

Page 1 of 15

TEST REPORT

ETS	EN 303 417 V1.1.1 (2017-	09)
Report Reference No	HTT191112046E-2	
Compiled by (position+printed name+signature):	Jack Chen	Jack Chen Oven Hu Kevin Young TECHNOLO
Supervised by (position+printed name+signature):	Owen Hu	Owen Hu
Approved by (position+printed name+signature):	Kevin Yang	Kevin Young TECHNOLO
Date of issue	Nov.06,2019	'(質 HTT)
Testing Laboratory Name	Shenzhen HTT Technology C	co., Ltd.
Address:	1F, B Building, Huafeng Inter Gushu, Xixiang Street, Bao'a	rnational Robotics Industrial Pack, n District, Shenzhen
Applicant's name		
Address:		
Test specification:		100000
Standard:	ETSI EN 303 417 V1.1.1 (2017	′-09)
Shenzhen HTT Technology Co., Ltd. This publication may be reproduced in Shenzhen Huatongwei International Insthe material. Shenzhen HTT Technolog damages resulting from the reader's introntext.	whole or in part for non-commenspection Co., Ltd is acknowledge Co., Ltd. takes no responsibil	ed as copyright owner and source of ity for and will not assume liability for
Test item description:	Wireless Powerbank	
Test item description: Trade Mark	Wireless Powerbank N/A	
·		
Trade Mark:		
Trade Mark: Manufacturer:		
Trade Mark	N/A	

Page 2 of 15

TEST REPORT

Test Report No. :	HTT191112046E-2	Nov.06,2019
rest Report No	1111191112040L-2	Date of issue

Equipment under Test : Wireless Powerbank

Model Name : W166

Serial Model : N/A

Trade Mark : N/A

Applicant :

Address :

Manufacturer :

Address :

Test Result	PASS
-------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 15

Contents

1 SUMMARY	4
1.1 TEST STANDARDS	4
1.2 Test Description	
1.3 Address of the test laboratory	
1.4 Statement of the measurement uncertainty	
•	
2 GENERAL INFORMATION	5
2.1 Environmental conditions	5
2.2 General Description of EUT	
2.3 Operational modes	
2.4 Equipments Used during the Test	
2.5 Modifications	6
3 TEST ITEM AND RESULTS	7
0.4. Our continue from a construction	_
3.1 Operating frequency range	
3.2 Operating frequency range	
3.4 Transmitter spurious emissions	
3.5 Transmitter out of band (OOB) emissions	
5.5 Transmitter out of pallu (OOD) emissions	13
4 TEST SETUP PHOTOS OF THE EUT	. 15
5 EXTERNAL AND INTERNAL PHOTOS OF THE EUT	. 1 <u>5</u>

Report No.: HTT191112046E-2 Page 4 of 15

1 SUMMARY

1.1 TEST STANDARDS

The tests were performed according to following standards:

ETSI EN 303 417 V1.1.1 (2017-09) –Wireless power transmission systems, using technologies other than radio frequency beam in the 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz ranges; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU

1.2 Test Description

ETSI EN 303 417 requirements		
Permitted range of operating frequencies	ETSI EN 303 417 V1.1.1 Sub-clause 4.3.2	PASS
Operating frequency ranges	ETSI EN 303 417 V1.1.1 Sub-clause 4.3.3	PASS
H-field requirements	ETSI EN 303 417 V1.1.1 Sub-clause 4.3.4	PASS
Transmitter spurious emissions	ETSI EN 303 417 V1.1.1 Sub-clause 4.3.5	PASS
Transmitter out of band (OOB) emissions	ETSI EN 303 417 V1.1.1 Sub-clause 4.3.6	PASS
WPT system unwanted conducted emissions	ETSI EN 303 417 V1.1.1 Sub-clause 4.3.7	N/A
Receiver blocking	ETSI EN 303 417 V1.1.1 Sub-clause 4.4.2	N/A

1.3 Address of the test laboratory

Shenzhen HTT Technology Co., Ltd..

1F, B Building, Huafeng International Robotics Industrial Park, Gushu, Xixiang Street, Bao'an District, Shenzhen

1.4 Statement of the measurement uncertainty

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k}=2$, providing a level of confidence of approximately 95 %.

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

Page 5 of 15

2 **GENERAL INFORMATION**

2.1 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

	Normal Temperature:	25°C
Temperature	High Temperature:	55°C
	Low Temperature:	-20°C
Voltage	Normal Voltage	5.00V
	High Voltage	5.75V
	Low Voltage	4.25V
Other	Relative Humidity	55 %
Other	Air Pressure	101 kPa

2.2 General Description of EUT

Product Name:	Wireless Powerbank	
Model:	W166	
Trade Mark:	N/A	
Power supply:	Battery size: 5000mAh /18.5Wh Micro Input:5V=== 2A Lighting input:5V=== 1A Type Input:5V=== 2A Wireless Input: 5V=== 0.8A USB output: 5V=== 2A Wireless output: 5V=== 1A	
Operation frequency:	125KHz	
Antenna type:	Inductive loop coil antenna	
Antenna Gain:	0 dBi	

