DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-01-02. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-01-02. AT THE THE DOCUMENT OWNER

EMC TEST REPORT

Prepared for : Address :

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : November 21, 2018

Number of tested samples : 1

Serial number : Prototype

Date of Test : November 21, 2018 ~ November 30, 2018

Date of Report : December 03, 2018

SHENZH

EMC TEST REPORT

ETSI EN 301 489-17 V3.1.1(2017-02)

ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 17: Specific conditions for Broadband Data Transmission Systems; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU

requiremen	its of article 3.1(b) of Directive 2014/33/EU
Report Reference No::	LCS181121010AEA
Date Of Issue ::	December 03, 2018
Testing Laboratory Name:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address:	1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China
Testing Location/ Procedure:	Full application of Harmonised standards
	Partial application of Harmonised standards □
<u> </u>	Other standard testing method □
Applicant's Name:	
Address:	
Test Specification	
	ETSI EN 301 489-1 V2.1.1 (2017-02)
	ETSI EN 301 489-17 V3.1.1(2017-02)
	EN 55032: 2015
Test Report Form No::	LCSEMC-1.0
TRF Originator::	Shenzhen LCS Compliance Testing Laboratory Ltd.

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

Master TRF: Dated 2017-06

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description : Fabric Bluetooth Speaker

Trade Mark : N/A

Test Model : :

Ratings : Power Supply:3.7V by battery (1200mAh)

Recharge Voltage: 5V=,585mA Max

Result : Positive

Compiled by:

Supervised by:

Approved by:

Countle Li

Calvin Weng

Camille Li/ Administrators

Calvin Weng/ Technique principal

PROVE

December 03, 2018

Date of issue

Test Report No.: LCS181121010AEA

EMC -- TEST REPORT

Test Model	:
EUT	: Fabric Bluetooth Speaker
Applicant	:
Address	:
Telephone	:/
Fax	: /
Manufacturer	:
Address	:
Telephone	: /
Fax	: /
Factory	:
Address	:
Telephone	:/
Fax	: /

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-01-02. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

Revision History

Report Version	Issue Date	Revisions	Revised By
000	December 03, 2018	Initial Issue	Gavin Liang

TABLE OF CONTENTS

Test Report Description Pa	age
1. GENERAL INFORMATION	6
1.1. PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	6
1.3. RELATED SUBMITTAL(S)/GRANT(S)	
1.4. TEST METHODOLOGY	
1.6. SUPPORT EQUIPMENT LIST	
1.7. External I/O	7
1.8. LIST OF MEASURING EQUIPMENT	8
1.9. Measurement Uncertainty	
2. SUMMARY OF TEST RESULTS	
3. LINE CONDUCTED EMISSION	
3.1. CONDUCTED EMISSION LIMIT	
3.2. Test Configuration	
3.3. EMI TEST RECEIVER SETUP	
3.4. Test Procedure	_
4. RADIATED DISTURBANCE	
4.1. RADIATED EMISSION LIMIT	
4.3. Test Procedure	
4.4. Test Data	17
5. GENERAL PERFORMANCE CRITERIA FOR IMMUNITY TEST	20
5.1. PERFORMANCE CRITERIA FOR CONTINUOUS PHENOMENA APPLIED TO TRANSMITTER (CT)	
5.2. PERFORMANCE CRITERIA FOR TRANSIENT PHENOMENA APPLIED TO TRANSMITTER (TT)	
5.3. PERFORMANCE CRITERIA FOR CONTINUOUS PHENOMENA APPLIED TO RECEIVER (CR)	
6. RF ELECTROMAGNETIC FIELD (80 MHZ - 6000 MHZ)	
6.1. Test Configuration.	
6.2. Test Standard	
6.3. Severity Level	
6.4. TEST PROCEDURE	
6.5. Test Result	
7. ELECTROSTATIC DISCHARGE	
7.1. TEST CONFIGURATION	
7.2. TEST PROCEDURE	
8. PHOTOGRAPHS OF TEST SETUP	_
9. PHOTOGRAPHS OF THE EUT	

1.1. Product Description for Equipment Under Test (EUT)

EUT : Fabric Bluetooth Speaker

Test Model : XO-9567-1

: Power Supply: 3.7V by battery (1200mAh) Power Supply

Recharge Voltage: 5V---, 585mA Max

Hardware Version : V1.1 **Software Version**

Bluetooth

Frequency Range : 2.402-2.480GHz

: 79 channels for Bluetooth V2.1 (BDR/EDR) Channel Number

Channel Spacing : 1MHz for Bluetooth V2.1 (BDR/EDR)

Modulation Type : GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V2.1 (BDR/EDR)

Bluetooth Version : V2.1

Antenna Description : PCB Antenna, -0.58 dBi

1.2. Objective

	ElectroMagnetic Compatibility (EMC) standard for radio equipment and services;
ETSI EN 301	Part 1: Common technical requirements; Harmonised Standard covering the
489-1	essential requirements of article 3.1(b) of Directive 2014/53/EU and the essential
	requirements of article 6 of Directive 2014/30/EU
	ElectroMagnetic Compatibility (EMC) standard for radio equipment and services;
ETSI EN 301	Part 17: Specific conditions for Broadband Data Transmission Systems;
489-17	Harmonised Standard covering the essential requirements of article 3.1(b) of
	Directive 2014/53/EU
EN 55032	Electromagnetic compatibility of multimedia equipment — Emission
EN 33032	Requirements

The objective is to determine compliance with ETSI EN 301 489-1 V2.1.1 (2017-02), ETSI EN 301 489-17 V3.1.1(2017-02) and EN 55032:2015.

