Shenzhen Huaxia Testing Technology Co．，Ltd．

1F．，Block A of Tongsheng Technology Building，Huahui Road，Dalang Street，Longhua District， Shenzhen，China

Telephone：＋86－755－26648640
Fax：$\quad+86-755-26648637$
Report Template Version：V03
Website：www．cqa－cert．com
Revision Issue Date：Mar．1st，2017

Test Report

Report No．：
CQASZ20190400303E－02
Applicant：
Address of Applicant：

Manufacturer：
Address of Manufacturer：

Factory：
Address of Factory：

Equipment Under Test（EUT）：

EUT Name：
Smart Bracelet
All Model No．：
Test Model No．：
Trade mark：N／A
Standards：EN 300328 V2．1．1（2016－11）
Date of Test：
2019－04－30 to 2019－05－08
Date of Issue：
2019－05－08
Test Result：
PASS＊

[^0]The test report is effective only with both signature and specialized stamp，The result（s）shown in this report refer only to the sample（s）tested Without written approval of CQA，this report can＇t be reproduced except in full．

1 Version

Revision History Of Report

Report No．	Version	Description	Issue Date
CQASZ20190400303E－02	Rev．01	Initial report	$2019-05-08$

2 Test Summary

Radio Spectrum Matter（RSM）Part				
Test Item	Test Requirement	Test Method	Limit	Result
RF Output Power	EN 300328 （2016－11） V2．1．1 Clause 4．3．2．2	EN 300328 （2016－11） V2．1．1 Clause 5．4．2	$\begin{gathered} \hline \text { Refer clause } \\ 4.3 .2 .2 .3 \end{gathered}$	PASS
Power Spectral Density	EN 300328 （2016－11） V2．1．1 Clause 4．3．2．3	$\begin{gathered} \text { EN } 300328(2016-11) \\ \text { V2.1.1 Clause 5.4.3 } \end{gathered}$	$\begin{gathered} \text { Refer clause } \\ \text { 4.3.2.3.3 } \end{gathered}$	PASS
Duty Cycle，Tx－ sequence，Tx－gap	EN 300328 （2016－11）	$\begin{gathered} \text { EN } 300328 \text { (2016-11) } \\ \text { V2.1.1 Clause 5.4.2 } \end{gathered}$	$\begin{gathered} \hline \text { Refer clause } \\ \text { 4.3.2.4.3 } \\ \hline \end{gathered}$	Only for no－ adaptive
Medium Utilisation （MU）factor	EN 300328 （2016－11） V2．1．1 Clause 4．3．2．5	$\begin{gathered} \hline \text { EN } 300328 \text { (2016-11) } \\ \text { V2.1.1 Clause 5.4.2 } \end{gathered}$	$\begin{gathered} \hline \text { Refer clause } \\ 4.3 .2 .5 .3 \end{gathered}$	Only for no－ adaptive
Adaptivity	EN 300328 （2016－11） V2．1．1 Clause 4．3．2．6	$\begin{aligned} & \text { EN } 300328 \text { (2016-11) } \\ & \text { V2.1.1 Clause 5.4.6 } \end{aligned}$	$\begin{aligned} & \text { Refer clause } \\ & \text { 4.3.2.6.3.2 } \\ & \text { and } \\ & \text { 4.3.2.6.4.2 } \end{aligned}$	Only for $\geq 10 \mathrm{dBm}$ and adaptive
Occupied Channel Bandwidth	EN 300328 （2016－11） V2．1．1 Clause 4．3．2．7	EN 300328 （2016－11） V2．1．1 Clause 5．4．7	$\begin{gathered} \text { Refer clause } \\ \text { 4.3.2.7.3 } \\ \hline \end{gathered}$	PASS
Transmitter unwanted emissions in the out－ of－band domain	EN 300328 （2016－11） V2．1．1 Clause 4．3．2．8	$\begin{gathered} \text { EN } 300328(2016-11) \\ \text { V2.1.1 Clause 5.4.8 } \end{gathered}$	$\begin{aligned} & \text { Refer clause } \\ & \text { 4.3.2.8.3 } \end{aligned}$	PASS
Transmitter unwanted emissions in the spurious domain	EN 300328 （2016－11） V2．1．1 Clause 4．3．2．9	EN 300328 （2016－11） V2．1．1 Clause 5．4．9	$\begin{aligned} & \text { Refer clause } \\ & \text { 4.3.2.9.3 } \end{aligned}$	PASS
Receiver Parameters				
Receiver spurious emissions	EN 300328 （2016－11） V2．1．1 Clause 4．3．2．10	EN 300328 （2016－11） V2．1．1 Clause 5．4．10	$\begin{gathered} \text { Refer clause } \\ 4.3 .2 .10 .3 \\ \hline \end{gathered}$	PASS
Receiver Blocking	EN 300328 （2016－11） V2．1．1 Clause 4．3．2．11	EN 300328 （2016－11） V2．1．1 Clause 5．4．11	$\begin{gathered} \hline \text { Refer clause } \\ 4.3 .2 .11 .3 \end{gathered}$	PASS
Geo－location capability	EN 300328 （2016－11） V2．1．1 Clause 4．3．2．12	No need Test	No Limit	\qquad

