

EMC Test Report

Report No.: AGC04094190602EE01

PRODUCT DESIGNATION		TWS earbuds in wireless chargingcase	
BRAND NAME :		N/A	
MODEL NAME :		P329.12	
APPLACANT :		Xindao B.V.	
DATE OF ISSUE :		Jun. 26, 2019	
STANDARD(S) :		EN 301 489-1 V2.2.1: 2019-03 (draft) EN 301 489-3 V2.1.1: 2019-03 EN 301 489-17 V3.2.0: 2017-03 (draft)	
REPORT VERSION :		V1.0	

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report Revise Record

Report Version	Revise Time	Issued Date	ssued Date Valid Version Notes		
V1.0	V1.0 /		Valid	Initial release	1

Report No.: AGC04094190602EE01 Page 3 of 41

TABLE OF CONTENTS

1. TEST REPORT CERTIFICATION	6
2. GENERAL INFORMATION	7
2.1. DESCRIPTION OF EUT	7
2.2. OBJECTIVE	
2.3. TEST STANDARDS AND RESULTS	7
2.4. TEST ITEMS AND THE RESULTS	8
2.5. ENVIRONMENTAL CONDITIONS	8
3. TEST MODE DESCRIPTION	
4. MEASUREMENT UNCERTAINTY	9
5. SUPPORT EQUIPMENT	10
6. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION	11
7. RADIATED DISTURBANCE MEASUREMENT	13
7.1. LIMITS OF RADIATED DISTURBANCES	13
7.2. TEST PROCEDURE	13
7.3. BLOCK DIAGRAM OF TEST SETUP	14
7.4 TEST RESULT	15
8. MAINS TERMINAL DISTURBANCE VOLTAGE MEASUREMENT	17
8.1. LIMITS OF MAINS TERMINAL DISTURBANCE VOLTAGE	
8.2. TEST PROCEDURE	17
8.3. TEST SETUP	18
8.4. TEST RESULT	18
9. HARMONIC CURRENT MEASUREMENT	21
9.1. LIMITS OF HARMONIC CURRENT	21
9.2. TEST PROCEDURE	21
9.3. TEST SETUP	
9.4. TEST RESULT	22
10. VOLTAGE FLUCTUATIONS AND FLICK MEASUREMENT	23
10.1. LIMITS OF VOLTAGE FLUCTUATIONS AND FLICK	23
10.2. TEST PROCEDURE	23

 $\label{eq:attestation} Attestation of Global Compliance (Shenzhen) Co., Ltd.$

AGC[®]

Report No.: AGC04094190602EE01 Page 4 of 41

10.3. TEST SETUP	
10.4. TEST RESULT	23
11. IMMUNITY TEST	
11.1. EUT SETUP AND OPERATING CONDITIONS	24
11.2. GENERAL PERFORMANCE CRITERIA	24
11.3. ELECTROSTATIC DISCHARGE IMMUNITY TEST	
11.3.4 TEST RESULT	
11.3.5 PERFORMANCE	
12. RADIATED, RADIO FREQUENCY ELECTROMAGNETIC FIELD IMMUN	NITY TEST 29
12.1 TEST SPECIFICATION	
12.2. TEST PROCEDURE	
12.3. TEST SETUP	
12.4. TEST RESULT	
12.5. PERFORMANCE	
13. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	
13.1. TEST SPECIFICATION	
13.2. TEST PROCEDURE	
13.3. TEST SETUP	
13.4. TEST RESULT	
13.5. PERFORMANCE	
14. SURGE IMMUNITY TEST	
14.1. TEST SPECIFICATION	
14.2. TEST PROCEDURE	
14.3. TEST SETUP	
14.4. TEST RESULT	
14.5. PERFORMANCE	
15. IMMUNITY TO CONDUCTED DISTURBANCES INDUCED BY RF FIELD	DS 37
15.1. TEST SPECIFICATION	
15.2. TEST PROCEDURE	
15.3. TEST SETUP	
15.4. TEST RESULT	
15.5. PERFORMANCE	
16. VOLTAGE DIPS AND SHORT INTERRUPTIONS IMMUNITY TEST	

 $\label{eq:attestation} Attestation of Global Compliance (Shenzhen) Co., Ltd.$

Report No.: AGC04094190602EE01 Page 5 of 41

16.1. TEST SPECIFICATION	
16.2. TEST PROCEDURE	
16.3. TEST SETUP	
16.4. TEST RESULT	
16.5. PERFORMANCE	40
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	

1. TEST REPORT CERTIFICATION

Applicant	Xindao B.V.
Address	P.O. Box 3082, 2280 GB, Rijswijk, The Netherlands
Manufacturer	Xindao B.V.
Address	P.O. Box 3082, 2280 GB, Rijswijk, The Netherlands
Factory	Xindao B.V.
Address	P.O. Box 3082, 2280 GB, Rijswijk, The Netherlands
Product Designation	TWS earbuds in wireless chargingcase
Brand Name	N/A
Test Model	P329.12
Date of test	Jun. 12, 2019 to Jun. 26, 2019
Deviation	None
Condition of Test Sample	Normal
Report Template	AGCRT-EC-BLE/EMC (2013-03-01)

We, Attestation of Global Compliance (Shenzhen) Co., Ltd., hereby certify that the submitted samples of the above item, as detailed in chapter 2.1 of this report, has been tested in our facility. The test record, data evaluation and test configuration represented herein are true and accurate accounts of measurements of the sample's EMC characteristics under the conditions herein specified.