1.3. Related Submittal(s)/Grant(s)

No Related Submittals.

1.4. Test Methodology

All measurements contained in this report were conducted with ETSI EN 301 489-1 V2.1.1 (2017-02), ETSI EN 301 489-17 V3.1.1(2017-02) and EN 55032:2015.

1.5. Description of Test Facility

FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

NVLAP Registration Code is 600167-0

1.6. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate
DELL	PC	Vostro 15-7570		CE
DELL	Power adapter	ADP-90DDB		CE

1.7. External I/O

I/O Port Description	Quantity	Cable
AUX Port	1	N/A
USB Port	1	N/A

1.8. List Of Measuring Equipment

LINE CONDUCTED EMISSION

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	AUDIX	E3	/	2018-06-16	2019-06-15
2	EMI Test Receiver	R&S	ESPI	101840	2018-06-16	2019-06-15
3	Artificial Mains	R&S	ENV216	101288	2018-06-16	2019-06-15
4	10dB Attenuator	SCHWARZBEC K	MTS-IMP-136	261115-001-0032	2018-06-16	2019-06-15

RADIATED DISTURBANCE

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	AUDIX	E3	/	2018-06-16	2019-06-15
2	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2018-06-16	2019-06-15
3	Positioning Controller	MF	MF-7082	/	2018-06-16	2019-06-15
4	By-log Antenna	SCHWARZBEC K	VULB9163	9163-470	2018-07-26	2019-07-25
5	Horn Antenna	SCHWARZBEC K	BBHA 9120D	9120D-1925	2018-07-02	2019-07-01
6	EMI Test Receiver	R&S	ESR 7	101181	2018-06-16	2019-06-15
7	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2018-11-15	2019-11-14
8	AMPLIFIER	QuieTek	QTK	CHM/0809065	2018-11-15	2019-11-14
9	RF Cable-R03m	Jye Bao	RG142	CB021	2018-06-16	2019-06-15
10	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2018-06-16	2019-06-15

VOLTAGE FLUCTUATION AND FLICKER/HARMONIC CURRENT EMISSIONS

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Analyzer Test System	Voltech	PM6000	200006700523	2018-06-16	2019-06-15

RF ELECTROMAGNETIC FIELD

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	RS Test Software	Tonscend	/	/	2018-06-16	2019-06-15
2	ESG Vector Signal Generator	Agilent	E4438C	MY42081396	2018-11-15	2019-11-14
3	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2018-06-16	2019-06-15
4	RF POWER AMPLIFIER	OPHIR	5225R	1052	NCR	NCR
5	RF POWER AMPLIFIER	OPHIR	5273F	1019	NCR	NCR
6	Stacked Broadband Log Periodic Antenna	SCHWARZBEC K	STLP 9128	9128ES-145	NCR	NCR
7	Stacked Mikrowellen LogPer Antenna	SCHWARZBEC K	STLP 9149	9149-484	NCR	NCR
8	Electric field probe	Narda S.TS./PMM	EP601	611WX80208	2018-03-26	2019-03-25

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

Report No.: LCS181121010AEA

ELECTROSTATIC DISCHARGE

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	ESD Simulator	SCHLODER	SESD 230	604035	2018-07-02	2019-07-01

ELECTRICAL FAST TRANSIENT IMMUNITY

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Immunity Simulative Generator	EM TEST	UCS500 M4	0101-34	2018-11-15	2019-11-14
2	CAPACITANCE COUPLING CLAMP	3CTEST	EFTC	EC0441098	2018-06-16	2019-06-15

RF COMMON MODE

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Simulator	FRANKONIA	CIT-10/75	A126A1195	2018-06-16	2019-06-15
2	CDN	FRANKONIA	CDN-M2+M3	A2210177	2018-06-16	2019-06-15
3	6dB Attenuator	FRANKONIA	DAM25W	1172040	2018-06-16	2019-06-15

SURGES, LINE TO LINE AND LINE TO GROUND

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Immunity Simulative Generator	EM TEST	UCS500 M4	0101-34	2018-11-15	2019-11-14

VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2018-06-16	2019-06-15

MAGNETIC FIELD SUSCEPTIBILITY TEST

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power frequency mag-field generator System	EVERFINE	EMS61000-8K	906003	2018-06-16	2019-06-15

RADIATED ELECTROMAGNETIC DISTURBANCES (三环天线)

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Large Loop Antenna	LAPLACE	LLA-2	9161	2018-06-16	2019-06-15
2	10dB Attenuator	Mini-circuits	HAT-10	15542	2018-06-16	2019-06-15
3	EMI Test Software	AUDIX	E3	/	2018-06-16	2019-06-15
4	EMI Test Receiver	R&S	ESPI	101840	2018-06-16	2019-06-15

