

RF Test Report

Report No.AGC04094191102EE04

PRODUCT DESIGNATION	:	Bamboo colour changing 3W
BRAND NAME	-	N/A
MODEL NAME	:	P329.34
APPLACANT		Xindao B.V.
DATE OF ISSUE	Ċ	Dec. 27, 2019
STANDARD(S)	:	ETSI EN 300 328 V2.2.2 (2019-07)
REPORT VERSION	:	V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add:
 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86–755 2523 4088
 E-mail: agc@agc-cert.com
 Service Hotline:400 089 2118

Report No.: AGC04094191102EE04 Page 2 of 45

REPORT REVISE RECORD

Report Version	port Revise sion Time Issued Date		Valid Version	Notes	
V1.0	1	Dec. 27, 2019	Valid	Initial Release	

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotline:400 089 2118

TABLE OF CONTENTS

1. TEST RESULT CERTIFICATION	4
2. TECHNICAL INFORMATION	5
2.1. EUT DESCRIPTION	5
2.2. SUPPORT EQUIPMENT	6
2.3. DESCRIPTION OF TEST MODES	6
2.4. OBJECTIVE	7
2.5. TEST ITEMS AND THE RESULTS	7
2.6. ENVIRONMENTAL CONDITIONS	7
3. MEASUREMENT UNCERTAINTY	8
4. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION	9
5. ETSI EN 300 328 REQUIREMENTS	10
5.1. RF OUTPUT POWER	10
5.2. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPIATION AND HOPPING SEQUENCE	13
5.3. HOPPING FREQUENCY SEPARATION	19
5.4. OCCUPIED CHANNEL BANDWIDTH	20
5.5. TRANSMITTER UNWANTED EMISSIONS IN THE OUT OF BAND DOMAIN	23
5.6. TRANSMITTER SPURIOUS EMISSIONS	25
5.7. RECEIVER SPURIOUS EMISSIONS	34
5.8. RECEIVER BLOCKING	41
APPENDIX A: PHOTOGRAPHS OF THE TEST SETUP	45
APPENDIX B: PHOTOGRAPHS OF THE EUT	45

1. TEST RESULT CERTIFICATION

Applicant	Xindao B.V.		
Address	P.O. Box 3082, 2280 GB, Rijswijk, The Netherlands		
manufacturer	Xindao B.V.		
Address	P.O. Box 3082, 2280 GB, Rijswijk, The Netherlands		
Factory	Xindao B.V.		
Address	P.O. Box 3082, 2280 GB, Rijswijk, The Netherlands		
Product Designation	Bamboo colour changing 3W		
Brand Name	N/A		
Test Model	P329.34		
Date of test	Nov. 29, 2019~Dec. 27 2019		
Deviation	None		
Condition of Test Sample	Normal		
Test Result	Pass		
Report Template	AGCRT-EC-BR/RF		

We (AGC), Attestation of Global Compliance (Shenzhen) Co., Ltd. for compliance with the requirements set forth in the European Standard ETSI EN 300 328 V2.2.2. The results of test in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Jonjon Aucorg

Donjon Huang

(Project Engineer)

Dec. 27, 2019

Reviewed By

Prepared By

Max 2h

818

Max Zhang (Reviewer)

Dec. 27, 2019

Approved By

Forrest Lei

(Authorized Officer)

Dec. 27, 2019

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community,

 Hangcheng Štreet, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86-755 2523 4088

 E-mail:
 agc@agc-cert.com

 Service Hotline:400 089 2118

2. TECHNICAL INFORMATION

2.1. EUT DESCRIPTION

Operating Frequency Range(s)	2402MHz~2480MHz	
The type of the equipment	FHSS adaptive equipment with only one antenna	
Modulation	\boxtimes GFSK , $\boxtimes \pi$ /4-DQPSK, \square 8-DPSK	
Bluetooth Version	V5.0	
The number of Hopping Frequencies	79	
Nominal Channel Bandwidth	1MHz	
The maximum RF Output Power	0.45dBm	
Hardware Version	1.0	
Software Version	1.0	
Antenna designation	PCB Antenna	
Antenna gain	-0.58dBi	
Power Supply	DC 3.7V by battery or DC 5V by adapter	
The extreme operating conditions	Operating temperature range: -10°C~40°C	
Geo-location capability	□ Yes ⊠ No	

Note:

- 1. The above information was declared by the applicant.
- 2. The equipment submitted representative production models.
- 3. The EUT cannot operated unmodulated.
- 4. The EUT provides Bluetooth wireless interface operating at 2.4G ISM band (2402MHz-2480MHz).
- 5. Only the Bluetooth was tested according the standard requirement.
- 6. The EUT is a stand-alone and portable equipment according to ETSI EN 300 328 V2.2.2.
- 7. For more details, please refer to the User's manual of the EUT.

2.2. SUPPORT EQUIPMENT

Item	Equipment	Mfr/Brand	Model/Type No.	Remark
-				

2.3. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION	
1	Low channel TX	
2	Middle channel TX	
3	High channel TX	
4	Normal Hopping	
5	Low channel (Receiver Mode)	
6	Middle channel (Receiver Mode)	
7	High channel (Receiver Mode)	

Note:

1. All the transmit mode would tested with each modulation (GFSK, π /4-DQPSK).

2. All modes have been tested and the worst mode test data recording in the test report, if no any other data.

2.4. OBJECTIVE

Perform Radio Spectrum tests for CE Marking according to the provisions of article 3.2 of the Radio Equipment Directive (2014/53/EU) for the BT function of the EUT.

2.5. TEST ITEMS AND THE RESULTS

The EUT has been tested according to ETSI EN 300 328 V2.2.2(2019-07).