Tested By

sky dow

Sky Dong(Dong Huihui)

Jun. 26, 2019

Reviewed By

Max Zhang

Max Zhang(Zhang Yi)

Jun. 26, 2019

Approved By

Forrest in

Forrest Lei(Lei Yonggang) Authorized Officer

Jun. 26, 2019

2. GENERAL INFORMATION

2.1. DESCRIPTION OF EUT

The EUT are TWS earbuds in wireless charging case

Details of technical specification refer to the description in follows:

Operating Frequency(BT)	2.402 GHz to 2.480GHz
Number of channels(BT)	79 channels
Bluetooth Version(BT)	V4.2
Modulation(BT)	GFSK, π /4-DQPSK
Antenna Type(BT)	PCB Antenna
Antenna Gain(BT)	-5.8dBi
Operating Frequency(WPT)	110-205KHz
Modulation(WPT)	ASK
Antenna Type(WPT)	Coil Antenna
Antenna Gain(WPT)	0dBi
Hardware Version	V1.1
Software Version	V1.0
Power Supply	DC 3.7V by battery

Note:1. The EUT doesn't support BLE.

2.2. OBJECTIVE

Perform Electro Magnetic Interference (EMI) and Electro Magnetic Susceptibility (EMS) tests for CE Marking.

2.3. TEST STANDARDS AND RESULTS

The EUT has been tested according to ETSI EN 301 489-1 V2.2.1 (2019-03), ETSI EN 301 489-3 V2.1.1 (2019-03) and ETSI EN 301 489-17 V3.2.0 (2017-03).

	Electro Magnetic Compatibility (EMC) standard for radio equipment and
ETSI EN 301 489-1	services; Part 1: Common technical requirements; Harmonised Standard for
	Electro Magnetic Compatibility
	Electro Magnetic Compatibility (EMC) standard for radio equipment and
ETSI EN 301 489-3	services; Part 3: Specific conditions for Short-Range Devices (SRD) operating
ET 31 EN 301 409-3	on frequencies between 9 kHz and 246 GHz; Harmonised Standard covering the
	essential requirements of article 3.1(b) of Directive 2014/53/EU
	Electro Magnetic Compatibility (EMC) standard for radio equipment and
ETSI EN 301 489-17	services; Part 17: Specific conditions for Broadband Data Transmission
	Systems;

No.	Basic Standard	Test Type	Result		
EMI	EMISSION (EN 301 489-1 §7.1)				
1	EN 55032 Radiated emission				
2	EN 55032	Conducted emission, AC ports	PASS		
3	EN 55032	Conducted emission, Telecom ports	N/A		
4	EN 61000-3-2	Harmonic current emissions	N/A		
5	EN 61000-3-3	Voltage fluctuations & flicker	PASS		
IMM	UNITY (EN 301 489-	1 §7.2)			
6	EN 61000-4-2	Electrostatic discharge immunity	PASS		
7	EN 61000-4-3	Radiated RF electromagnetic field immunity	PASS		
8	EN 61000-4-4	Electrical fast transient/burst immunity	PASS		
9	ISO 7637-1, -2	Transients and surges, DC ports	N/A		
10	EN 61000-4-5	Surge immunity, AC ports, Telecom ports	PASS		
11	EN 61000-4-6	EN 61000-4-6 Immunity to conducted disturbances induced by RF fields PAS			
12	EN 61000-4-11	Voltage dips and short interruptions immunity	PASS		

2.4. TEST ITEMS AND THE RESULTS

Note: 1. N/A- Not Applicable.

2. The latest versions of basic standards are applied.

2.5. ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

- Temperature: -10-40°C
- Humidity: 30-60 %
- Atmospheric pressure: 86-106 kPa

3. TEST MODE DESCRIPTION

NO.	EMI TEST MODE DESCRIPTION	WORST	
1	Charging mode by Micro-USB port	V	
2	Wireless charging mode	- F	
3	BT mode		
NO.	EMS TEST MODE DESCRIPTION		
1	Charging mode by Micro-USB port	V	
2	Wireless charging mode		
3	BT mode		

I/O Port Information (Applicable Not Applicable)

I/O Port of EUT				
I/O Port Type	Number	Cable Description	Tested With	
Micro-USB	1		1	

4. MEASUREMENT UNCERTAINTY

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

- Uncertainty of Conducted Emission, $Uc = \pm 3.2dB$
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB

5. SUPPORT EQUIPMENT

Device Type	vice Type Manufacturer Model Name		S/N	Data Cable
Adapter	N/A	DYS602-050200W	N/A	N/A
Smartphone	N/A	P8	N/A	N/A
Wireless charging pad	N/A	CP60	N/A	N/A

 $\label{eq:attestation} Attestation of Global Compliance (Shenzhen) Co., Ltd.$

6. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION

Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due	
TEST RECEIVER	R&S	ESPI	101206	Jun.12, 2019	Jun.11, 2020	
LISN	R&S	ESH3-Z5	100086	Aug.21, 2018	Aug.20, 2019	

TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due	
Test Receiver	R&S	ESCI	10096	Jun.20, 2019	Jun.19, 2020	
Antenna	SCHWARZBECK	VULB9168	D69250	Sep.28, 2018	Sep.27,2019	
Horn Antenna	ETS LINDGREN	3117	00034609	Mar.01, 2018	Feb.28,2020	
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 08, 2018	Dec.07,2019	

TEST EQUIPMENT OF POWER HARMONICS / VOLTAGE FLUCTUATION / FLICKER TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Signal Conditioning Unit	Schaffner	CCN1000-1	72431	Aug.21, 2018	Aug.20, 2019
AC Source	Schaffner	NSG1007	56825	Aug.21, 2018	Aug.20, 2019

TEST EQUIPMENT OF ESD TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
ESD Simulator	Schaffner	NSG 438	782	Sep.20, 2018	Sep.19, 2019

TEST EQUIPMENT OF RS IMMUNITY TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due	
Signal Generator	R&S	E4421B	MY43351603	Jul. 12, 2019	Jul. 11, 2020	
Biconilog Antenna	ETS	3142C	00060447	Sep.28, 2018	Sep.27,2019	
Power Sensor	R&S	URV5-Z4	100124	Jul. 12, 2019	Jul. 11, 2020	
Power Meter	R&S	NRVD	832378/027	Jun.20, 2019	Jun.19, 2020	
Power Amplifier	KALMUS	7100LC	04-02/17-06-001	Jun.20, 2019	Jun.19, 2020	
RF Amplifier	Milmega	AS01004-55_55	1004793	Jun.20, 2019	Jun.19, 2020	
Horn Antenna	ETS LINDGREN	3117	00034609	Mar.01, 2018	Feb.28, 2020	

TEST EQUIPMENT OF SURGE/EFT/DIPS TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
EFT, Surge, Dips Generator	Schaffner	Modula 6150	34437	Aug.21, 2018	Aug.20, 2019

TEST EQUIPMENT OF CS IMMUNITY TEST

Manufacturer	Model	S/N	Cal. Date	Cal. Due	
AR	75A250A	18464	Jul. 12, 2019	Jul. 11, 2020	
Schaffner	M016	21614	Aug.21, 2018	Aug.20, 2019 Jul. 11, 2020	
JWF	50FHC-006-50	N/A	Jul. 12, 2019		
Luthi	EM101	35773	Aug.21, 2018	Aug.20, 2019	
R&S	URV5-Z4	100124	May.14, 2019	May.15, 2020	
R&S	NRVD	8323781027	May.14, 2019	May.15, 2020	
R&S	E4421B	MY43351603	May.14, 2019	May.15, 2020	
	AR Schaffner JWF Luthi R&S R&S	AR75A250ASchaffnerM016JWF50FHC-006-50LuthiEM101R&SURV5-Z4R&SNRVD	AR 75A250A 18464 Schaffner M016 21614 JWF 50FHC-006-50 N/A Luthi EM101 35773 R&S URV5-Z4 100124 R&S NRVD 8323781027	AR 75A250A 18464 Jul. 12, 2019 Schaffner M016 21614 Aug.21, 2018 JWF 50FHC-006-50 N/A Jul. 12, 2019 Luthi EM101 35773 Aug.21, 2018 R&S URV5-Z4 100124 May.14, 2019 R&S NRVD 8323781027 May.14, 2019	

7. RADIATED DISTURBANCE MEASUREMENT

7.1. LIMITS OF RADIATED DISTURBANCES

Limits for radiated disturbance 30M to1 GHz at a measurement distance of 3 m

Frequency range (MHz)	Quasi peak limits(dBuV/m), for Class B ITE, at 3m measurement distance				
30 - 230	40				
230 - 1000	47				

Limits for radiated disturbance above 1 GHz at a measurement distance of 3 m

	Limits (dBuV/m), Class B ITE					
Frequency range (MHz)	Peak	Average				
1000-3000MHz	70	50				
3000-6000MHz	74	54				

Note: 1. The lower limit shall apply at the transition frequency.

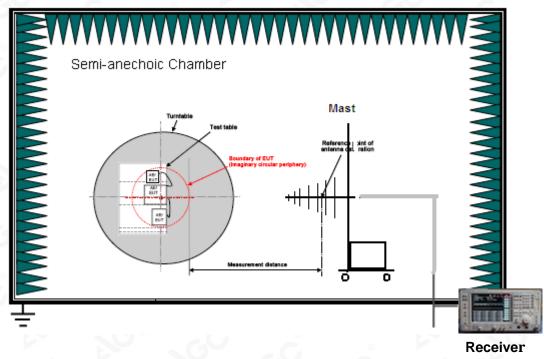
2. Additional provisions may be required for cases where interference occurs.