Note: All equipment is calibrated through GUANGZHOU LISAI CALIBRATION AND TEST CO.,LTD.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-01-02. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

1.9. Measurement Uncertainty

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m chamber	3.54dB	Polarize: V
(30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	2.08dB	Polarize: H
(1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	0.01ppm	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2℃	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

1.10. Description Of Test Modes

There was 2 test Modes. TM1 to TM2 were shown below:

TM1: Operate in Bluetooth mode;

TM2: Idle

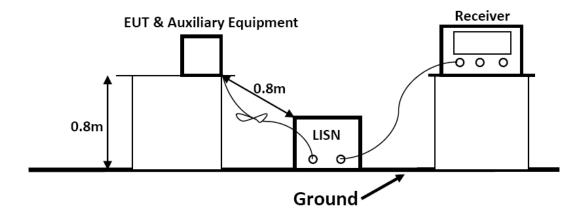
***Note: All test modes were tested, but we only recorded the worst case in this report.

Rule	Description of Test Items	Result
§7.1	Reference to clause 8.4 of ETSI EN 301 489-1 Conducted Emission (AC mains input/output port)	Compliant
§7.1	Reference to clause 8.3 of ETSI EN 301 489-1 Conducted Emission (DC power input/output port)	N/A*
§7.1	Reference to clause 8.7 of ETSI EN 301 489-1 Conducted Emission (Wired network port)	N/A*
§7.1	Reference to clause 8.2 of ETSI EN 301 489-1 Radiated Emission (Enclosure of ancillary equipment)	Compliant
§ 7. 1	Reference to clause 8.5 of ETSI EN 301 489-1 Harmonic current emissions (AC mains input port)	N/A
§7.1	Reference to clause 8.6 of ETSI EN 301 489-1 Voltage fluctuations and flicker (AC mains input port)	N/A
§7.2	Reference to clause 9.3 of ETSI EN 301 489-1 Electrostatic discharge (Enclosure port) (EN 61000-4-2)	Compliant
§7.2	Reference to clause 9.2 of ETSI EN 301 489-1 RF electromagnetic field (80MHz to 6000MHz) (Enclosure port) (EN 61000-4-3)	Compliant
§7.2	Reference to clause 9.4 of ETSI EN 301 489-1 Fast transients common mode (signal, wired network and control ports, DC and AC power ports) (EN 61000-4-4)	N/A
§7.2	Reference to clause 9.8 of ETSI EN 301 489-1 Surges, line to line and line to ground (AC mains power input ports, wired network ports) (EN 61000-4-5)	N/A
§7.2	Reference to clause 9.5 of ETSI EN 301 489-1 RF common mode 0.15MHz to 80MHz (signal, wired network and control ports, DC and AC power ports) (EN 61000-4-6)	N/A
§7.2	Reference to clause 9.6 of ETSI EN 301 489-1 Transients and surges in the vehicular environment (ISO 7637-2)	N/A*
§7.2	Reference to clause 9.7 of ETSI EN 301 489-1 Voltage dips and interruptions (AC mains power input ports) (EN 61000-4-11)	N/A

DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-01-02. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-01-02. AT THE THE DOCUMENT OWNER

3. LINE CONDUCTED EMISSION

3.1. Conducted Emission Limit


Relevant Standard(s): ETSI EN 301 489-1 V2.1.1 (2017-02) / EN 55032: 2015 Class B

Limits for Line Conducted Emission					
Frequency	Limit (dBµV)				
(MHz)	Quasi-peak Level	Average Level			
0.15 ~ 0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *			
0.50 ~ 5.00	56.0	46.0			
5.00 ~ 30.00	60.0	50.0			

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.2. Test Configuration

The setup of EUT is according with per ETSI EN 301 489-1 measurement procedure. The specification used was with the ETSI EN 301 489-1 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The EUT received DC 5V charging power from the notebook which is connected to the power adapter(received power through a LISN supplying power of AC 230V/50Hz).

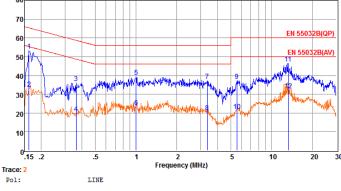
3.3. EMI Test Receiver Setup

During the conducted emission test, the EMI test receiver was set with the following configurations:

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	150KHz ~ 30MHz
(IF)RBW	9kHz

All data was recorded in the Quasi-peak and average detection mode.