ETSI EN 300 328	Wideband transmission systems;
	But turioniolon equipment operating in the 2,4 on 2 bund,
V2.2.2 (2019-07)	Harmonised Standard for access to radio spectrum

Test items and the results are as bellow:

N⁰	Basic Standard	Test Type	Test Mode	Result
1	ETSI EN 300 328 4.3.1.2	RF Output Power	Mode 4	Pass
2	ETSI EN 300 328 4.3.1.3	Duty Cycle,Tx-sequence,Tx-gap	N/A	N/A
3	ETSI EN 300 328 4.3.1.4	Accumulated transmit time, Frequency Occupation and hopping sequence	Mode 4	Pass
4	ETSI EN 300 328 4.3.1.5	Hopping Frequency Separation	Mode 4	Pass
5	ETSI EN 300 328 4.3.1.6	Medium Utilisation	N/A	N/A
6	ETSI EN 300 328 4.3.1.7	Adaptivity (Adaptive Frequency Hopping)	N/A	N/A
7	ETSI EN 300 328 4.3.1.8	Occupied Channel Bandwidth	Mode 1,3	Pass
8	ETSI EN 300 328 4.3.1.9	Transmitter unwanted emission in the out of band domain	Mode 1,3	Pass
9	ETSI EN 300 328 4.3.1.10	Transmitter unwanted emission in the Spurious domain	Mode 1,3	Pass
10	ETSI EN 300 328 4.3.1.11	Receiver Spurious emissions	Mode 5,7	Pass
11	ETSI EN 300 328 4.3.1.12	Receiver Blocking	Mode 4	Pass

Note:

- 1. N/A means it's not applicable to this item.
- 2. Owing to the maximum declared RF Output power (e.i.r.p.) less than 10 dBm, so the item 2, 5, 6 are not applicable.

2.6. ENVIRONMENTAL CONDITIONS

- Temperature: -10-40°C
- Humidity: 30-60 %
- Atmospheric pressure: 86-106 kPa

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotlin

3. MEASUREMENT UNCERTAINTY

The uncertainty is calculated using the methods suggested in the "Guide to the Expression of Uncertainty in Measurement" (GUM) published by ISO.

- -Uncertainty of Radio Frequency, Uc=±1 x 10-7
- Uncertainty of total RF power, conducted, Uc = ±0.8dB
- Uncertainty of RF power density, conducted, Uc = ±2.6dB
- Uncertainty of spurious emissions, conducted, Uc = ±2.7dB
- Uncertainty of spurious emissions, radiated, Uc = ±5.4dB
- Uncertainty of Temperature: ±0.5° C
- Uncertainty of Humidity: ±1 %
- Uncertainty of DC and low frequency voltages: ±2%

 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add:
 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86-755 2523 4088
 E-mail: agc@agc-cert.com
 Service Hotline:400 089 2118

4. IDENTIFICATION OF THE RESPONSIBLE TESTING LOCATION

Site	Attestation of Global Compliance(Shenzhen) Co., Ltd.		
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China		

LIST OF EQUIPMENTS USED

Description	Manufacturer	Model No.	S/N	Calibration Due.	Calibration Due.
MXG X-Series Vector Signal Agilent N5182B Generator		MY50140530	Sep. 09, 2019	Sep. 08, 2020	
Signal Generator	Agilent	N5171B	MY45141029	Sep. 09, 2019	Sep. 08, 2020
EXA Signal Analyzer	Agilent	N9020A	MY52090123	Sep. 09, 2019	Sep. 08, 2020
Signal Analyzer	Agilent	E4440A	MY44303916	Feb. 27, 2019	Feb. 26, 2020
USB Wideband Power Sensor	Agilent	U2021XA	MY54110007	Sep. 09, 2019	Sep. 08, 2020
USB Wideband Power Sensor	Agilent	U2021XA	MY54110009	Sep. 09, 2019	Sep. 08, 2020
RF Communication Tester	R&S	CMW270	1201.0002K75 -100528-Tu WIRELESSCO NN.TESTER	Sep. 09, 2019	Sep. 08, 2020
Attenuator	Wariors	W13	11324	Sep. 09, 2019	Sep. 08, 2020
Power spliter	Mini-Circuits	ZFRSC-183-s	3122	Sep. 09, 2019	Sep. 08, 2020
2.4G Band Fliter	EM Electronics	2400-2500	N/A	Feb. 27, 2019	Feb. 26, 2020
Small environment tester	ESPEC	SH-242	N/A	Oct. 08, 2019	Oct. 07, 2020
AMPLIFIER	ETS-LINDGREN	3117PA	00225134	Oct. 15, 2019	Oct. 14, 2020
ANTENNA	SCHWARZBECK	VULB9168	494	Jan. 09, 2019	Jan. 08, 2021
ANTENNA	ETS-LINDGREN	3142C	00060447	May. 17, 2019	May. 16, 2021
HORN ANTENNA	ETS-LINDGREN	3117	00154520	Oct. 21, 2018	Oct. 20, 2020
HORN ANTENNA	ETS-LINDGREN	3117	00034609	May. 17, 2019	May. 16, 2021
RF Cable	Harbour	SHWCB-3000-N	N/A	May. 14, 2019	May. 13, 2020

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

5. ETSI EN 300 328 REQUIREMENTS

5.1. RF OUTPUT POWER

EN 300 328 Clause 4.3.1.2

The maximum RF output power for adaptive Frequency Hopping equipment shall be equal to or less than 20 dBm. The maximum RF output power for non-adaptive Frequency Hopping equipment, shall be declared by the supplier. See clause 5.3.1 m). The maximum RF output power for this equipment shall be equal to or less than the value declared by the supplier. This declared value shall be equal to or less than 20 dBm.