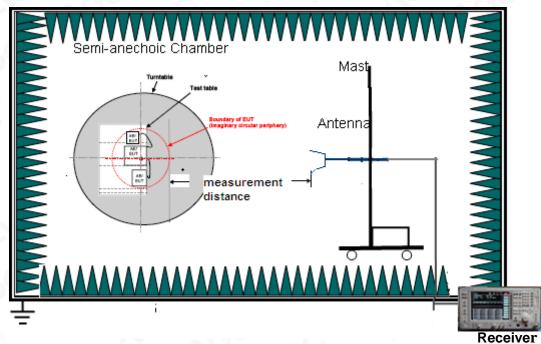
7.2. TEST PROCEDURE

(1). The EUT was placed on the top of an insulating table 0.8 meters above the ground at a semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

(2). The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

(3).The antenna is a broadband antenna, and its height is varied from 1 to 4 meter above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


(4). For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to the heights from 1 to 4 meters and the ratable table was turned from 0 degrees to 360 degrees to find the maximum reading.



7.3. BLOCK DIAGRAM OF TEST SETUP

Radiated Disturbance below 1 GHz

Radiated Disturbance above 1 GHz

For the actual test configuration, please refer to the related item-Photographs of the Test Configuration.

7.4 TEST RESULT (Mode 1)

66.9 dBuV/m Limit: Margin: 27 -13 30.000 127.00 224.00 321.00 418.00 515.00 612.00 709.00 806.00 1000.00 MHz Antenna Table Freq. Reading Factor Measurement Limit Over Mk Height Degree Detector Comment No MHz dBuV dB/m dBuV/m dBuV/m dB cm degree 42.9333 0.80 19.98 20.78 40.00 -19.22 peak 1 2 186.8167 5.00 16.77 21.77 40.00 -18.23 peak

47.00

47.00

47.00

47.00

24.07

31.14

34.25

35.37

22.93

-15.86

-12.75

-11.63

peak

peak

peak

peak

RADIATED EMISSION BELOW 1GHz-HORIZONTAL

RESULT: PASS

3

4

5

6

340.4000

728.4000

859.3500

951.5000

20.89

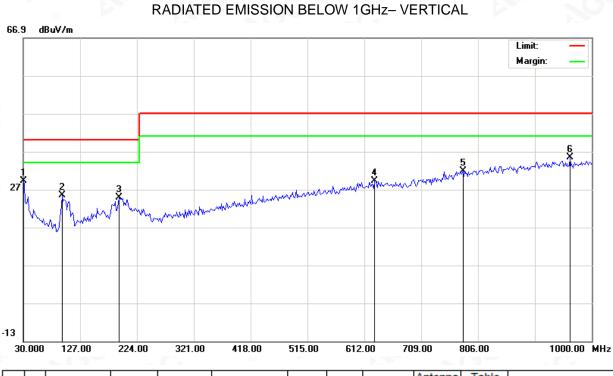
28.79

31.18

32.14

3.18

2.35


3.07

3.23

Report No.: AGC04094190602EE01 Page 16 of 41

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	30.0000	10.94	18.17	29.11	40.00	-10.89	peak			
2		96.2833	9.80	15.63	25.43	40.00	-14.57	peak			
3		193.2833	8.37	16.42	24.79	40.00	-15.21	peak			
4		629.7833	1.97	27.31	29.28	47.00	-17.72	peak			
5		780.1333	1.92	29.96	31.88	47.00	-15.12	peak			
6		962.8167	3.07	32.24	35.31	47.00	-11.69	peak			

RESULT: PASS

Remark: which 1GHz-6GHz are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

8. Mains Terminal Disturbance Voltage Measurement 8.1. LIMITS OF MAINS TERMINAL DISTURBANCE VOLTAGE

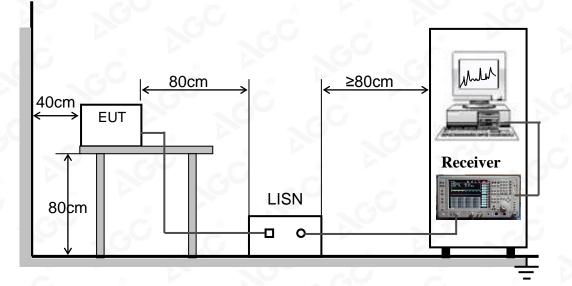
	Limits (dBuV), Class B ITE			
Frequency range (MHz)	Quasi-peak	Average		
0.15 - 0.50	66 to 56	56 to 46		
0.50 - 5	56	46		
5 - 30	60	50		

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

8.2. TEST PROCEDURE

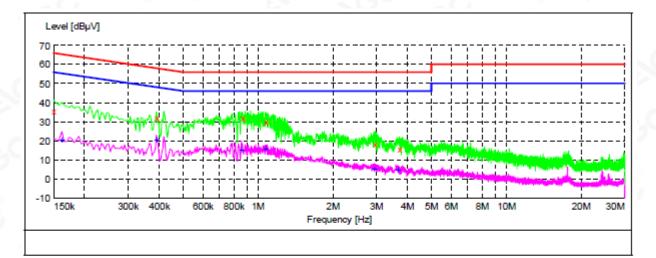

(1) The EUT was placed 0.4 meters from the conducting wall of shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provide $50\Omega/50\mu$ H of coupling impedance for the measuring instrument.

(2) Both lines of the power mains connected to the EUT were checked for maximum conducted interference.(3) The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 20dB under the prescribed limits are not reported.