Remark：
Tx：In this whole report Tx（or tx）means Transmitter．
$R x$ ：In this whole report Rx（or rx）means Receiver．
RF：In this whole report RF means Radiated Frequency．
CH ：In this whole report CH means channel．
Volt：In this whole report Volt means Voltage．
Temp：In this whole report Temp meansTemperature．
Humid：In this whole report Humid means humidity．
Press：In this whole report Press means Pressure．
N／A：In this whole report not application．

CONTENTS

1 VERSION 2
2 TEST SUMMARY 3
CONTENTS 4
3 GENERAL INFORMATION5
3．1 Details of Client ．． 5
3.2 Datasheet of Equipment Under Test ．． 5
3.3 Test Environment ．． 6
3.4 Test Location 7
3．5 Measurement Uncertainty（95\％confidence levels，K＝2） 7
4 EQUIPMENT LIST 8
5 RADIO TECHNICAL SPECIFICATION IN EN 300328 V2．1．1 9
5．1 Transmitter Requirements ．． 9
5．1．1 RF Output Power 9
5．1．2 Power Spectral Density 10
5．1．3 Occupied Channel Bandwidth 11
5．1．4 Transmitter Unwanted Emissions in The Out－of－Band Domain 12
5．1．5 Transmitter Unwanted Emissions in The Spurious Domain 13
5．1．6 Receiver Spurious Emissions． 16
5．1．7 Receiver Blocking． 19
6 PHOTOGRAPHS OF EQUIPMENT PROVIDED BY THE APPLICANT 22
6．1 Test Setup－Radiated Spurious Emissions 22
6．2 Constructional Details of Equipment Under Test 22
APPENDIX A：TEST DATA 23

3 General Information

3．1 Details of Client

Applicant：	
Address of Applicant：	
Manufacturer：	
Address of Manufacturer：	
Factory：	
Address of Factory：	

3．2 Datasheet of Equipment Under Test

Product Name：	Smart Bracelet
All Model No．：	
Test Model No．：	G20
Trade Mark：	N／A
Software version：	56
Hardware version：	RH122V03
Bluetooth Version：	V4．0
Type of Modulation：	GFSK
Transfer Rate：	1 Mbps
Operating Frequency：	2402 MHz to 2480 MHz
Channel Number：	40
Channels Step：	2 MHz
Sample Type：	Portable production
Test Software of EUT：	RTL8762C＿RFTestTool＿v1．0．1．1（manufacturer declare ）
Antenna Type：	PCB antenna
Antenna Gain：	0dBi
Power Supply：	lithium battery：DC3．7V，Charge by USB

Note：
All model：G18，G20，G20Plus，G21，G22，G26，G28，G29，G30，G30Pro，G100，G100Plus
Only the model G20 was tested，since the electrical circuit design，layout，components used and internal wiring were identical for the above models，with difference being color of appearance and model name．

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402 MHz	10	2422 MHz	20	2442 MHz	30	2462 MHz	
1	2404 MHz	11	2424 MHz	21	2444 MHz	31	2464 MHz	
2	2406 MHz	12	2426 MHz	22	2446 MHz	32	2466 MHz	
3	2408 MHz	13	2428 MHz	23	2448 MHz	33	2468 MHz	
4	2410 MHz	14	2430 MHz	24	2450 MHz	34	2470 MHz	
5	2412 MHz	15	2432 MHz	25	2452 MHz	35	2472 MHz	
6	2414 MHz	16	2434 MHz	26	2454 MHz	36	2474 MHz	
7	2416 MHz	17	2436 MHz	27	2456 MHz	37	2476 MHz	
8	2418 MHz	18	2438 MHz	28	2458 MHz	38	2478 MHz	
9	2420 MHz	19	2440 MHz	29	2460 MHz	39	2480 MHz	

Using test software was control EUT work in continuous transmitter and receiver mode．and select test channel as below：