Test Configuration

Temperature Chamber

Remarks:

EUT was direct connected to test equipment through coupling device.

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

TEST PROCEDURE

- Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.2.1 for the test conditions.
 Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.2.2.1 for the measurement method.

TEST RESULTS

Operation Mode:	Hopping mode	Test Date:	Dec. 04, 2019
Temperature:	25°C	Tested by:	Donjon
Humidity:	55 % RH		
Number of Burst		= 13	
Measurement Time		= 50ms	

	RF OUTPUT POWERMEASUREMENT RESULT						
TEST CONDITIONS		(dBm)					
	Temp (25)°C	Temp (-10)°C	C Temp (40)°C				
FOR GFSK MOUDULATION	0.36	0.25	0.17				
Π /4-DQPSK MOUDULATION	0.45	0.22	0.38				
Limit		20dBm	©				

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotline:400 089 2118

Note: Result=Reading+ Ant. Gain Only the worst case recorded in the test report. Conclusion: PASS

 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: +86-755 2523 4088
 E-mail:agc@agc-cert.com
 Service Hotline:400 089 2118

5.2. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPIATION AND HOPPING SEQUENCE

ETSI EN 300 328 SUBCLAUSE 4.3.1.4

ACCUMULATED TRANSMIT TIME					
CONDITION	LIMIT				
Non-adaptive frequency hopping systems	≤ 15 ms				
Adaptive frequency hopping systems	≤ 400 ms				

FREQUENCY OCCUPATION					
CONDITION	LIMIT(OPTION 1)				
□ Non-adaptive frequency hopping systems	Each hopping frequency of the hopping sequence shall be occupied at least once within a period not				
Adaptive frequency hopping systems	exceeding four times the product of the dwell time and the number of hopping frequencies in use.				

HOPPING SEQUENCE(S)				
CONDITION LIMIT				
Non-adaptive frequency hopping systems	≥5 hopping frequencies or 5/minimum Hopping Frequency Separation in MHz , whichever is the greater.			
Adaptive frequency benning eveteme	Operating frequency band ≥58.45MHz (Operating over a minimum of 70 % of the operating in the band 2,4 GHz to 2,4835 GHz)			
	≥15 hopping frequencies or 15/minimum Hopping Frequency Separation in MHz , whichever is the greater.			

TEST CONFIGURATION

TEST PROCEDURE Please refer to ETSI EN300328 V2.2.2 Section 5.4.4

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

TEST RESULT FOR ACCUMULATED TRANSMIT TIME

Bluetooth TMbps(DH5) Test Result						
Channel	Pulse time(ms)	Accumulated Transmit Time (ms)	Limit (ms)			
Low	2.867	308.49	400			
High	2.867	308.49	400	Ĵ.		

High Channel

🎉 Keysight Spectrum Analyzer - Swept SA				
(X) RF 50 Ω AC	SENSE:INT	ALIGN AUTO	08:06:30 PM Dec 04, 2019 TRACE 1 2 3 4 5 6	Marker
PNC	D: Fast ++ Trig: Free Run Atten: 20 dB		TYPE WWWWWW DET NNNNNN	Select Marker
10 dB/div Ref 10.00 dBm			Mkr1 2.867 ms -0.19 dB	1*
0.00 Xz	1Δ2			Normal
-10.0				Delta
-30.0				Fixed⊳
-40.0				Off
-60.0		a da ha shi ka shi ka sha shi sha shi sha shi	Cupel-Verkler	Properties►
	ار ار المار . ار ار المار .		h kar, h J kara	More
Center 2.480000000 GHz Res BW 510 kHz	#VBW 1.5 MHz	Sweep 8	Span 0 Hz 3.333 ms (1001 pts)	1012

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community,

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotline:400 089 2118

Report No.: AGC04094191102EE04 Page 15 of 45

	Bid	ereerin Emepe(Brie) reer	Ttoount	
Channel	Pulse time(ms)	Accumulated Transmit Time (ms)	Limit (ms)	
Low	2.883	309.89	400	
High	2.883	309.89	400	

Bluetooth 2Mbps(DH5) Test Result

Low Channel

Note: Accumulated Transmit Time=pulse time*hopping numbers, Hopping numbers={1000/[(0.625*time slot+0.625)*79]}*31.6 Time slot(DH1,DH3,DH5)

GHz

#VBW 1.5 MHz

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community,

Sweep 8.333 ms

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotline:400 089 2118

Delt

Fixed

Properties

Mor

Of

TEST RESULT FOR HOPPING SEQUENCE

Channel	Frequency (GHz)	Channel	Frequency (GHz)
01	2.402	42	2.443
02	2.403	43	2.444
03	2.404	44	2.445
04	2.405	45	2.446
05	2.406	46	2.447
06	2.407	47	2.448
07	2.408	48	2.449
08	2.409	49	2.450
09	2.410	50	2.451
10	2.411	51	2.452
11	2.412	52	2.453
12	2.413	53	2.454
13	2.414	54	2.455
14	2.415	55	2.456
15	2.416	56	2.457
16	2.417	57	2.458
17	2.418	58	2.459
18	2.419	59	2.460
19	2.420	60	2.461
20	2.421	61	2.462
21	2.422	62	2.463
22	2.423	63	2.464
23	2.424	64	2.465
24	2.420	65	2.466
25	2.426	66	2.467
26	2.427	67	2.468
27	2.428	68	2.469
28	2.429	69	2.470
29	2.430	70	2.471
30	2.431	71	2.472
31 💿	2.432	72	2.473
32	2.433	73	2.474
33	2.434	74	2.475
34	2.435	75	2.476
35	2.436	76	2.477
36	2.437	77	2.478
37	2.438	78	2.479
38	2.439	79	2.480
39	2.440	8	
40	2.441		
41	2.442		8