Note: For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.3 Operational modes

The can operate the operation mode description as bellow:

Operational Mode		Description	
	1	Base station in stand-by, idle mode	
	2	Communication before charging, adjustment charging mode / position	
	3	Communication	
	4	Energy transmission	

Page 6 of 15

2.4 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2019/05/02	2020/05/01
Bilog Antenna	Sunol Sciences Corp.	JB1	A061714	2019/05/02	2020/05/01
EMI Test Receiver	R&S	ESCI	103710	2019/05/02	2020/05/01
Spectrum Analyzer	Agilent	E4407B	MY45108355	2019/05/02	2020/05/01
Spectrum Analyzer	Agilent	N9010A	MY49100188	2019/05/02	2020/05/01
Controller	EM Electronics	Controller EM 1000	N/A	2019/05/02	2020/05/01
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2019/05/02	2020/05/01
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062014	2019/05/02	2020/05/01
LISN	R&S	ENV216	101316	2019/05/02	2020/05/01
LISN	R&S	ESH2-Z5	860014/010	2019/05/02	2020/05/01
Pre-Amplifier	Agilent	8447D	2944A10176	2019/05/02	2020/05/01
Pre-Amplifier	Agilent	8449B	3008A05.006	2019/05/02	2020/05/01
SIGNAL GENERATOR	HP	8647A	3200A00852	2019/05/02	2020/05/01
Wideband Peak Power Meter	Anritsu	ML2495A	220.23.35	2019/05/02	2020/05/01
Climate Chamber	ESPEC	EL-10KA	A20120523	2019/05/02	2020/05/01
High-Pass Filter	K&L	9SH10-2700/ X12750-O/O	/	2019/05/02	2020/05/01
High-Pass Filter	K&L	41H10-1375/ U12750-O/O	/	2019/05/02	2020/05/01
RF Cable	HUBER+SUHNER	RG214	/	2019/05/02	2020/05/01
Vector Signal Generator	Agilent	E4438C	102226	2019/05/02	2020/05/01
Power Sensor	Rohde&Schwarz	OSP-120 (including B157)	115683	2019/05/02	2020/05/01
10 dB Coaxial Coupler	Agilent	87300C	MY49100232	2019/05/02	2020/05/01

The calibration interval is one year.

2.5 Modifications

No modifications were implemented to meet testing criteria.

Report No.: HTT191112046E-2 Page 7 of 15

3 TEST ITEM AND RESULTS

3.1 Operating frequency range

LIMIT

ETSI EN 303 417 V1.1.1 (2017-09) Sub-clause 4.3.2.3

The permitted range of operating frequency range(s) for intentional emissions shall be within 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz.

TEST RESULTS

Pass

The manufacturer declares the ranges of this device are 110-205 KHz, Belong to 100 - 300 kHz band.

Report No.: HTT191112046E-2 Page 8 of 15

Operating frequency range

LIMIT

ETSI EN 303 417 V1.1.1 (2017-09) Sub-clause 4.3.3.3

The operating frequency range for emissions shall be within one of the following limits: 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz.

TEST CONFIGURATION

TEST PROCEDURE

The OBW function of the spectrum analyser shall be used with a limit of 99 % to determine the operating frequencyrange:

- f_H is the frequency of the upper marker resulting from the OBW.
- f_L is the frequency of the lower marker resulting from the OBW.

The following values shall be recorded:

- f_H as the frequency of the upper marker resulting from the "OBW"-function of a spectrum analyser, using 99 % of the power (see Figure 1). Alternatively the frequency above the centre frequency fc shall be recorded where the level is 23 dB lower than the maximum;
- f₁ as the frequency of the lower marker resulting from the "OBW"-function of a spectrum analyser, using 99 % of the power (see Figure 1). Alternatively the frequency below the centre frequency shall be recorded where the level is 23 dB lower than the maximum;
- f_c is the centre frequency. $f_C = \frac{f_H + f_L}{2}$;
- OFR= f_H f_L.

TEST RESULTS

f _L (KHz)	f _H (KHz)	f _H (KHz) Limit	
122.34KHz	129.68KHz	119 - 140KHz	Pass

Report No.: HTT191112046E-2 Page 9 of 15

3.3 H-field requirements

LIMIT

ETSI EN 303 417 V1.1.1 (2017-09) Sub-clause 4.3.4.3

The radiated H-field in the direction of maximum field strength under specified conditions of measurement shall not exceed as table below:

Table 3: H-field limits

Frequency range [MHz]	H-field strength limit [dBµA/m at 10 m]	Comments
0,019 ≤ f < 0,021	72	
0,059 ≤ f < 0,061	69,1 descending 10 dB/dec above 0,059 MHz	See note 1
0,079 ≤ f < 0,090	67,8 descending 10 dB/dec above 0,079 MHz	See note 2
0,100 ≤ f < 0,119	42	
0,119 ≤ f < 0,135	66 descending 10 dB/dec above 0,119 MHz	See note 1
0,135 ≤ f < 0,140	42	
0,140 ≤ f < 0,1485	37,7	
0,1485 ≤ f < 0,30	-5	
6,765 ≤ f < 6,795	42	

NOTE 1: Limit is 42 dBµA/m for the following spot frequencies: 60 kHz ± 250 Hz and 129,1 kHz ± 500 Hz.