8.3. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

8.4. TEST RESULT

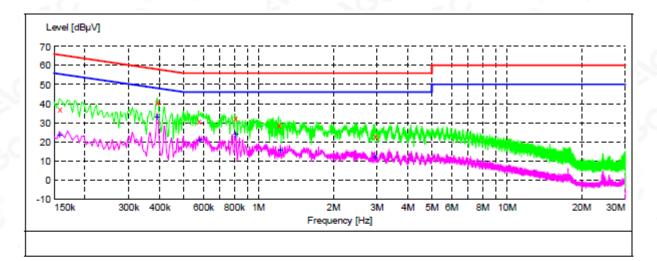

The test modes were carried out for all modes.

The worst test mode of the EUT was Mode 1, and its test data was showed as the follow.

LINE CONCUTED EMISSION TEST-L

MEASUREMENT RESULT: "TEST fin"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000 0.390000 0.866000 1.074000 2.946000 3.702000	35.70 31.90 31.90 29.90 18.10 16.00	10.8 10.4 11.0 11.4 11.5 11.6	66 58 56 56 56	30.3 26.2 24.1 26.1 37.9 40.0	QP QP QP QP QP QP	L1 L1 L1 L1 L1 L1	FLO FLO FLO FLO FLO FLO


MEASUREMENT RESULT: "TEST fin2"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.162000	20.50	10.8	55	34.9	AV	L1	FLO
0.390000	20.50	10.4	48	27.6	AV	L1	FLO
0.858000	15.20	11.0	46	30.8	AV	L1	FLO
1.074000	15.60	11.4	46	30.4	AV	L1	FLO
2.938000	5.20	11.5	46	40.8	AV	L1	FLO
3.666000	4.40	11.6	46	41.6	AV	L1	FLO

LINE CONCUTED EMISSION TEST-N

MEASUREMENT RESULT: "TEST_fin"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.158000 0.390000 0.574000 0.806000	37.40 41.00 30.90 32.50	10.8 10.4 10.8 10.8	66 58 56 56	28.2 17.1 25.1 23.5	QP QP QP	N N N N	FLO FLO FLO FLO
1.206000 2.946000	29.00 23.20	11.5 11.5	56 56	27.0 32.8	QP QP	N N	FLO FLO

MEASUREMENT RESULT: "TEST fin2"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.158000	23.40	10.8	56	32.2	AV	N	FLO
0.390000	33.10	10.4	48	15.0	AV	N	FLO
0.578000	21.10	10.8	46	24.9	AV	N	FLO
0.810000	24.00	10.8	46	22.0	AV	N	FLO
1.226000	15.60	11.5	46	30.4	AV	N	FLO
2.946000	11.80	11.5	46	34.2	AV	N	FLO

9. HARMONIC CURRENT MEASUREMENT

9.1. LIMITS OF HARMONIC CURRENT

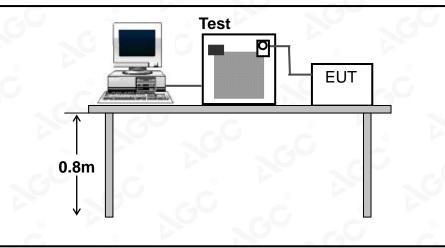
Limits for Class A Equipment					
Harmonics Order n	Max. permissible harmonic current (A)				
Odd harmonics					
3	2.30				
5	1.14				
7	0.77				
9	0.40				
11	0.33				
13	0.21				
15≤n≤39	0.15×15/n				
Eve	en harmonics				
2	1.08				
4	0.43				
6	0.30				
8≤n≤40	0.23×8/n				

NOTE:

1. According to section 5 of EN61000-3-2: 2014, the EUT is Class C equipment.

2. The above limits are for all applications having an active input power>75W. No limits apply for equipment with an active input power up to and including 75W.

9.2. TEST PROCEDURE


1. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.

2. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the necessary for the EUT to be exercised.

9.3. TEST SETUP

For the actual test configuration, please refer to Appendix I : Photographs of the Test Configuration.

9.4. TEST RESULT N/A

10. VOLTAGE FLUCTUATIONS AND FLICK MEASUREMENT

Test Item	Limit	Note
P _{st}	1.0	P _{st} means Short-term flicker indicator
P _{lt} 💿 🖌	0.65	P _{lt} means long-term flicker indicator
T _{dt}	0.2	T _{dt} means maximum time that d _t exceeds 3%
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
d _c (%)	3%	d _c means relative steady-state voltage change.

10.1. LIMITS OF VOLTAGE FLUCTUATIONS AND FLICK

10.2. TEST PROCEDURE

1. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal conditions

2. During the flick measurement, the measure time shall include that part of whole operation changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

10.3. TEST SETUP

Same as 9.3

10.4. TEST RESULT

Test Specification

Test Frequency:	50Hz	Test Voltage:	230V AC
Waveform:	Sine	Test Time:	10 minutes(P _{st}); 2 hours (P _{lt})

Test Result

Test Parameter	Measurement Value	Limit	Remarks
P _{st}	0.0091	1.0	Pass
Plt	0.0059	0.65	Pass
T _{dt(s)}	0.0035	0.2	Pass
d _{max} (%)	0.054%	4%	Pass
d _c (%)	0.042%	3%	Pass

11. IMMUNITY TEST

11.1. EUT SETUP AND OPERATING CONDITIONS

Each immunity test was performed according to the requirements of the standard.