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotline:400 089 2118

Report No.: AGC04094191102EE04 Page 17 of 45

				ΠΟμ	ping C	nann				100		
oping Sequ	lence	(MHz)					79.7	'53				
oping Num	ber						79					
ı T	Keysight Spe	ectrum Analyzer - Sw	ept SA	1	CENCE 1	NT		LIGN AUTO	09-05-19	MDoc 04, 2010		
© N	Marker 1	2.4368235	00000 GI	Hz	rig: Free Ru	n	Avg Type: Avg Hold:>	Log-Pwr 100/100	TRA TN	CE 1 2 3 4 5 6 PE MWWWWW	Peak Search	
. C			IF(Gain:Low	Atten: 20 dB				E		Next Peak	
		Ref 10.00 (Bm					MKr1 2	436 82. 0.5	3 5 GHz 23 dBm	Next1 cur	
					52. 1 0							
3	0.00	กกกรรณาการก	งงาณาการทำ	กกการการการการการการการการการการการการกา	ง ากกกกกกก	กกกกก	กกกกก	ᡞᡗᡳᢧᠬᡘᡘᡘ	การการกา	กกกก	Next Pk Right	
	1	TTTTTTTT	114444114			TTTTTTT	111111	44414444		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	-10.0											
	20.0								-20.	00 dB	Next PK Left	
									10.100 (
0	30.0										Marker Delta	
- C -	40.0											
	70.01									4		
	-50.0										Mkr→CF	
	60.0											
- 0	70'0										Mkr⊸Refi vi	
	80.0											
											More 1 of 2	
	Start 2.40	000 GHz 510 kHz		#VBW 1	5 MHz			#Sweep	Stop 2.4	8350 GHz (1001 pts)	1012	
M	ISG							STATUS				

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com
 Service Hotline:400 089 2118

TEST RESULT FOR FREQUENCY OCCUPATION Test Result

Channel	Modulation	Frequency occupation (pcs)	Limit (pcs)	Result
	GFSK	4		Pass
LCH	π/4-DQPSK	3	10	Pass
ЦСЦ	GFSK	3	21	Pass
НСН	π/4-DQPSK	3		Pass

Test Graphs

Note: pcs means the number of hopping sequence.

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Servic

Service Hotline:400 089 2118

5.3. HOPPING FREQUENCY SEPARATION

ETSI EN 300 328 SUBCLAUSE 4.3.1.5

For Non-adaptive frequency hopping systems:

The minimum Hopping Frequency Separation shall be equal to Occupied Channel Bandwidth (see clause 4.3.1.7) of a single hop, with a minimum separation of 100 kHz.

For Adaptive frequency hopping systems: The minimum Hopping Frequency Separation shall be 100 kHz.

CONFIGURATION

TEST PROCEDURE

Test Procedure please refer to clause 5.4.5.2.1

TEST RESULT

Hopping Frequency Separation (MHz)

1.000

Note: The modulation used during test is $\pi/4$ -DQPSK and this is the worst case. Conclusion: PASS

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline

5.4. OCCUPIED CHANNEL BANDWIDTH

EN300328 4.3.1.4 OCCUPIED CHANNEL BANDWIDTH

The Occupied Channel Bandwidth is the bandwidth that contains 99 % of the power of the signal.

CONFIGURATION

TEST PROCEDURE

- 1. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.7.1 for the test conditions.
- 2. Please refer to ETSI EN 300 328 (V2.2.2) clause 5.4.7.2 the measurement method.
- 3. The Test equipment information as following
- Centre frequency: 2402MHz,2480MHz Resolution bandwidth: 20kHz Video bandwidth: 62kHz Detector mode :RMS Trace mode :Max Hold

TEST RESULTS

				in the second	
Modulation	Channel	OBW [MHz]	FL@OBW	FH@OBW	Verdict
GFSK	LCH	0.86361	2401.546		PASS
GFSK	НСН	0.86332	- O	2480.414	PASS
π/4DQPSK	LCH	1.2070	2401.382		PASS
π/4DQPSK	НСН	1.2049	o	2480.059	PASS

 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add:
 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86–755 2523 4088
 E-mail: agc@agc-cert.com
 Service Hotline:400 089 2118

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community,

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

Report No.: AGC04094191102EE04 Page 22 of 45

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86–755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

5.5. TRANSMITTER UNWANTED EMISSIONS IN THE OUT OF BAND DOMAIN

EN300328 4.3.1.9 TRANSMITTER UNWANTED EMISSIONS IN THE OUT OF BAND DOMAIN

B: -20 dBm/MHz e.i.r.p.

C: Spurious Domain limits

BW = Occupied Channel Bandwidth in MHz or 1 MHz whichever is greater

Figure 1: Transmit mask

TEST CONFIGURATION

Temperature Chamber

For have temporary antenna connector product

TEST PROCEDURE

Test Procedure Please refer to ETSI EN 300 328 (V2.2.2) Clause 5.4.8.2.1

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

TEST RESULT

TEST CONDITIONS	Hopping mode					
TEST CONDITIONS	Temp (25)°C	Temp (25)°C Temp (-10)°C				
GFSK MOUDULATION	PASS	PASS	PASS			
П/4-DQPSK MOUDULATION	PASS	PASS	PASS			

Note: All the modes had been tested, but only the worst data recorded in the report. **Conclusion: PASS**

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

5.6. TRANSMITTER SPURIOUS EMISSIONS

Spurious emissions are emissions outside the frequency range(s) of the equipment as defined in Clause 4.3.1.10.

