test Condition	Test Mode	Test Channel	Ant	Freq [MHz]	Result [dBm]	Limit [dBm]	Verdict
TNVN	BLE	2402	Ant1	2398.396	-47.61	<=-20	PASS
TNVN	BLE	2402	Ant1	2398.448	-46.31	<=-20	PASS
TNVN	BLE	2402	Ant1	2399.448	-31.31	<=-10	PASS
TNVN	BLE	2402	Ant1	2399.500	-30.41	<=-10	PASS
TNVN	BLE	2402	Ant1	2484.000	-57.80	<=-10	PASS
TNVN	BLE	2402	Ant1	2484.052	-59.74	<=-10	PASS
TNVN	BLE	2402	Ant1	2485.052	-59.15	<=-20	PASS
TNVN	BLE	2402	Ant1	2485.104	-59.59	<=-20	PASS
TNVN	BLE	2480	Ant1	2398.388	-58.74	<=-20	PASS
TNVN	BLE	2480	Ant1	2398.444	-60.67	<=-20	PASS
TNVN	BLE	2480	Ant1	2399.444	-59.53	<=-10	PASS
TNVN	BLE	2480	Ant1	2399.500	-58.82	<=-10	PASS
TNVN	BLE	2480	Ant1	2484.000	-45.07	<=-10	PASS
TNVN	BLE	2480	Ant1	2484.056	-45.34	<=-10	PASS
TNVN	BLE	2480	Ant1	2485.056	-53.91	<=-20	PASS
TNVN	BLE	2480	Ant1	2485.112	-54.03	<=-20	PASS


Report No.: CQASZ20190400303E-02

5. Transmitter unwanted emissions in the spurious domain

Test Condition	Test Mode	Test Channel	Ant	Result	Verdict
TNVN	BLE	2402	Ant1	See_test_plot	PASS
TNVN	BLE	2440	Ant1	See_test_plot	PASS
TNVN	BLE	2480	Ant1	See_test_plot	PASS

Report No.: CQASZ20190400303E-02



6.Receiver spurious emissions

Test Condition	Test Mode	Test Channel	Ant	Result	Verdict
TNVN	BLE	2402	Ant1	See test plot	PASS
TNVN	BLE	2480	Ant1	See test plot	PASS

Report No.: CQASZ20190400303E-02

END OF THE REPORT