Channel	Frequency
The lowest channel (CHO)	2402 MHz
The middle channel $(\mathrm{CH} 19)$	2440 MHz
The highest channel $(\mathrm{CH} 39)$	2480 MHz

3．3 Test Environment

Environment Parameter	Selected Values During Tests	
Relative Humidity	Ambient	Voltage（V）
Value	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	DC3．7
TNVN	25	DC3．7
TLVN	-10	DC3．7
THVN	45	

Note：

1）The EUT just work in such extreme temperature of $-10^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$ ，so here the EUT is tested in the temperature of $-10^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$ ．
2）VN：Normal Voltage
TN：Normal Temperature
TL：Low Extreme Test Temperature
TH：High Extreme Test Temperature

3．4 Test Location

Company：
Address：

Shenzhen Huaxia Testing Technology Co．，Ltd．
1F．，Block A of Tongsheng Technology Building，Huahui Road，Dalang Street， Longhua District，Shenzhen，China

3．5 Measurement Uncertainty（95\％confidence levels，k＝2）

No．	Item	Uncertainty
1	Radiated Emission（Below 1 GHz ）	$\pm 5.12 \mathrm{~dB}$
2	Radiated Emission（Above 1 GHz$)$	$\pm 4.60 \mathrm{~dB}$
3	Conducted Disturbance $(0.15 \sim 30 \mathrm{MHz})$	$\pm 3.34 \mathrm{~dB}$
4	Radio Frequency	3×10^{-8}
5	Duty cycle	0.6%.
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86 dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86 dB
10	Temperature test	$0.8^{\circ} \mathrm{C}$
11	Humidity test	2.0%
12	Supply voltages	0.5%.
13	time	0.6%.
14	Frequency Error	5.5 Hz

4 Equipment List

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Horn Antenna	R\＆S	HF906	CQA－012	2018／9／26	2020／9／25
Bilog Antenna	R\＆S	HL562	CQA－011	2018／9／26	2020／9／25
EMI Test Receiver	R\＆S	ESR7	CQA－005	2018／10／28	2019／10／27
Spectrum analyzer	R\＆S	FSU26	CQA－038	2018／10／28	2019／10／27
Preamplifier	MITEQ	$\begin{gathered} \text { AFS4- } \\ 00010300- \\ 18-10 \mathrm{P}-4 \\ \hline \end{gathered}$	CQA－035	2018／9／26	2019／9／25
Preamplifier	MITEQ	$\begin{gathered} \text { AMF-6D- } \\ 02001800- \\ 29-20 \mathrm{P} \end{gathered}$	CQA－036	2018／11／2	2019／11／1
Universal Radio Communication Tester	Rohde \＆Schwarz	CMU200	CQA－015	2018／9／26	2019／9／25
BLUETOOTH TESTER	Rohde \＆Schwarz	CBT	CQA－023	2018／9／26	2019／9／25
Universal Radio Communication Tester	Rohde \＆Schwarz	CMW500	CQA－022	2018／9／26	2019／9／25
high－low temperature chamber	Auchno	OJN－9606	CQA－CB2	2018／9／26	2019／9／25
Signal generator	ANRITSU	MG3692B	CQA－019	2018／9／26	2019／9／25
Signal generator	R\＆S	SME06	CQA－024	2018／9／26	2019／9／25
Vector signal generator	R\＆S	SMBV100A	CQA－039	2018／9／26	2019／9／25
DC power	KEYSIGHT	E3631A	CQA－028	2018／9／26	2019／9／25
Power probe	KEYSIGHT	U2021XA	CQA－030	2018／9／26	2019／9／25
RF Control Unit	Tonsced	JS0806－2	CQA－57	2018／9／26	2019／9／25
$\begin{gathered} \text { Coaxial Cable (Above } \\ 1 \mathrm{GHz}) \\ \hline \end{gathered}$	CQA	N／A	C019	2018／9／26	2019／9／25
$\begin{gathered} \text { Coaxial Cable (Below } \\ 1 \mathrm{GHz}) \end{gathered}$	CQA	N／A	C020	2018／9／26	2019／9／25
RF Cable（ $9 \mathrm{KHz} \sim 40 \mathrm{GHz}$ ）	CQA	N／A	C005	2018／9／26	2019／9／25

5 Radio Technical Specification in EN 300328 V2．1．1

5．1 Transmitter Requirements

5．1．1 RF Output Power

Test Requirement：EN 300328 Clause 4．3．2．2
Test Method：EN 300328 Clause 5．4．2
EUT Operation：