The spurious emissions of the transmitter shall not exceed the values in tables in the indicated bands:

Frequency Range	Maximum Power e.r.p(<=1GHz)/e.i.r.p(>1GHz)	Bandwidth
30MHz to 47MHz	-36dBm	100kHz
47MHz to 74MHz	-54dBm	100kHz
74MHz to 87.5MHz	-36dBm	100kHz
87.5MHz to 118MHz	-54dBm	100kHz
118MHz to 174MHz	-36dBm	100kHz
174 MHz to 230MHz	-54dBm	100kHz
230 MHz to 470MHz	-36dBm	100kHz
470 MHz to 694MHz	-54dBm	100kHz
694 MHz to 1GHZ	-36dBm	100kHz
1 GHZ to 12.75GHZ	-30dBm	1MHz

 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add:
 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86–755 2523 4088
 E-mail: agc@agc-cert.com
 Service Hotline:400 089 2118

TEST PROCEDURE

1) The emissions over the range 30 MHz to 1 000 MHz shall be identified.

 2) Spectrum analyzer settings: Resolution bandwidth: 100 kHz Video bandwidth: 300 kHz Detector mode: Peak Sweep Points: ≥ 19 400 Trace Mode: Max Hold

- 3) Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits.
- 4) The emissions over the range 1 GHz to 12,75 GHz shall be identified.

5) Resolution bandwidth: 1 MHz
 Video bandwidth: 3 MHz
 Detector mode: Peak
 Trace Mode: Max Hold
 Sweep Points: ≥ 23 500

- 6) Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits.
- 7) For radiated method, the applicable measurement procedures as described in the EN 300 328 V2.2.2 annex C.2 and C.4 are used.

Test Configuration

Conducted Method

 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add:
 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86–755 2523 4088
 E-mail: agc@agc-cert.com
 Service Hotline:400 089 2118

Report No.: AGC04094191102EE04 Page 27 of 45

Below 1GHz

Reference ground plane -

Above 1GHz

Radiated Method

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service

Service Hotline:400 089 2118

CONDUCTED RESULTS:

(Worst Case: Low channel, 1Mbps)

Peak Search Avg Type: Log-Pwr Avg|Hold:>100/100 37 638587953 MHz Trig: Free Run Atten: 30 dB PNO: Fast Next Peak Mkr1 737.64 MHz -60.362 dBm Ref 20.00 dBm 0 dB/di Next Pk Right Next Pk Left Marker Delta Start 30.0 MHz #Res BW 100 kHz Stop 1.0000 GHz Sweep 94.00 ms (30000 pts) #VBW 300 kHz Mkr→CF 737.64 MHz -60.362 dBm Mkr→RefLvi More 1 of 2 STATUS

🚺 Keysight Spectrum Analyzer - Swept SA				
Marker 2 4.803993466449	GHz SENSE:I	ALIGN AUTO	07:55:35 PM Dec 04, 2019 TRACE 1 2 3 4 5 6	Peak Search
10 dB/div Ref 20.00 dBm	PNO: Fast Ing: Free Ru IFGain:Low Atten: 30 dB	n Avg Hola:>100/100	r2 4.804 0 GHz -36.948 dBm	Next Peak
10.0 0.00 -10.0				Next Pk Right
-20.0 -30.0 -40.0			-30.00 dBm	Next Pk Left
-50 0 -60 0 -70 0				Marker Delta
Start 1.000 GHz #Res BW 1.0 MHz MKR MODE TRC SCL X	#VBW 3.0 MHz	Sweep 20	Stop 12.750 GHz .00 ms (30000 pts) FUNCTION VALUE	Mkr→CF
2 N 1 f 41 3 4 5 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	804 0 GHz -36.948 dBm		E	Mkr→RefLvl
7 8 9 10 11				More 1 of 2
MSG		STATUS		

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

(Worst Case: High channel, 1Mbps)

ALIGN AUTO PM Dec 04, 2019 Avg Type: Log-Pwi Avg|Hold:>100/100 Peak Search 925.630854362 MHz Trig: Free Run Atten: 30 dB PNO: Fast IFGain:Low **Next Peak** 925.63 MHz Mkr1 59.408 dBm Ref 20.00 dBm Next Pk Right Next Pk Left Marker Delta Stop 1.0000 GHz Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 94.00 ms (30000 pts) Mkr→CF FUNCTION EUNCTION WIDTH 925.63 MHz -59.408 dBm Mkr→RefLvl More 1 of 2 07:56:11 PM Dec 04, 2019 Avg Type: Log-Pwr Avg|Hold:>100/100 Peak Search 2345 2 4.959881996067 GHz Trig: Free Run Atten: 30 dB PNO: Fast **Next Peak** Mkr2 4.959 9 GHz -38.837 dBm Ref 20.00 dBm 0 dB/div Next Pk Right Next Pk Left Marker Delta Start 1.000 GHz #Res BW 1.0 MHz Stop 12.750 GHz #VBW 3.0 MHz Sweep 20.00 ms (30000 pts) Mkr→CF 2.480 2 GHz 4.959 9 GHz 0.442 dBm -38.837 dBm Mkr→RefLv More 1 of 2 STATUS

Note: 1. All the modes had been test but only the worst data record in the report.