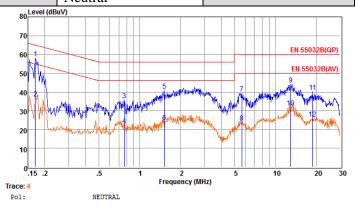
3.4. Test Procedure


Power on the EUT, the EUT begins to work. Make sure the EUT operates normally during the test.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

3.5. Test Data


Model No.	XO-9567-1	Test Mode	TM1
Environmental Conditions	21.3°C, 51.6% RH	Test Engineer	Jerry Zeng
Pol.	Line		
80 Level (dE	uV)	FN 55032B(QP)	

	Freq	Reading	LISNFac	CabLos	Aux2Fac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.16	33.48	9.59	0.02	10.00	53.09	65.34	-12.25	QP
2	0.16	13.41	9.59	0.02	10.00	33.02	55.33	-22.31	Average
3	0.36	16.48	9.62	0.03	10.00	36.13	58.69	-22.56	QP
4	0.36	0.42	9.62	0.03	10.00	20.07	48.69	-28.62	Average
5	1.00	19.66	9.63	0.05	10.00	39.34	56.00	-16.66	QP
6	1.00	3.44	9.63	0.05	10.00	23.12	46.00	-22.88	Average
7	3.35	17.55	9.65	0.06	10.00	37.26	56.00	-18.74	QP
8	3.35	0.74	9.65	0.06	10.00	20.45	46.00	-25.55	Average
9	5.53	17.50	9.66	0.06	10.00	37.22	60.00	-22.78	QP
10	5.54	1.33	9.66	0.06	10.00	21.05	50.00	-28.95	Average
11	13.27	26.67	9.70	0.10	10.00	46.47	60.00	-13.53	QP
12	13.27	12.29	9.70	0.10	10.00	32.09	50.00	-17.91	Average

Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac.
2. The emission levels that are 20dB below the official

limit are not reported.								
Model No.	XO-9567-1	Test Mode	TM1					
Environmental Conditions	21.3℃, 51.6% RH	Test Engineer	Jerry Zeng					
Pol	Neutral							

	Freq	Reading	LISNFac	CabLos	Aux2Fac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.17	38.46	9.65	0.02	10.00	58.13	64.94	-6.81	OP
2	0.17	16.79	9.65	0.02	10.00	36.46	54.94	-18.48	Average
3	0.77	16.15	9.63	0.04	10.00	35.82	56.00	-20.18	QP
4	0.77	2.69	9.63	0.04	10.00	22.36	46.00	-23.64	Average
5	1.52	20.93	9.63	0.05	10.00	40.61	56.00	-15.39	QP
6	1.52	4.31	9.63	0.05	10.00	23.99	46.00	-22.01	Average
7	5.65	19.64	9.67	0.06	10.00	39.37	60.00	-20.63	QP
8	5.65	3.97	9.67	0.06	10.00	23.70	50.00	-26.30	Average
9	12.92	24.23	9.73	0.09	10.00	44.05	60.00	-15.95	QP
10	12.92	11.89	9.73	0.09	10.00	31.71	50.00	-18.29	Average
11	18.72	20.17	9.84	0.11	10.00	40.12	60.00	-19.88	QP
12	18.72	5.99	9.84	0.11	10.00	25.94	50.00	-24.06	Average
									_

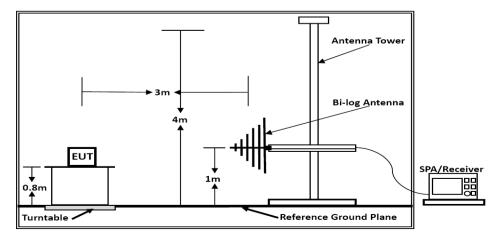
Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac.
2. The emission levels that are 20dB below the official

Note: For conducted emission and radiated emission test, a power supply of 230VAC and 120VAC was used for testing respectively, and only recorded the worst case of 230VAC.

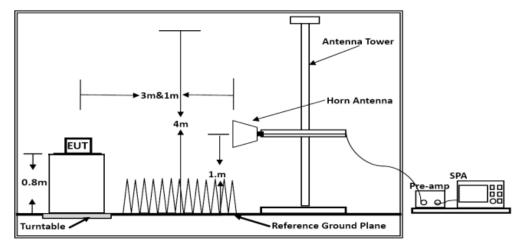
4. RADIATED DISTURBANCE

4.1. Radiated Emission Limit

Relevant Standard(s): ETSI EN 301 489-1 V2.1.1 (2017-02) / EN 55032: 2015 Class B


Limits for Radiated Disturbance Below 1GHz							
Frequency	Distance	Field Strengths Limit					
(MHz)	(Meters)	(dBµV/m)					
30 ~ 230	3	40					
230 ~ 1000	3	47					

^{***}Note:


- (1) The smaller limit shall apply at the combination point between two frequency bands.
- (2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.

Limits for Radiated Disturbance Above 1GHz								
Frequency Distance Peak Limit Average Limit								
(MHz)	(Meters)	(dBµV/m)	(dBμV/m)					
1000 ~ 3000	3	70	50					
3000 ~ 6000	3	74	54					
***Note: The lower lim	it applies at the transition fr	requency						

4.2. Test Configuration

Below 1GHz

Above 1GHz

1) Sequence of testing 30 MHz to 1 GHz Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre-measurement:

- --- The turntable rotates from 0 °to 315 °using 45 °steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 4 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm45^{\circ}$) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with OP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre-measurement with marked maximum final measurements and the limit will be stored.