Ambient：
Test Status：

Temp．： $23.0{ }^{\circ} \mathrm{C}$
Humid．： 52 \％
Press．： 1020 mbar
1）Keep the EUT operating at the lowest，middle and the highest frequencies．
2）The measurements performed at both normalenvironmental conditions and at the extremes of the operating temperature range．
Test Setup：

Ground Reference Plane
Limit：$\quad 20 \mathrm{dBm} /(100 \mathrm{mw})$（e．i．r．p）
Test Data：Refer to Appendix A＿RF Output Power
Remark：Cable loss and antenna gain was combined in the calculated result．

5．1．2 Power Spectral Density

Test Requirement：EN 300328 Clause 4．3．2．3
Test Method：EN 300328 Clause 5．4．3

EUT Operation：

Ambient：
Temp．： $23.0{ }^{\circ} \mathrm{C}$
Humid．： 52 \％
Press．： 1020 mbar
Test Status：
1）Keep the EUT operating at the lowest，middle and the highest frequencies．
2）Test EUT in normal conditions．

Test Setup：

Ground Reference Plane
$\begin{array}{ll}\text { Limit：} & \leq 10 \mathrm{dBm} \\ \text { Test Data：} & \text { Refer to Appendix A＿Power Spectral Density }\end{array}$
Remark：Cable loss and antenna gain was combined in the calculated result．

5．1．3 Occupied Channel Bandwidth

Test Requirement：EN 300328 Clause 4．3．2．7
Test Method：EN 300328 Clause 5．4．7

EUT Operation：

Ambient：
Temp．： $23.0 \quad{ }^{\circ} \mathrm{C}$
Humid．： 52 \％
Press．： 1020 mbar
Test Status：1）Keep the EUT operating at the lowest and the highest frequencies．
2）Test EUT in normal conditions．

Test Setup ：

Ground Reference Plane
Limit：The Occupied Channel Bandwidth shall fall completely within the band given in clause 1.
In addition，for non－adaptive systems using wide band modulations other FHSS and with e．i．r．p greater than 10 dBm ，the occupied channel bandwidth shall be less than 20 MHz ．
（99 \％of the power of the signal）
Test Data：Refer to Appendix A＿Occupied Channel Bandwidth
Remark：Cable loss and antenna gain was combined in the calculated result．

5．1．4 Transmitter Unwanted Emissions in The Out－of－Band Domain

Test Requirement：EN 300328 Clause 4．3．2．8
Test Method：EN 300328 Clause 5．4．8
EUT Operation：

Ambient：
Test Status：

Temp．： $23.0{ }^{\circ} \mathrm{C} \quad$ Humid．： $52 \% \quad$ Press．： 1020 mbar
1）Keep the EUT operating at the lowest and the highest frequencies．
2）The equipment shall be configured to operate under its worst case situation with respect to output power．
3）Test EUT in normal condition．

Test Setup

Limit：

A：$-10 \mathrm{dBm} / \mathrm{MHz}$ e．i．r．p．
B：$-20 \mathrm{dBm} / \mathrm{MHz}$ e．i．r．p．
B：$-20 \mathrm{dBm} / \mathrm{MHz}$ ei．i．p．
C：Spurious Domain limits
$B W=$ Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

Figure 1：Transmit mask
Test Data：Refer to Appendix A＿Transmitter unwanted emissions in the out－of－band domain Remark：Cable loss and antenna gain was combined in the calculated result．

5．1．5 Transmitter Unwanted Emissions in The Spurious Domain

Test Requirement：EN 300328 Clause 4．3．2．9
Test Method：
EN 300328 Clause 5．4．9

EUT Operation：

Ambient：Temp．： $23.0{ }^{\circ} \mathrm{C}$ Humid．： 52% Press．： 1020 mbar

Test Status：1）Through Pre－scan all kinds of modulation and all kinds of rate，the test worst case transmitter rate data mode is recorded in the report ．
2）The equipment shall be configured to operate under its worst case situation with respect to output power．
3）Test EUT in normal conditions．
Test Setup

Figure 1． 30 MHz to 1 GHz

Figure 2．Above 1 GHz

Test Procedure：1．Scan from 30 MHz to 12.75 GHz ，find the maximum radiation frequency to measure．
2．The technique used to find the Spurious Emissions of the transmitter was the antenna substitution method．Substitution method was performed to determine the actual ERP／EIRP emission levels of the EUT．