2. The 2.4G fundamental frequency is not considered to compare with the limit.

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

RADIATED RESUILTS: (Worst Case: Low channel, 1Mbps)

Transmitter Spurious Emission below 1GHz (30MHz-1GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
84.37	30.18	v	-63.08	0.48	0.54	-63.02	-36.00	27.02
129.99	30.46	V	-62.09	0.49	0.14	-62.44	-36.00	26.44
239.58	31.11	V	-64.99	0.52	6.60	-58.91	-36.00	22.91
325.99	30.46	V	-65.83	0.53	6.10	-60.26	-36.00	24.26
334.83	31.24	V	-64.77	0.53	5.94	-59.36	-36.00	23.36
827.83	31.36	V	-66.68	0.66	6.45	-60.89	-54.00	6.89
Other(30-10 00)		V	10 ⁰		- 0		-36.00/- 54.00	
-0		0		.0-	-0			
84.01	31.71	Н	-61.19	0.48	0.54	-61.13	-36.00	25.13
131.25	30.33	Н	-61.35	0.49	0.08	-61.76	-36.00	25.76
243.12	29.58	。 н 🖻	-66.16	0.52	6.78	-59.90	-36.00	23.90
325.41	30.54	н	-65.58	0.53	6.10	-60.01	-36.00	24.01
735.19	31.34	н	-64.61	0.59	6.60	-58.60	-54.00	4.60
827.64	31.25	н	-64.48	0.66	6.45	-58.69	-54.00	4.69
Other(30-10 00)	-	Н	- 6	c		-0	-36.00/- 54.00	ġ - ',

 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: +86-755 2523 4088
 E-mail: agc@agc-cert.com
 Service Hotline:400 089 2118

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
4804.80	45.93	V	-48.74	2.64	9.30	-42.08	-30.00	12.08
7328.65	31.09	V	-57.58	3.11	11.45	-49.25	-30.00	19.25
Other(1000- 12750)	o -	v	3- 3	GC	e C	-	-30.00	200
			0				C.	0
4804.49	41.51	н	-48.76	2.64	9.30	-42.10	-30.00	12.10
7246.59	30.79	Н	-58.50	3.13	11.34	-50.29	-30.00	20.29
Other(1000- 12750)	LOC	Н	-		- C	- 60	-30.00	°

Transmitter Spurious Emission above 1GHz (1GHz-12.75GHz)

Note: 1.The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add:
 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86-755 2523 4088
 E-mail: agc@agc-cert.com
 Service Hotline:400 089 2118

(Worst Case: High channel, 1Mbps)

Transmitter Spurious Emission below 1GHz (30MHz-1GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
92.63	30.73	V	-60.64	0.48	1.56	-59.56	-54.00	5.56
145.70	30.90	V	-59.74	0.49	0.30	-59.93	-36.00	23.93
243.12	31.27	• V	-67.44	0.52	6.78	-61.18	-36.00	25.18
343.92	30.27	V	-64.88	0.53	5.64	-59.77	-36.00	23.77
385.77	30.84	V	-64.31	0.54	6.45	-58.40	-36.00	22.40
864.66	31.73	V	-63.50	0.68	5.72	-58.46	-36.00	22.46
Other(30-10 00)		V	- 6	0			-36.00/- 54.00	
©			<u> </u>	C	0			
92.91	32.00	Н	-60.09	0.48	1.56	-59.01	-54.00	5.01
146.35	30.36	сH	-59.24	0.49	0.38	-59.35	-36.00	23.35
253.24	29.82	Н	-65.61	0.52	7.22	-58.91	-36.00	22.91
336.33	30.69	н	-66.16	0.53	5.86	-60.83	-36.00	24.83
647.30	31.01	н	-68.37	0.59	7.17	-61.79	-54.00	7.79
719.72	31.10	н	-64.10	0.58	6.22	-58.46	-54.00	4.46
Other(30-10 00)	500	Н			-0		-36.00/- 54.00	o

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
4960.11	45.56	V	-49.07	2.75	9.62	-42.20	-30.00	12.20
7328.77	31.17	V	-68.18	3.11	11.45	-59.85	-30.00	29.85
Other(1000- 12750)	0 -	v	3	GC .	G	-	-30.00	
			8				C.	0
4960.46	41.25	н	-47.74	2.75	9.62	-40.88	-30.00	10.88
7246.71	30.71	Н	-68.43	3.13	11.34	-60.22	-30.00	30.22
Other(1000- 12750)	SOC	Н	-	4	- C		-30.00	°

Transmitter Spurious Emission above 1GHz (1GHz-12.75GHz)

Note: 1. The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "---" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Conclusion: PASS

 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: +86-755 2523 4088
 E-mail:agc@agc-cert.com
 Service Hotline:400 089 2118

5.7. RECEIVER SPURIOUS EMISSIONS

ETSI EN300328 SUBCLAUSE 4.3.1.11

Receiver spurious emissions are emissions at any frequency when the equipment is in receive mode. The spurious emissions of the receiver shall not exceed the values given in table.

Frequency Range	Maximum Power e.r.p(<=1GHz)/e.i.r.p(>1GHz)	Measurement Bandwidth
30MHz to 1000MHz	-57dBm	100kHz
1GHz to 12.75GHz	-47dBm	1MHz

Test Configuration

Same as 5.6.

TEST PROCEDURE

- 1) The emissions over the range 30 MHz to 1 000 MHz shall be identified.
- 2) Spectrum analyzer settings:

Resolution bandwidth: 100 kHz

Video bandwidth: 300 kHz

Detector mode: Peak

Sweep Points: \geq 19 400

Trace Mode: Max Hold

- 3) Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits.
- 4) The emissions over the range 1 GHz to 12,75 GHz shall be identified.
- 5) Resolution bandwidth: 1 MHz

Video bandwidth: 3 MHz

Detector mode: Peak

Trace Mode: Max Hold

Sweep Points: \geq 23 500

- 6) Allow the trace to stabilize. Any emissions identified during the sweeps above and that fall within the 6 dB range below the applicable limit or above, shall be individually measured using RMS detector and compared to the limits.
- 7) For radiated method, the applicable measurement procedures as described in the EN 300 328 V2.2.2 annex C.2 and C.4 are used.