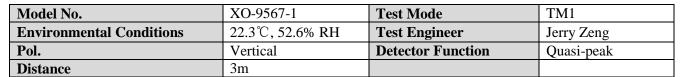
2) Sequence of testing 1 GHz to 6 GHz Setup:

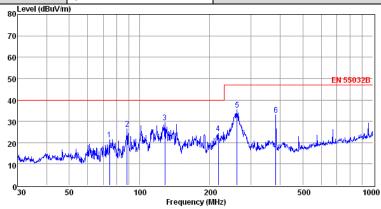
- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre-measurement:

- --- The turntable rotates from 0 °to 315 °using 45 °steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 4 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:


- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of pre-measurement the software maximize the peaks by changing turntable position ($\pm 45^{\circ}$) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre-measurement with marked maximum final measurements and the limit will be stored.

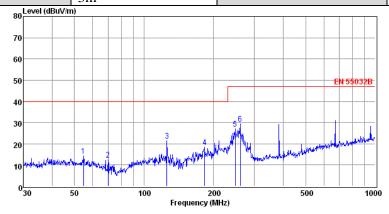

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	30MHz~1000MHz / RBW 100kHz for QP

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	6000 MHz		
RBW / VBW	1MHz / 1MHz for Peak, 1 MHz / 10Hz for		
KDW / VDW	Average		

4.4. Test Data

The worst test mode of the EUT was TM1, and its test data was showed as the follow:

pol: VERTICAL


	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	74.40	12.88	0.54	7.90	21.32	40.00	-18.68	QP
2	88.34	14.31	0.68	11.37	26.36	40.00	-13.64	QP
3	128.56	19.51	0.67	9.15	29.33	40.00	-10.67	QP
4	217.54	12.26	0.88	11.12	24.26	40.00	-15.74	QP
5	261.98	22.30	0.96	12.11	35.37	47.00	-11.63	QP
6	383.93	17.30	1.13	14.68	33.11	47.00	-13.89	QP

Note: 1. All readings are Quasi-peak values.

2. Measured= Reading + Antenna Factor + Cable Loss

3. The emission that are 20db below the official limit are not reported

Model No.	XO-9567-1	Test Mode	TM1
Environmental Conditions	22.3℃, 52.6% RH	Test Engineer	Jerry Zeng
Pol.	Horizontal	Detector Function	Quasi-peak
Distance	3m		

pol: HORIZONTAL

	rred	Reauing	Сарпов	Anciac	Measureu	птитс	Over	Kemark
	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	54.64	0.84	0.46	13.04	14.34	40.00	-25.66	QP
2	69.84	3.38	0.51	8.71	12.60	40.00	-27.40	QP
3	125.45	11.05	0.71	9.64	21.40	40.00	-18.60	QP
4	183.20	7.86	0.70	9.96	18.52	40.00	-21.48	QP
5	247.68	14.06	0.97	12.07	27.10	47.00	-19.90	QP
6	261.06	16.45	0.96	12.08	29.49	47.00	-17.51	QP

Note: 1. All readings are Quasi-peak values.

- 2. Measured= Reading + Antenna Factor + Cable Loss
- 3. The emission that are 20db below the official limit are not reported

Test Mode: TM1 (Above 1GHz)				Tested by: Jerry Zeng					
Test Voltage	: DC 3.7V			Test Distar	Test Distance: 3m				
Detector Fun	nction: Peak +	AV		Test Result	ts: Passed				
Polarization	Frequency	Emissic	n Level	Liı	mit	Mai	rgin		
Polarization	(MHz)	(dBµ	V/m)	(dBµ	V/m)	(d	B)		
	1202.79	54.23	36.89	70.00	50.00	-15.77	-13.11		
	1886.82	51.31	34.08	70.00	50.00	-18.69	-15.92		
Horizontal	2104.93	54.72	36.90	70.00	50.00	-15.28	-13.10		
Horizoniai	3232.08	53.94	34.04	74.00	54.00	-20.06	-19.96		
	4351.46	53.23	35.85	74.00	54.00	-20.77	-18.15		
	5883.95	57.71	33.95	74.00	54.00	-16.29	-20.05		
	1201.80	53.75	36.99	70.00	50.00	-16.25	-13.01		
	1885.91	51.70	33.28	70.00	50.00	-18.30	-16.72		
Vertical	2105.21	54.34	37.64	70.00	50.00	-15.66	-12.36		
verticai	3232.94	54.80	33.34	74.00	54.00	-19.20	-20.66		
	4351.26	54.03	35.92	74.00	54.00	-19.97	-18.08		
	5884.69	58.16	33.27	74.00	54.00	-15.84	-20.73		

- 1. Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 2. Measurements above show only up to 6 maximum emissions noted.
- 3. Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5. GENERAL PERFORMANCE CRITERIA FOR IMMUNITY TEST

5.1. Performance criteria for Continuous phenomena applied to Transmitter (CT)

For equipment of type II or type III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence.

Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur.