Below 1 GHz test procedure as below：

1）The EUT was powered $O N$ and placed on a table in the chamber．The antenna of the transmitter was extended to its maximum length．modulation mode and the measuring receiver shall be tuned to the frequency of the transmitter under test．
2）Rotating through 360° the turntable．After the fundamental emission was maximized，a field strength measurement was made．
3）Steps 1）and 2）were performed with the EUT and the receive antenna in both vertical and horizontal polarization．
4）The transmitter was then removed and replaced with another antenna．The center of the antenna was approximately at the same location as the center of the transmitter．
5）A signal at the disturbance was fed to the substitution antenna by means of a non－radiating cable．With both the substitution and the receive antennas horizontally polarized，the receive antenna was raised and lowered to obtain a maximum reading at the test receiver．The level of the signal generator was adjusted until the measured field strength level in step 2 ）is obtained for this set of conditions．
6）The output power into the substitution antenna was then measured．
7）Steps 5）and 6 ）were repeated with both antennas vertically polarized．
8）Calculate power in dBm by the following formula：
$\mathrm{ERP}(\mathrm{dBm})=\mathrm{Pg}(\mathrm{dBm})-$ cable loss $(\mathrm{dB})+$ antenna gain (dBd)
where：

Shenzhen Huaxia Testing Technology Co．，Ltd

Pg is the generator output power into the substitution antenna．

Above 1GHz test procedure as below：

1）Different between above is the test site，change from Semi－Anechoic Chamber to fully Anechoic Chamber and receiving antenna is moved from 1 m to 2 m ．
2）Calculate power in dBm by the following formula：
$\operatorname{EIRP}(\mathrm{dBm})=\mathrm{Pg}(\mathrm{dBm})-$ cable loss $(\mathrm{dB})+$ antenna gain (dBi)
EIRP＝ERP＋2．15dB
where：
Pg is the generator output power into the substitution antenna．

Limit：

Table 1：Transmitter limits for spurious emissions

Frequency range	Maximum power， e．r．p．（ $\leq 1 \mathbf{G H z})$ e．i．r．p．（＞1 GHz）	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to $87,5 \mathrm{MHz}$	-36 dBm	100 kHz
$87,5 \mathrm{MHz}$ to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 862 MHz	-54 dBm	100 kHz
862 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to $12,75 \mathrm{GHz}$	-30 dBm	1 MHz

Remark：Cable loss and antenna gain was combined in the calculated result．

Test Data

CH Lowest（2402MHz）

Fre． (MHz)	ANT． Pol．	Result（dBm）	Limit	Over	Conclusion
752.26	V	-70.13	-54	-16.13	PASS
744.67	H	-70.93	-54	-16.93	PASS
4804	H	-43.83	-30	-13.83	PASS
4804	V	-42.85	-30	-12.85	PASS
7206	H	-43.57	-30	-13.57	PASS
7206	V	-44.40	-30	-14.40	PASS
9608	H	-44.88	-30	-14.88	PASS
9608	V	-43.36	-30	-13.36	PASS

CH Highest（2480MHz）

Fre． (MHz)	ANT． Pol．	Result（dBm）	Limit	Over	Conclusion
644.41	V	-68.32	-54	-14.32	PASS
642.87	H	-68.21	-54	-14.21	PASS
4960	H	-44.74	-30	-14.74	PASS
4960	V	-42.45	-30	-12.45	PASS
7440	H	-42.44	-30	-12.44	PASS
7440	V	-43.48	-30	-13.48	PASS
9920	H	-44.20	-30	-14.20	PASS
9920	V	-42.71	-30	-12.71	PASS

5．1．6 Receiver Spurious Emissions

Test Requirement：EN 300328 Clause 4．3．2．10
Test Method：EN 300328 Clause 5．4．10

EUT Operation：

Ambient：
Temp．： $23.0^{\circ} \mathrm{C}$
Humid．： 52 \％
Press．： 1020 mbar

Test Status：
1）Keep the EUT operating at the lowest and the highest frequencies．When this is not possible，the measurement shall be performed during normal operation
2）Testing shall be performed when the equipment is in a receive－only mode．
3）Test EUT in normal conditions．

Test Setup：

Figure 1． 30 MHz to 1 GHz

Figure 2．Above 1GHz

Test Procedure：1．Scan from 30 MHz to 12.75 GHz ，find the maximum radiation frequency to measure．
2．The technique used to find the Spurious Emissions of the transmitter was the antenna substitution method．Substitution method was performed to determine the actual ERP／EIRP emission levels of the EUT．