 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add:
 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86–755 2523 4088
 E-mail: agc@agc-cert.com
 Service Hotline:400 089 2118

TEST RESULTS FOR CONDUCTED METHOD

RECEIVER MODE (Worst Case: Low channel, 1Mbps)

Peak Search 1 895,171839061 MHz Avg Type: Log-Pwr Avg Hold:>100/100 Trig: Free Run PNO: Fast Atten: 20 dB **Next Peak** Mkr1 895.17 MHz -69.881 dBm Ref 10.00 dBm 0 dB/di Next Pk Right Next Pk Left Marker Delta Start 30.0 MHz #Res BW 100 kHz Stop 1.0000 GHz Sweep 94.00 ms (30000 pts) #VBW 300 kHz Mkr→CF 895.17 MHz -69.881 dBm N 1 f Mkr→Ref Lvl More 1 of 2 Keysight Spectrum Analyzer - Swept SA c 04, 2019 Avg Type: Log-Pwr Avg|Hold:>100/100 Peak Search Marker 1 3.166380546018 GHz Trig: Free Run Atten: 20 dB PNO: Fast IFGain:Low **Next Peak** Mkr1 3.166 4 GHz -56.593 dBm 10 dB/div Log Ref 10.00 dBm Next Pk Right Next Pk Left Marker Delta Stop 12.750 GHz Sweep 20.00 ms (30000 pts) Start 1.000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Mkr→CF FUNCTION FUNCTION WIDTH 3.166 4 GHz -56.593 dBm Mkr→RefLvl More 1 of 2 STATUS

Attestation of Global Compliance

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, Sanwei Chaxi Industrial Park, Sanwei Community,

(Worst Case: High channel, 1Mbps)

07:57:14 PM Dec 04, 2019 ALIGN AUTO Peak Search Avg Type: Log-Pwi Avg|Hold:>100/100 1 444.300810027 MHz Trig: Free Run Atten: 20 dB PNO: Fast IFGain:Low Next Peak 444.30 MHz Mkr1 69.833 dBm Ref 10.00 dBm Next Pk Right Next Pk Left Marker Delta Stop 1.0000 GHz Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 94.00 ms (30000 pts) Mkr→CF FUNCTION EUNCTION WIDTH FUNCTION VALUE 444.30 MHz -69.833 dBm Mkr→Ref Lvi More 1 of 2 STATUS 07:58:08 PM Dec 04, 2019 Avg Type: Log-Pwr Avg|Hold:>100/100 Peak Search 2345 10.561685389513 GHz Marker Trig: Free Run Atten: 20 dB PNO: Fast Next Peak 10.561 7 GHz -55.848 dBm Mkr1 Ref 10.00 dBm 0 dB/div **Next Pk Right** Next Pk Left Marker Delta Start 1.000 GHz #Res BW 1.0 MHz Stop 12.750 GHz #VBW 3.0 MHz Sweep 20.00 ms (30000 pts) Mkr→CF 10.561 7 GHz -55.848 dBm Mkr→RefLv More 1 of 2 STATUS

Note: 1. All the modes had been test but only the worst data record in the report.

TEST RESULTS FOR RADIATED METHOD (Worst Case: Low channel, 1Mbps)

Receiver Spurious Emission below 1GHz (30MHz-1GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
114.37	30.50	V	-72.36	0.48	1.40	-71.44	-57.00	14.44
177.10	31.85	• V 🖻	-73.59	0.51	3.06	-71.04	-57.00	14.04
229.23	30.08	V	-77.69	0.52	6.84	-71.37	-57.00	14.37
496.67	30.00	V	-77.28	0.56	7.04	-70.80	-57.00	13.80
664.40	30.71	V	-77.50	0.59	6.98	-71.11	-57.00	14.11
879.57	30.41	V	-75.70	0.69	5.87	-70.52	-57.00	13.52
Other(30-10 00)		V	<u> </u>	Contraction of the second seco	6		-57.00	20
~0~	-C	0			S	C	8	
84.06	32.49	н	-71.35	0.48	0.54	-71.29	-57.00	14.29
110.60	31.23	н	-72.04	0.48	1.40	-71.12	-57.00	14.12
219.60	30.80	н	-77.61	0.52	7.38	-70.75	-57.00	13.75
485.50	31.28	Н	-77.71	0.56	7.00	-71.27	-57.00	14.27
554.37	31.03	н	-80.28	0.57	6.78	-74.07	-57.00	17.07
634.88	30.86	Н	-78.34	0.58	7.22	-71.70	-57.00	14.70
Other(30-10 00)		н			-	10	-57.00	C

 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add:
 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86-755 2523 4088
 E-mail: agc@agc-cert.com
 Service Hotline:400 089 2118

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
4948.06	28.54	V	-69.06	2.74	9.58	-62.22	-47.00	15.22
	0-	V		@		0	9	
Other(1000- 12750)	0 -	v	<u> </u>	GC	Č	-	-47.00	
			8				C	8
4953.14	29.64	н	-69.80	2.74	9.60	-62.95	-47.00	15.95
- C		Н	6		0	- 10°		-
Other(1000- 12750)	SCC.	Н	-				-47.00	

Receiver Spurious Emission above 1GHz (1GHz-12.75GHz)

Note: 1.The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "--" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

(Worst Case: High channel, 1Mbps)

Receiver Spurious Emission below 1GHz (30MHz-1GHz)