11.2. GENERAL PERFORMANCE CRITERIA

1. Performance criteria for Continuous phenomena applied to Transmitter (CT)

The performance criteria A shall apply.

Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an ACKnowledgement (ACK) or Not ACKnowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

2. Performance criteria for Transient phenomena applied to Transmitter (TT)

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms

duration, for which performance criteria C shall apply.

Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

3. Performance criteria for Continuous phenomena applied to Receiver (CR)

The performance criteria A shall apply.

Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

4. Performance criteria for Transient phenomena applied to Receiver (TR)

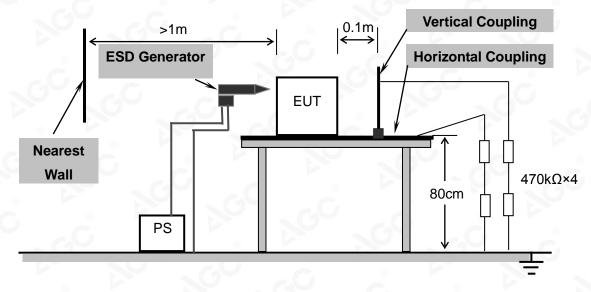
The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration for which performance criteria C shall apply.

Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

11.3. ELECTROSTATIC DISCHARGE IMMUNITY TEST

11.3.1 TEST SPECIFICATIO	N
Basic Standard	EN 61000-4-2
Discharge Impedance	330Ω / 150 pF
Discharge Voltage	Air Discharge –8 kV , Contact Discharge – 4 kV
Polarity	Positive / Negative
Number of Discharge	Minimum 20 times at each test point
Discharge Mode	Single discharge
Discharge Period	1-second minimum

11.3.2 TEST PROCEDURE


The test procedure was in accordance with EN 61000-4-2:

- a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were completed.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was positioned vertically at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m×0.5m) was placed vertically to and 0.1 meters from the EUT.

11.3.3 TEST SETUP

For the actual test configuration, please refer to Appendix I : Photographs of the Test Configuration.

11.3.4 TEST RESULT

Criteria	During Test	After Test
A	Shall operate as intended. May show degradation of performance (see note 1). Shall be no loss of function. Shall be no unintentional transmissions.	Shall operate as intended. Shall be no degradation of performance (see note 2). Shall be no loss of function. Shall be no loss of stored data or user programmable functions.
в	May show loss of function (one or more). May show degradation of performance (see note 1). No unintentional transmissions.	Functions shall be self-recoverable. Shall operate as intended after recovering. Shall be no degradation of performance (see note 2). Shall be no loss of stored data or user programmable functions.
performance le minimum perfo If the minimum of these may b	evel specified by the manufacturer for the use prmance level may be replaced by a permissib performance level or the permissible perform	erstood as a degradation to a level not below a minimum of the apparatus as intended. In some cases the specified ble degradation of performance. nance degradation is not specified by the manufacturer then either bcumentation (including leaflets and advertising) and what the use

NOTE 2: No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the

manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

DESCRIPTION OF THE ELECTROSTATIC DISCHARGES (ESD)

Amount of Discharges	Voltage	Coupling	Observation	Performance	Result (Pass/Fail)
Mini 20 / Point	±2KV, ±4kV	Contact Discharge	No Function Loss	A	Pass
Mini 20 / Point	±2KV, ±4kV, ±8kV	Air Discharge	No Function Loss	A	Pass
Mini 20 / Point	±2KV, ±4kV	Indirect Discharge HCP	No Function Loss	А	Pass
Mini 20 / Point	±2KV, ±4kV	Indirect Discharge VCP	No Function Loss	A	Pass

Note: operating mode include all modes of EMS in page 8

11.3.5 PERFORMANCE

⊠Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
☐Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
Criteria C:	Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

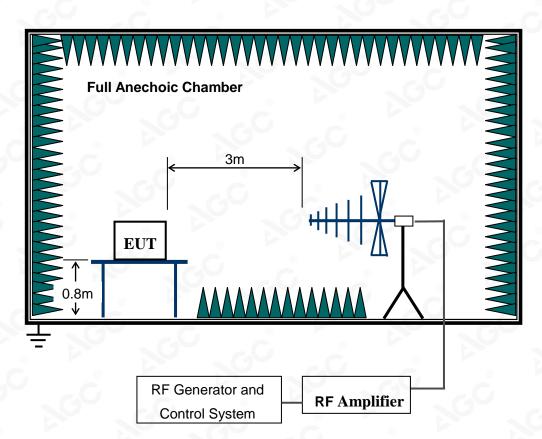
 \square

12. RADIATED, RADIO FREQUENCY ELECTROMAGNETIC FIELD IMMUNITY TEST 12.1 TEST SPECIFICATION

Basic Standard	EN 61000-4-3
Frequency Range	80 MHz – 6000MHzMHz
Field Strength	3V/m
Modulation	1 kHz sine wave, 80%, AM modulation
Frequency Step	1% of fundamental
Polarity of Antenna	Horizontal and Vertical
Test Distance	3m
Antenna Height	1.5m
Dwell Time	3 seconds

12.2. TEST PROCEDURE

The test procedure was in accordance with EN 61000-4-3.