5.2. Performance criteria for Transient phenomena applied to Transmitter (TT)

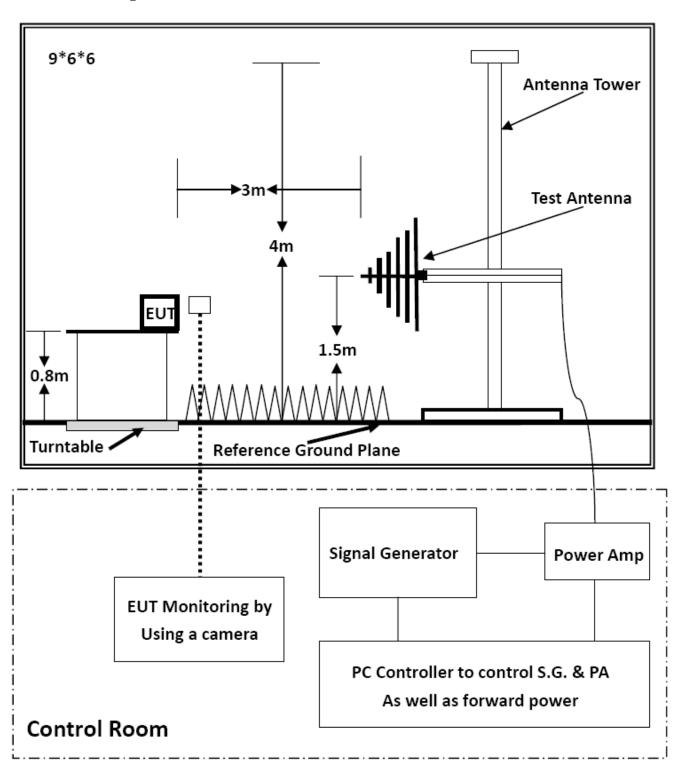
For equipment of type II or type III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur.

5.3. Performance criteria for Continuous phenomena applied to Receiver (CR)

For equipment of type II or III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

5.4. Performance criteria for Transient phenomena applied to Receiver (TR)

For equipment of type II or type III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.


DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-01-02. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-01-02. AT THE THE DOCUMENT OWNER

Performance criteria for ETSI EN 301 489-17 V3.1.1(2017-02)

Criteria	During test	After test
A	Shall operate as intended. (see note 1). Shall be no loss of function. Shall be no unintentional transmissions.	Shall operate as intended. Shall be no degradation of performance (see note 3). Shall be no loss of function. Shall be no loss of stored data or user programmable functions.
В	May show loss of function (one or more). May show degradation of performance (see note 2). Shall be no unintentional transmissions.	Functions shall be self-recoverable. Shall operate as intended after recovering. Shall be no degradation of performance (see note 3). Shall be no loss of stored data or user programmable functions.
С	May be loss of function (one or more).	Functions shall be recoverable by the operator. Shall operate as intended after recovering. Shall be no degradation of performance (see note 3).

- NOTE 1: Operate as intended during the test allows a level of degradation not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.
- NOTE 2: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.
- NOTE 3: No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

6.1. Test Configuration

6.2. Test Standard

ETSI EN 301 489-1, ETSI EN 301 489-17 / (EN 61000-4-3: 2006+A2: 2010)

Test level 2 at 3V/m.

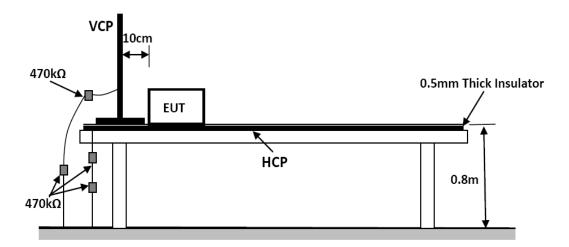
6.3. Severity Level

Level	Field Strength (V/m)
1	1
2	3
3	10
X	Special
Performance Criterion: A	4

6.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD camera is used to monitor EUT screen. All the scanning conditions are as follows:

Condition of Test	Remark	
Fielded Strength	3 V/m (Severity Level 2)	
Radiated Signal	Unmodulated	
Scanning Frequency	80-6000MHz	
Dwell time of radiated	0.0015 decade/s	
Waiting Time	3 Sec.	


6.5. Test Result

Bluetooth Test Result:

EUT Working Mode	Antenna Polarity	Frequency (MHz)	Fielded Strength (V/m)	Observation	Position	Conclusion
Operating Mode	Vertical	80-6000	3	CT, CR	Front, Right, Left, Back	Pass
	Horizontal	80-6000	3	CT, CR	Front, Right, Left, Back	Pass
Idle	Vertical 80-6000 3 See Note	Front, Right, Left, Back	Pass			
idle	Horizontal	80-6000	3	See Note	Front, Right, Left, Back	Pass

Please refer to ETSI EN 301 489-1 and EN 61000-4-2.

7.1. Test Configuration

EN 61000-4-2 specifies that a tabletop EUT shall be placed on a non-conducting table which is 80 centimeters above a ground reference plane and that floor mounted equipment shall be placed on a insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement.

For tabletop equipment, a 1.5 by 1.0-meter metal sheet (HCP) is placed on the table and connected to the ground plane via a metal strap with two 470 k Ohms resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material. A Vertical Coupling Plane (VCP) grounded on the ground plane through the same configuration as in the HCP is used.