NOTE 2: At the time of preparation of the present document the feasibility of increased limits for high power wireless power transmission systems to charge vehicles [i.4] was prepared. New specific requirements for such systems (e.g. higher H-field emission limits in the 79 - 90 kHz band) will be reflected within a future revision of the present document.

TEST CONFIGURATION

Below 30MHz

TEST PROCEDURE

Follow the test description in section 6.2.1 of ETSI EN 303 417 V1.1.1 (2017-09)

TEST RESULTS

Test Condition		Measurement Result		
Temperature (℃)	Voltage (V)	Measured Power (dBµA/m)	Limit (dВµA/m)	
T Nor (25°C)	5.00	23.02	42.00	
T min (-20℃)	5.00	21.34	42.00	
1 111111 (-20 C)	5.00	20.52	42.00	
T Mov (155°C)	5.00	22.47	42.00	
T Max (+55°C)	5.00	21.82	42.00	
Result		PASS		

Page 10 of 15

3.4 Transmitter spurious emissions

LIMIT

ETSI EN 303 417 V1.1.1 (2017-09) Sub-clause 4.3.5.3

The radiated field strength of spurious emissions below 30 MHz shall not exceed the generated H-field given in table below:

Table 4

State (see	note)	Frequency 9 kHz ≤ f < 10 MHz	Frequency 10 MHz ≤ f < 30 MHz		
Operating		27 dBμA/m at 9 kHz descending	-3,5 dBμA/m		
		10 dB/dec	•		
Standby		5,5 dBμA/m at 9 kHz descending	-25 dBμA/m		
		10 dB/dec	-		
		ting" means mode 2, 3 and 4 according to Table 2; "standby" means mode 1			
	according	to Table 2.			

The power of any radiated emission above 30MHz shall not exceed the values given in table below.

Table 5

State (see note)	47 MHz to 74 MHz 87,5 MHz to 118 MHz 174 MHz to 230 MHz 470 MHz to 790 MHz	Other frequencies between 30 MHz to 1 000 MHz
Operating	4 nW	250 nW
Standby	2 nW	2 nW
NOTE: "Operating" me	ans mode 2, 3 and 4 according to Table 2; "	standby" means mode 1 according to
Table 2.		

TEST CONFIGURATION

Below 30MHz

Effective Radiated Power measurement (30 MHz to 1GHz)

Page 11 of 15

TEST PROCEDURE

Follow the test description in section 6.2.1 of ETSI EN 303 417 V1.1.1 (2017-09)

Page 12 of 15

TEST RESULTS

Blow 30MHz

Frequency (MHz)	Pol./Ant	Measurement Result (dBµA/m)	Limit (dBµA/m)	Margin (dB)	Test Result
1.256	/	-23.14	0.82	24.08	Pass
7.486	/	-20.24	0.1	20.31	Pass
18.475	/	-32.47	-3.5	29.14	Pass

For 30MHz-1GHz

Frequency (MHz)	Pol./Ant	Measurement Result (dBm)	Limit (dBm)	Margin (dB)	Test Result
46.351	V	-54.36	-36	19.62	Pass
62.572	V	-62.69	-54	8.12	Pass
70.952	V	-65.76	-54	11.42	Pass
47.436	Н	-55.46	-36	20.35	Pass
60.782	Н	-62.35	-54	5.34	Pass
69.395	Н	-55.47	-54	4.45	Pass

Page 13 of 15

3.5 Transmitter out of band (OOB) emissions

LIMIT

ETSI EN 303 417 V1.1.1 (2017-09) Sub-clause 4.3.6.3

The OOB limits are visualized in Figures 4 and 5; they are descending from the intentional limits from Table 3 at f_H/f_L with 10 dB/decade.

Figure 4: Out of band and spurious domain of a single frequency WPT system

Figure 5: Out of band and spurious domain of a multi - frequency system (during one WPT system cycle time)

12046E-2 Page 14 of 15

TEST CONFIGURATION

Below 30MHz

TEST PROCEDURE

Follow the test description in section 6.2.1 of ETSI EN 303 417 V1.1.1 (2017-09)

TEST RESULTS

Remark: Only record worst case as below:

Frequency (MHz)	Pol./Ant	Measurement Result (dBμA/m)	Limit (dBµA/m)	Margin (dB)	Test Result
112.24KHz	/	6.587	41.25	34.663	Pass
205.34KHz	/	7.875	41.25	33.375	Pass

4 Test Setup Photos of the EUT

Reference to the test report No. HTT191112046E-1

5 External and Internal Photos of the EUT

Page 15 of 15

Reference to the test report No. HTT191112046E-1