- a. The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b. The test signal was 80% amplitude modulated with a 1 kHz sine wave.
- c. The frequency range was swept from 80 MHz to 6000MHz with the exception of the exclusion band for transmitters, receivers and duplex transceivers. The rate of sweep did not exceed 1.5×10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- d. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- e. The field strength level was 3V/m.
- f. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

Report No.: AGC04094190602EE01 Page 30 of 41

12.3. TEST SETUP

For the actual test configuration, please refer to Appendix A : Photographs of the Test Configuration.

 $\label{eq:attestation} Attestation of Global Compliance (Shenzhen) Co., Ltd.$

12.4. TEST RESULT

Criteria	During Test	After Test
A	Shall operate as intended. May show degradation of performance (see note 1). Shall be no loss of function. Shall be no unintentional transmissions.	Shall operate as intended. Shall be no degradation of performance (see note 2). Shall be no loss of function. Shall be no loss of stored data or user programmable functions.

NOTE 1: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance.

If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2: No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the

manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

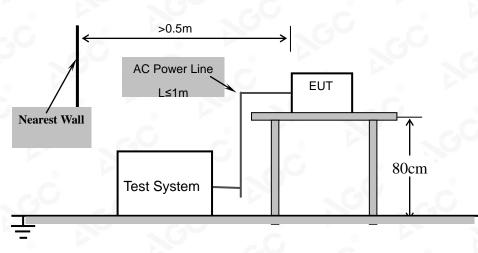
Freq. Range (MHz)	Field	Modulation	Polarity	Position	Observation	performance	Result (Pass/Fail)
80-6000	3V/m	Yes	H/V	Front	No Function Loss	A	PASS
80-6000	3V/m	Yes	H/V	Back	No Function Loss	A	PASS
80-6000	3V/m	Yes	H/V	Left	No Function Loss	A	PASS
80-6000	3V/m	Yes	H/V	Right	No Function Loss	А	PASS
80-6000	3V/m	Yes	H/V	Тор	No Function Loss	A	PASS
80-6000	3V/m	Yes	H/V	Bottom	No Function Loss	А	PASS

Note: operating mode include all modes of EMS in page 8

12.5. PERFORMANCE

⊠Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
☐Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
Criteria C:	Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

13. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST


13.1. TEST SPECIFICATION

Basic Standard:	IEC 61000-4-4
Test Voltage:	a.c. power port – 1 kV
Polarity:	Positive/Negative
Impulse Frequency:	5kHz
Impulse wave shape:	5/50ns
Burst Duration:	15ms
Burst Period:	300ms
Test Duration:	Not less than 1 min.

13.2. TEST PROCEDURE

- 1. The EUT was tested with 1000 volt discharges to the AC power input leads.
- 2. Both positive and negative polarity discharges were applied.
- 3. The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 1 meter.
- 4. The duration time of each test sequential was 1 minute.
- 5. The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.

13.3. TEST SETUP

For the actual test configuration, please refer to Appendix I : Photographs of the Test Configuration.

13.4. TEST RESULT

Test Point	Polarity	Test Level (kV)	Observation	performance	Conclusior
a.c. port, L	+/-	1	No function loss	А	Pass
a.c. port, N	+/-	1	No function loss	А	Pass
a.c. port, L-N	+/-	1	No function loss	A	Pass

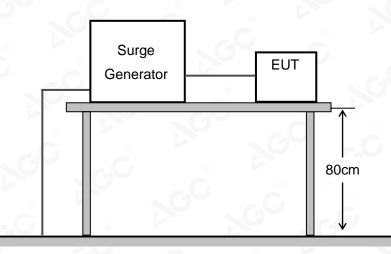
Note: There was not any unintentional transmission discovered in standby mode

Note: operating mode include all modes of EMS in page 8

13.5. PERFORMANCE

⊠Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
☐Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
Criteria C:	Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

 \boxtimes


14. SURGE IMMUNITY TEST

14.1. TEST SPECIFICATIO	DN C	
Basic Standard:	IEC 61000-4-5	0
Waveform:	Voltage 1.2/50 s; Current 8/20 s	3
Test Voltage:	a.c. power port, line to line 1.0 kV	1
Polarity:	Positive/Negative	0
Phase Angle:	0°, 90°, 180°, 270°	0
Repetition Rate:	60sec	
Times:	5 time/each condition.	

14.2. TEST PROCEDURE

- a. The EUT and the auxiliary equipment were placed on a table of 0.8m heights above a metal ground reference plane. The size of ground plane is greater than 1m×1m and project beyond the EUT by at least 0.1m on all sides. The ground plane is connected to the protective earth. The length of power cord between the coupling device and the EUT was less than 2 meters (provided by the manufacturer).
- b. The EUT was connected to the power mains through a coupling device that directly couples the surge interference signal. The surge noise was applied synchronized to the voltage phase at the zero crossing and the peak value of the AC voltage wave (positive and negative).
- c. The surges were applied line to line and line(s) to earth. All lower levels including the selected test level were tested. The polarity of each surge level included positive and negative test pulses.