7.2. Test Procedure

ETSI EN 301 489-1 V2.1.1 (2017-02) / EN 61000-4-2: 2009

Test level 3 for Air Discharge at ±8 kV

Test level 2 for Contact Discharge at ±4 kV

7.2.1. Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

7.2.2. Contact Discharge

All the procedure shall be same as Section 7.2.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

7.2.3. Indirect Discharge For Horizontal Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

7.2.4. Indirect Discharge For Vertical Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

7.3. Test Data

PASS.

Electrostatic Discharge Test Results			
Standard	☐ IEC 61000-4-2 ☐ EN 61000-4-2		
Applicant	Dongguan Xing Yue Electronic co., Ltd		
EUT	Fabric Bluetooth Speaker	Temperature	22.6℃
M/N	XO-9567-1	Humidity	51.3%
Criterion	В	Pressure	1021mbar
Test Mode	TM1-TM2	Test Engineer	Jerry Zeng

TEST RESULT OF BLUETOOTH

Test Voltage	Coupling	Observation	Result (Pass/Fail)
±2KV, ±4kV	Contact Discharge	TT, TR	Pass
±2KV, ±4kV, ±8kV	Air Discharge	TT, TR	Pass
±2KV, ±4kV	Indirect Discharge HCP	TT, TR	Pass
±2KV, ±4kV	Indirect Discharge VCP	TT, TR	Pass

Note: The EUT performance complied with performance criteria for CT&CR to MS Function and there is no any degradation of performance and function.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	Report No.: LCS181121010A
8. PHOTOGRAPHS OF TEST SETUP	
Please refer to separated files Appendix A for Photographs of Test Setup.	
9. PHOTOGRAPHS OF THE EUT	
Please refer to separated files Appendix B for Photographs of The EUT.	
THE END OF REPORT	
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Page 27 of 27	S Compliance Testing Laboratory Ltd.

Appendix A Photographs of Test Setup

Power Line Conducted Emission

Radiated Emission Below 1 GHz

Radiated Emission Above 1 GHz

Electrostatic Discharge

RF Electromagnetic Field (80MHz to 6 000MHz)