Below 1 GHz test procedure as below：

1）The EUT was powered $O N$ and placed on a table in the chamber．The antenna of the transmitter was extended to its maximum length．Receiver mode and the measuring receiver shall be tuned to the frequency of the transmitter under test．
2）Rotating through 360° the turntable．After the fundamental emission was maximized，a field strength measurement was made．
3）Steps 1）and 2）were performed with the EUT and the receive antenna in both vertical and horizontal polarization．
4）The transmitter was then removed and replaced with another antenna．The center of the antenna was approximately at the same location as the center of the transmitter．
5）A signal at the disturbance was fed to the substitution antenna by means of a non－radiating cable．With both the substitution and the receive antennas horizontally polarized，the receive antenna was raised and lowered to obtain a maximum reading at the test receiver．The level of the signal generator was adjusted until the measured field strength level in step 2）is obtained for this set of conditions．
6）The output power into the substitution antenna was then measured．
7）Steps 5）and 6）were repeated with both antennas vertically polarized．

8）Calculate power in dBm by the following formula：
$E R P(d B m)=P g(d B m)-$ cable loss $(d B)+$ antenna gain $(d B d)$ where：

Pg is the generator output power into the substitution antenna．

Above 1 GHz test procedure as below：

1）Different between above is the test site，change from Semi－Anechoic Chamber to fully Anechoic Chamber and receiving antenna is moved from 1 m to 2 m ．
2）Calculate power in dBm by the following formula：
$\operatorname{EIRP}(\mathrm{dBm})=\mathrm{Pg}(\mathrm{dBm})-$ cable loss $(\mathrm{dB})+$ antenna gain (dBi)
EIRP＝ERP＋2．15dB
where：
Pg is the generator output power into the substitution antenna．
Limit：
Table 2：Spurious emission limits for receivers

Frequency range	Maximum power e．r．p．$(\leq 1 \mathbf{G H z})$ e．i．r．p．$(>\mathbf{1 ~ G H z})$	Bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12.75 GHz	-47 dBm	1 MHz

Remark：Cable loss and antenna gain was combined in the calculated result．

Below 1GHz

Fre．（MHz）	ANT．Pol．	Result（dBm）	Limit	Over	Conclusion	
CH Lowest（2402MHz）						
412.66	H	-65.67	-57	-8.67	PASS	
412.66	V	-65.35	-57	-8.35	PASS	
679.52	H	-64.65	-57	-7.65	PASS	
679.52	V	-64.88	-57	-7.88	PASS	
434.87	H	CH Highest（2480MHz）				
434.87	V	-64.65	-57	-7.65	PASS	
669.66	H	-64.88	-57	-7.88	PASS	
669.66	V	-65.44	-57	-8.44	PASS	

Above 1GHz

Fre．（MHz）	ANT．Pol．	Result（dBm）	Limit	Over	Conclusion	
CH Lowest（2402MHz）						
1029.91	H	-56.16	-47	-9.16	PASS	
1029.91	V	-55.70	-47	-8.70	PASS	
1226.61	H	-55.36	-47	-8.36	PASS	
1226.61	V	-55.44	-47	-8.44	PASS	
1045.19	H	-56.67	-47	-9.67	PASS	
1045.19	V	-55.68	-47	-8.68	PASS	
1222.04	H	-56.68	-47	-9.68	PASS	
1222.04	V	-55.73	-47	-8.73	PASS	

5．1．7 Receiver Blocking

Test Requirement：EN 300328 Clause 4．3．2．11
Test Method：EN 300328 Clause 5．4．11

EUT Operation：

Ambient：
Temp．： $23.0{ }^{\circ} \mathrm{C}$
Humid．： 52 \％
Press．： 1020 mbar
Test Status：
1）Keep the EUT operating at the lowest（ 2402 MHz ）and the highest $(2480 \mathrm{MHz})$ frequencies．The measurement shall be performed during normal operation．
2）Test EUT in normal conditions．

Test Setup：

[^1]Shenzhen Huaxia Testing Technology Co．，Ltd
Report No．：CQASZ20190400303E－02
1）Receiver Blocking parameters receiver category 1 equipment

Wanted signal mean power from companion device（ dBm ）	Blocking signal frequency （MHz）	Blocking signal power （dBm） （see note 2）	Type of blocking signal
$\mathrm{P}_{\text {min }}+6 \mathrm{~dB}$	$\begin{gathered} 2380 \\ 2503,5 \end{gathered}$	－53	CW
$\mathrm{P}_{\text {min }}+6 \mathrm{~dB}$	$\begin{aligned} & 2300 \\ & 2330 \\ & 2360 \\ & \hline \end{aligned}$	－47	CW
$\mathrm{P}_{\text {min }}+6 \mathrm{~dB}$	2 523，5 2553,5 2 2 263,5 2643,5 2673,5	－47	CW
NOTE 1： $\mathrm{P}_{\text {min }}$ is the minimum level of wanted signal（in dBm ）required to meet the minimum performance criteria as defined in clause 4．3．1．12．3 in the absence of any blocking signal． NOTE 2：The levels specified are levels in front of the UUT antenna．In case of conducted measurements，the levels have to be corrected by the actual antenna assembly gain．			