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
85.09	31.30	V	-70.87	0.48	0.70	-70.65	-57.00	13.65
154.49	32.07	V	-70.42	0.50	0.70	-70.22	-57.00	13.22
248.91	31.93	V	-75.96	0.52	7.02	-69.46	-57.00	12.46
394.83	31.05	V	-75.96	0.54	6.48	-70.02	-57.00	13.02
484.21	29.42	V	-76.56	0.56	6.98	-70.14	-57.00	13.14
894.80	30.40	V	-75.41	0.70	6.18	-69.93	-57.00	12.93
Other(30-10 00)	<u> </u>	V	70	©			-57.00	
	8					Ø		
109.83	30.99	Н	-70.74	0.48	1.28	-69.94	-57.00	12.94
188.24	31.65	Н	-75.00	0.51	4.78	-70.73	-57.00	13.73
225.40	30.92	н	-79.18	0.52	7.80	-71.90	-57.00	14.90
472.24	31.04	н	-75.77	0.55	6.82	-69.50	-57.00	12.50
501.98	30.45	HC	-77.21	0.56	6.97	-70.80	-57.00	13.80
724.94	30.90	Н	-77.07	0.58	6.50	-71.15	-57.00	14.15
Other(30-10 00)	e	Н	0			- 6	-57.00	·

 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add:
 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86-755 2523 4088
 E-mail: agc@agc-cert.com
 Service Hotline:400 089 2118

Frequency	Reading Level	Antenna	S.G.	Cable Loss	Ant.Gain	Emission Level	Limit	Margin
(MHz)	(dBuV/m)	Polarizat ion	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
4980.44	29.63	V	-67.35	2.77	9.66	-60.46	-47.00	13.46
	0-	V				2	0	
Other(1000- 12750)	o	V	3	SC.	ĉ	-	-47.00	200
			0			3	C.	®
4913.65	30.51	н	-66.71	2.72	9.52	-59.90	-47.00	12.90
G - 2		н			G	· ·		
Other(1000- 12750)	JOC C	Н				<u>-</u> 60	-47.00	·

Receiver Spurious Emission above 1GHz (1GHz-12.75GHz)

Note: 1.The margins of the other spectrum are not exceeding the minimum value of margin, and this part of the results without recording in the test report.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "---" remark, if no specific emission from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Conclusion: PASS

 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add:
 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86-755 2523 4088
 E-mail:agc@agc-cert.com
 Service Hotline:400 089 2118

5.8. RECEIVER BLOCKING

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log10(OCBW)) or -68 dBm	2 380		Č
whichever is less (see note 2)	2 504		
GO - G O F	2 300		
	2 330	24	
(-139 dBm + 10 × log10(OCBW)) or -74 dBm	2 360	-34	CVV
whichever is less (see note 3)	2 524	- C	
	2 584	000	6
	2 674		6 - 6

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 20 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal	
(-139 dBm + 10 × log10(OCBW) + 10 dB) or (-74 dBm + 10 dB) whichever is less (see note 2)	2 380		8	
	2 504			
	2 300	-34	CW	
	2 584	- 6		
			(A)	

Receiver Blocking parameters for Receiver Category 2 equipment

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 26 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Receiver Blocking parameters for Receiver Category 3 equipment

Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal	
2 380	6 ⁶ .c		
2 300 2 300 2 584	-34	CW	
	Blocking signal frequency (MHz) 2 380 2 504 2 300 2 584	Blocking signalBlocking signalfrequencypower (dBm)(MHz)(see note 3)2 380-342 504-342 3002 584	

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to Pmin + 30 dB where Pmin is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

TEST CONFIGURATION

Test Set-up for receiver blocking

TEST PROCEDURE

The simplified conducted measure procedures are as follows:

1) he UUT shall be set to hopping mode.

2) The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.

3)With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device using the test setup. The level of the wanted signal shall be set to the value provided in the table corresponding to the receiver category and type of equipment. This level may be measured directly at the output of the companion device and a correction is made for the coupling loss into the UUT. The actual level for the wanted signal shall be recorded in the test report.

4) The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment. It shall be verified and recorded in the test report that the performance criteria is met.5) Repeat step 4 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment.

TEST RESULT

Test Condition	Blocking Signal Frequency(MHz)	Blocking Signal Power(dBm)	Wanted signal mean power from companion device(dBm)	Performance PER	Limit PER	Result
GFSK Hopping Mode	2 300	-34.00	-69.64	0.47%	10%	Pass
	2 380	-34.00	-69.64	0.25%	⁰ 10%	
	2 504	-34.00	-69.64	0.71%	10%	
	2 584	-34.00	-69.64	0.36%	10%	

Test Condition	Blocking Signal Frequency(MHz)	Blocking Signal Power(dBm)	Wanted signal mean power from companion device(dBm)	Performance PER	Limit PER	Result
π/4-DQPSK Hopping Mode	2 300	-34.00	-68.18	0.58%	10%	Pass
	2 380	-34.00	-68.18	0.44%	10%	
	2 504	-34.00	-68.19	0.13%	10%	
	2 584	-34.00	-68.19	0.23%	10%	

Note: The levels of the blocking signal and wanted signal have to be corrected for the (in-band) antenna assembly gain.

Attestation of Global Compliance(Shenzhen)Co.,Ltd. Add: 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline:400 089 2118

Report No.: AGC04094191102EE04 Page 45 of 45

APPENDIX A: PHOTOGRAPHS OF THE TEST SETUP

Refer to Attached file(appendix I)

APPENDIX B: PHOTOGRAPHS OF THE EUT

Refer to Attached file(appendix I)

----END OF REPORT----

 Attestation of Global Compliance(Shenzhen)Co.,Ltd.

 Add:
 2/F., Building 2,Sanwei Chaxi Industrial Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China

 Tel:
 +86-755 2523 4088
 E-mail:agc@agc-cert.com
 Service Hotline:400 089 2118