14.3. TEST SETUP

For the actual test configuration, please refer to Appendix I : Photographs of the Test Configuration.

14.4. TEST RESULT

Coupling Line	Polarity	Voltage (kV)	Observation	performance	Conclusion		
a.c. power, L-N	+/-	1.0	No function loss	A	Pass		
Note: There was not any unintentional transmission discovered in standby mode							

Note: operating mode include all modes of EMS in page 8

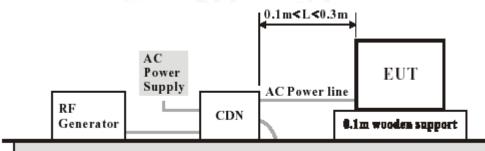
14.5. PERFORMANCE

⊠Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
Criteria C:	Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

 \square

15. IMMUNITY TO CONDUCTED DISTURBANCES INDUCED BY RF FIELDS

15.1. TEST SPECIFICATIO	N	0		
Basic Standard:	IEC 61000-4-6	- C		©
Frequency Range:	0.15 MHz – 80 MHz	N	. 64	
Field Strength:	3Vrms			-
Modulation:	1 kHz Sine Wave, 80% AM	Č.	6	N
Frequency Step:	1% of fundamental	GU	G	
Coupled Cable:	a.c. power line		0	
Coupling Device:	CDN-M2	6		


15.2. TEST PROCEDURE

- 1. The EUT shall be tested within its intended operating and climatic conditions.
- 2. The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.
- 3. The test signal was 80% amplitude modulated with a 1 kHz sine wave
- 4. The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80% amplitude. The sweep rate shall not exceed 1.5×10-3 decades/s. The step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value where the frequency is swept incrementally.
- 5. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequencies and harmonics or frequencies of dominant interest, shall be analyzed separately.
- 6. Attempts should be made to fully exercise the EUT during test, and to fully interrogate all exercise modes selected for susceptibility.

15.3. TEST SETUP

Reference Ground Plane

For the actual test configuration, please refer to Appendix I : Photographs of the Test Configuration.

15.4. TEST RESULT

EUT Working Mode	Test Point	Frequency (MHz)	Field Strength (Vrms)	Observation	performance	Conclusion
Normal	a.c. port	0.15 – 80	3	No function loss	C A	Pass
Note: There was r	not any uninte	ntional transm	ission in standby	/ mode		

Note: operating mode include all modes of EMS in page 8

15.5. PERFORMANCE

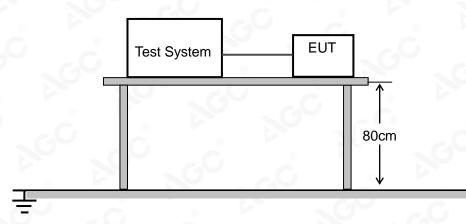
⊠Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
Criteria C:	Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

 \boxtimes

16. VOLTAGE DIPS AND SHORT INTERRUPTIONS IMMUNITY TEST

16.1. TEST SPECIFICATION

Basic Standard:	IEC 61000-4-11
	100% reduction, 0.5 Cycle
Voltage Dips:	100% reduction, 1.0 Cycle
	30% reduction, 25 Cycles
Voltage Interruptions:	100% reduction, 250 Cycles
Voltage Phase Angle:	0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°


16.2. TEST PROCEDURE

a). The power cord was used as supplied by the manufacturer. The EUT was connected to the line output of the Voltage Dips and Interruption Generator.

b).The EUT was tested for (1) 100% voltage dip of supplied voltage with duration of 0.5 cycles, (2)100% voltage dip of supplied voltage and duration 1.0 cycle. (3) 30% voltage dip of supplied voltage and duration 25 cycles. (4) 100% voltage interruption of supplied voltage with duration of 250 Cycles was followed.

c).Voltage reductions occur at 0 degree crossover point of the voltage waveform. The performance of the EUT was checked after the voltage dip or interruption.

16.3. TEST SETUP

For the actual test configuration, please refer to Appendix I : Photographs of the Test Configuration.

16.4. TEST RESULT

Test Mode	Voltage Reducti on	Duration (cycle)	Times	Interval (ms)	Observation	performance	Conclusion
	100%	0.5	3	10	No function loss	В	Pass
Voltage dips	100%	1	3	20	No function loss	С	Pass
	30%	25	3	500	No function loss	С	Pass
Voltage interruptions	100%	250	3	5000	No function loss	с	Pass

Note: There was not any unintentional transmission in standby mode

Note: operating mode include all modes of EMS in page 8

16.5. PERFORMANCE

Criteria A:	The apparatus continues to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance.
⊠Criteria B:	The apparatus continues to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.
Criteria C:	Temporary loss of function is allowed, provided the functions self recoverable or can be restored by the operation of controls.

 \square

Report No.: AGC04094190602EE01 Page 41 of 41

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Refer to Attached file(Appendix I).

APPENDIX B: PHOTOGRAPHS OF EUT

Refer to Attached file(Appendix I).

----END OF REPORT----