2）Receiver Blocking parameters receiver category 2 equipment

Wanted signal mean power from companion device（dBm）	Blocking signal frequency (MHz)	Blocking signal power (dBm) （see note 2）	Type of blocking signal
$\mathrm{P}_{\min }+6 \mathrm{~dB}$	2380	-57	CW
$\mathrm{P}_{\min }+6 \mathrm{~dB}$	2300	CW	
NOTE 1：$\mathrm{P}_{\text {min }}$ is the minimum level of the wanted signal（in dBm）required to meet the minimum performance criteria as defined in clause 4．3．1．12．3 in the absence of any blocking signal． NOTE 2：The levels specified are levels in front of the UUT antenna．In case of conducted measurements，the levels have to be corrected by the actual antenna assembly gain．			

3）Receiver Blocking parameters receiver category 2 equipment

Wanted signal mean power from companion device（dBm）	Blocking signal frequency （MHz）	Blocking signal power （dBm） （see note 2）	Type of blocking signal
$P_{\text {min }}+12 \mathrm{~dB}$	$\begin{gathered} 2380 \\ 2503,5 \end{gathered}$	－57	CW
$\mathrm{P}_{\text {min }}+12 \mathrm{~dB}$	$\begin{gathered} 2300 \\ 2583,5 \end{gathered}$	47	CW
NOTE 1： $\mathrm{P}_{\min }$ is the minimum level of the wanted signal（in dBm ）required to meet the minimum performance criteria as defined in clause 4．3．1．12．3 in the absence of any blocking signal． NOTE 2：The levels specified are levels in front of the UUT antenna．In case of conducted measurements，the levels have to be corrected by the actual antenna assembly gain．			

Test data

Receiver Category 2

Test channel	$\mathbf{P}_{\min }(\mathrm{dBm})$	Test result（PER）	Limit（PER）
lowest $(2402 \mathrm{MHz})$	-83.78	9.50%	$\leq 10 \%$
highest $(2480 \mathrm{MHz})$	-82.63	9.30%	$\leq 10 \%$

Test channel	Wanted signal mean power from companion device（dBm）	Blocking signal	Blocking signal power （dBm）	Test result （PER）	Limit（PER）	Result
		Frequency（MHz）				
lowest	$P \min +6 \mathrm{~dB}$	2380	－57	0．99\％	$\leq 10 \%$	PASS
		2300	－47	1．20\％	$\leq 10 \%$	PASS
highest	P min +6 dB	2503.5	－57	0．78\％	$\leq 10 \%$	PASS
		2583.5	－47	0．63\％	$\leq 10 \%$	PASS

6 Photographs of Equipment Provided by The Applicant

6．1 Test Setup－Radiated Spurious Emissions

Above 1GHz：

6．2 Constructional Details of Equipment Under Test

Refer to Photographs of EUT Constructional Details for CQASZ20190400303E－01．

Shenzhen Huaxia Testing Technology Co．，Ltd

Appendix A：Test Data

1．RF Output Power

Test Condition	Test Mode	Test Channel	Ant	Power $[\mathrm{dBm}]$	EIRP $[\mathrm{dBm}]$	Limit $[\mathrm{dBm}]$	Verdict
TNVN	BLE	2402	Ant1	1.93	1.93	$<=20$	PASS
TNVN	BLE	2440	Ant1	2.11	2.11	$<=20$	PASS
TNVN	BLE	2480	Ant1	2.37	2.37	$<=20$	PASS
TLVN	BLE	2402	Ant1	1.93	1.93	$<=20$	PASS
TLVN	BLE	2440	Ant1	2.12	2.12	$<=20$	PASS
TLVN	BLE	2480	Ant1	2.38	2.38	$<=20$	PASS
THVN	BLE	2402	Ant1	1.92	1.92	$<=20$	PASS
THVN	BLE	2440	Ant1	2.12	2.12	$<=20$	PASS
THVN	BLE	2480	Ant1	2.38	2.38	$<=20$	PASS