Appendix B Photographs of The EUT



Fig.1

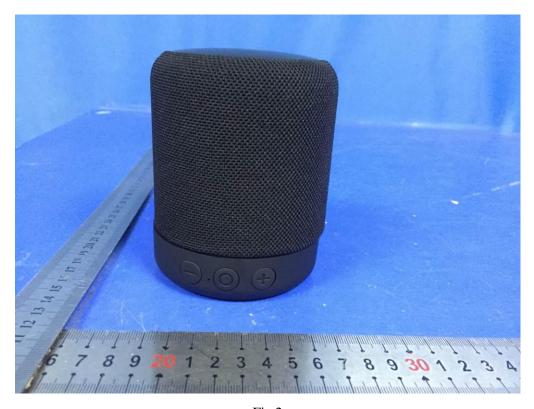


Fig.2

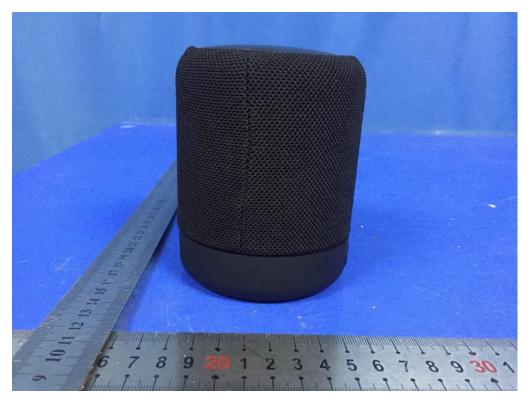


Fig.3



Fig.4

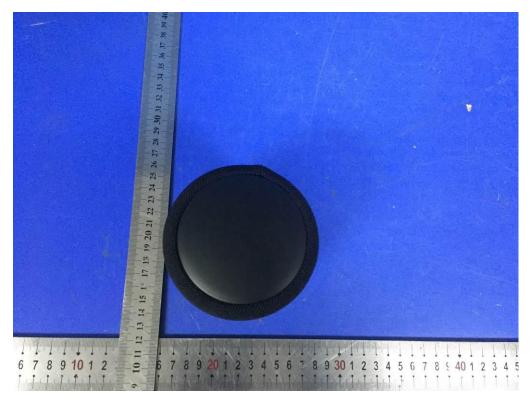


Fig.5

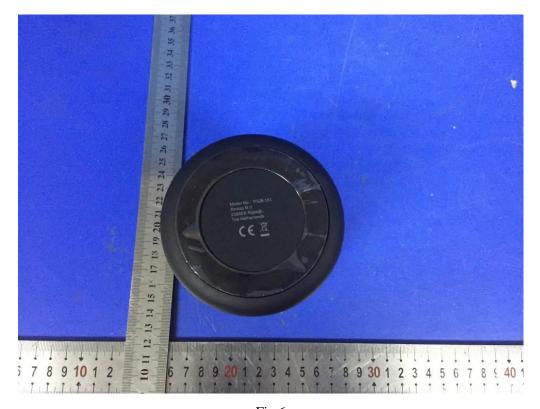


Fig.6

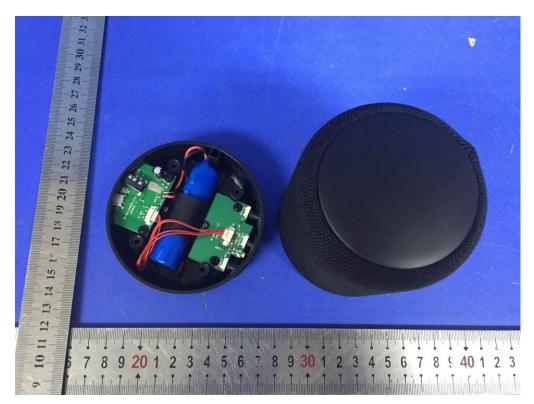


Fig.7



Fig.8

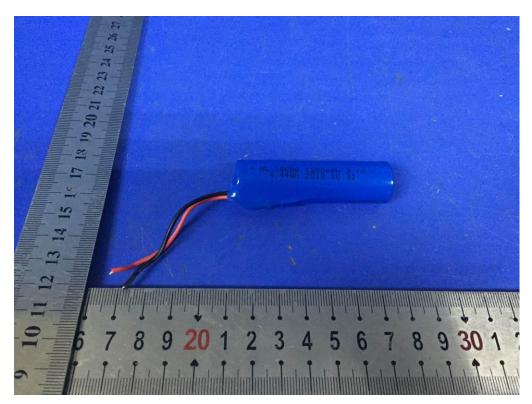


Fig.9

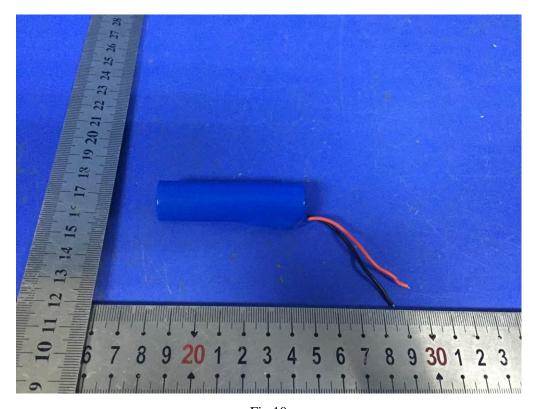


Fig.10

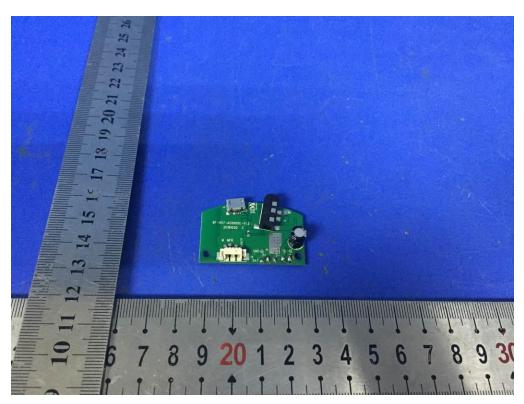


Fig.11

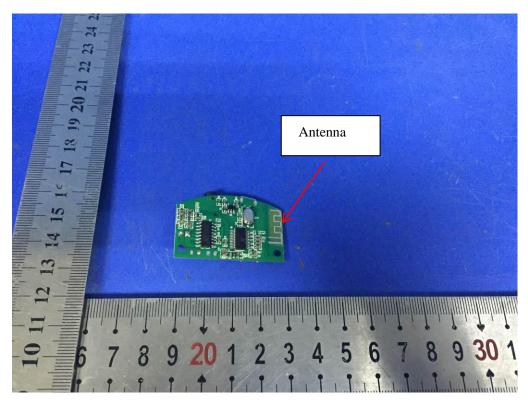


Fig.12

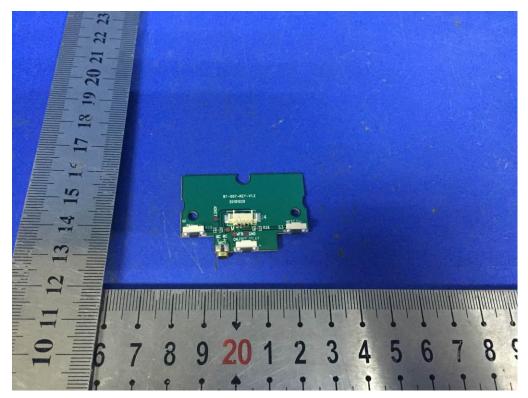


Fig.13

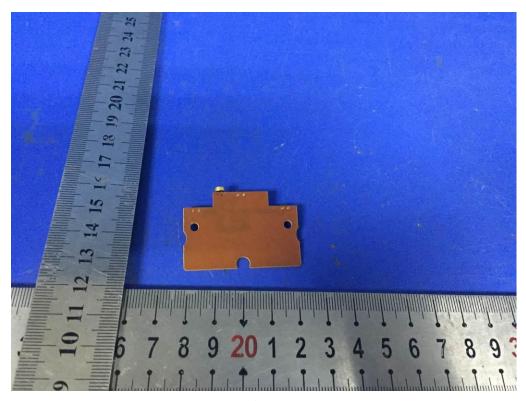


Fig.14

Fig.15

Fig.16