2．Power Spectral Density

Test Condition	Test Mode	Test Channel	Ant	PSD $[\mathrm{dBm}]$	Limit $[\mathrm{dBm}]$	Verdict
TNVN	BLE	2402	Ant1	1.86	$<=10$	PASS
TNVN	BLE	2440	Ant1	2.05	$<=10$	PASS
TNVN	BLE	2480	Ant1	2.30	$<=10$	PASS

3．Occupied Channel Bandwidth

Test Condition	Test Mode	Test Channel	Ant	OBW $[\mathrm{MHz}]$	FL OBW $[\mathrm{MHz}]$	FH OBW $[\mathrm{MHz}]$	Verdict
TNVN	BLE	2402	Ant1	1.052	2401.474	---	PASS
TNVN	BLE	2440	Ant1	1.052	---	---	PASS
TNVN	BLE	2480	Ant1	1.056	---	2480.528	PASS

Date：8．MAY．2019 10：55：54
Occupied Channel Bandwidth＿TNVN＿BLE＿2440＿Ant1 （8）

4．Transmitter unwanted emissions in the out－of－band domain

Test Condition	Test Mode	Test Channel	Ant	Freq $[\mathrm{MHz}]$	Result $[\mathrm{dBm}]$	Limit $[\mathrm{dBm}]$	Verdict
TNVN	BLE	2402	Ant1	2398.396	-47.61	$<=-20$	PASS
TNVN	BLE	2402	Ant1	2398.448	-46.31	$<=-20$	PASS
TNVN	BLE	2402	Ant1	2399.448	-31.31	$<=-10$	PASS
TNVN	BLE	2402	Ant1	2399.500	-30.41	$<=-10$	PASS
TNVN	BLE	2402	Ant1	2484.000	-57.80	$<=-10$	PASS
TNVN	BLE	2402	Ant1	2484.052	-59.74	$<=-10$	PASS
TNVN	BLE	2402	Ant1	2485.052	-59.15	$<=-20$	PASS
TNVN	BLE	2402	Ant1	2485.104	-59.59	$<=-20$	PASS
TNVN	BLE	2480	Ant1	2398.388	-58.74	$<=-20$	PASS
TNVN	BLE	2480	Ant1	2398.444	-60.67	$<=-20$	PASS
TNVN	BLE	2480	Ant1	2399.444	-59.53	$<=-10$	PASS
TNVN	BLE	2480	Ant1	2399.500	-58.82	$<=-10$	PASS
TNVN	BLE	2480	Ant1	2484.000	-45.07	$<=-10$	PASS
TNVN	BLE	2480	Ant1	2484.056	-45.34	$<=-10$	PASS
TNVN	BLE	2480	Ant1	2485.056	-53.91	$<=-20$	PASS
TNVN	BLE	2480	Ant1	2485.112	-54.03	$<=-20$	PASS

Transmitter unwanted emissions in the out－of－band domain＿TNVN＿BLE＿2402＿Ant1＿2400MHz－2BW to 2400 MHz

Transmitter unwanted emissions in the out－of－band domain＿TNVN＿BLE＿2402＿Ant1＿2483．5MHz to $2483.5 \mathrm{MHz}+2 \mathrm{BW}$
Transmitter unwanted emissions in the out－of－band domain

Transmitter unwanted emissions in the out－of－band domain＿TNVN＿BLE＿2480＿Ant1＿2400MHz－2BW to 2400 MHz

5．Transmitter unwanted emissions in the spurious domain

Test Condition	Test Mode	Test Channel	Ant	Result	Verdict
TNVN	BLE	2402	Ant1	See＿test＿plot	PASS
TNVN	BLE	2440	Ant1	See＿test＿plot	PASS
TNVN	BLE	2480	Ant1	See＿test＿plot	PASS

6．Receiver spurious emissions

Test Condition	Test Mode	Test Channel	Ant	Result	Verdict
TNVN	BLE	2402	Ant1	See test plot	PASS
TNVN	BLE	2480	Ant1	See test plot	PASS

END OF THE REPORT

[^0]: ＊In the configuration tested，the EUT complied with the standards specified above．

[^1]: Test Limit：The minimum performance criterion shall be a PER less than or equal to 10% ．
 Receiver Category $\quad \square$ Receiver Category 1 （Adaptive equipment with a maximum RF output power greater than 10 dBm e．i．r．p．）

 Receiver Category 2 （adaptive equipment with a maximum RF output power of 10 dBm e．i．r．p．）
 \square Receiver Category 3 （adaptive equipment with a maximum RF output power of 0 dBm e．i．r．p．）

 Note ：Declaration of manufacturer
 Test Result：
 Pass

