DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE THE DOCUMENT OWNER

EMC TEST REPORT

For

Ourdoor 10W Wireless Charging Solar Powerbank Test Model:

Prepared for Address :

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : Room 101, 201, Building A and Room 301, Building C, Juji

Industrial Park, Yabianxueziwei, Shajing Street, Bao' an District,

Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : March 04, 2020

Number of tested samples : 1

Serial number : Prototype

Date of Test : March 04, 2020 ~ March 12, 2020

Date of Report : March 13, 2020

SHENZHEN LCS COMPLIANCE TESTING LABORATOR		
	YITI	つ

Report No.: LCS200102107AEA

EMC TEST REPORT

ETSI EN 301 489-1 V2.1.1 (2017-02)

ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 17: Specific conditions for Broadband Data Transmission Systems; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU

Report Reference No LCS200102107AEA

Date Of Issue: March 13, 2020

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District,

Shenzhen, Guangdong, China

Testing Location/ Procedure.....: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method \square

Applicant's Name....:

Address:

Test Specification

Standard.....: ETSI EN 301 489-1 V2.1.1 (2017-02)

ETSI EN 301 489-3 V2.1.1(2017-03)

Test Report Form No.: LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF....: Dated 2017-06

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.: Ourdoor 10W Wireless Charging Solar Powerbank

Trade Mark: N/A

Test Model: XO-9771

Ratings : Battery Capacity: 3.7V/8000mAh

Input: 5V=2A

CablesOutput: 5V=2.1A

Rated USB1/2 Output: 5V=2.4A

Wireless Output: 5V=2A

Result: : Positive

Compiled by:

Supervised by:

Jaydan 2 hus

Jin Wang

Jaydan Zhuo/ Administrators

Jin Wang / Technique principal

Gavin Liang/ Manager

March 13, 2020

Date of issue

Test Report No.: LCS200102107AEA

DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE ORIGINAL DOCUMENT WAS REPARTED FOR THE ORIGINAL DOCUMENT

EMC -- TEST REPORT

Test Model	:	XO-9771
EUT	:	Ourdoor 10W Wireless Charging Solar Powerbank
Applicant	:	
Address	:	
TelephoneFax		
Manufacturer	:	- -
Address	:	
Telephone		
Factory	:	-
Address		

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

Telephone....:

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

Revision History

Revision	Issue Date	Revisions	Revised By
000	March 13, 2020	Initial Issue	Gavin Liang

TABLE OF CONTENTS

Test Report Description	Page
TABLE OF CONTENTS	5
1. GENERAL INFORMATION	7
1.1. Product Description for Equipment Under Test (EUT)	
1.2. Objective	
1.3. Related Submittal(s)/Grant(s)	
1.5. Description of Test Facility	
1.6. Support equipment List	
1.7. External I/O	
1.8. Measurement Uncertainty 1.9. Description Of Test Modes	
2. SUMMARY OF TEST RESULTS	
3. LINE CONDUCTED EMISSION	
3.1. Conducted Emission Limit	
3.2. Test Configuration	
3.3. Test Data	
4. RADIATED DISTURBANCE	
4.1. Radiated Emission Limit	
4.2. Test Configuration	
4.4. Test Data	
5. HARMONIC CURRENT EMISSIONS	19
5.1. Test Configuration	19
5.2. Test Standard	
5.3. Test Data	
6. VOLTAGE FLUCTUATION AND FLICKER	
6.1. Test Configuration	
6.3. Test Data	
7. GENERAL PERFORMANCE CRITERIA FOR IMMUNITY TEST	21
7.1. Performance criteria for Continuous phenomena applied to Transmitter (CT)	21
7.2. Performance criteria for Transient phenomena applied to Transmitter (TT)	21
7.3. Performance criteria for Continuous phenomena applied to Receiver (CR)	
8. RF ELECTROMAGNETIC FIELD (80 MHZ-6000 MHZ)	
8.1. Test Configuration	
8.2. Test Standard	
8.3. Severity Level	
8.4. Test Procedure	
8.5. Test Result	
9. ELECTROSTATIC DISCHARGE 9.1. Test Configuration.	
9.1. Test Configuration	
9.3. Test Data	
10. ELECTRICAL FAST TRANSIENT IMMUNITY	28
10.1. Test Configuration	28

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	Report No.: LCS200102107AE
10.2 T. (G) 1. 1	20
10.2. Test Standard	
10.3. Test Procedure	
10.4. Test Data	
11. RF COMMON MODE	30
11.1. Test Configuration	30
11.2. Test Standard	
11.3. Test Procedure	
11.4. Test Data	31
12. SURGES, LINE TO LINE AND LINE TO GROUND	32
12.1. Test Configuration	
12.2. Test Standard	32
12.3. Test Procedure	
12.4. Test Data	32
13. VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST	33
13.1. Test Configuration	33
13.2. Test Standard	
13.3. Test Procedure	33
13.4. Test Data	33
14. LIST OF MEASURING EQUIPMENT	34
15.TEST SETUP PHOTOGRAPHS	
15.1.Photo of Radiated Emissions Measurement	
15.2.Photo of Power Line Conducted Emissions Measurement	
15.3.Photo of Electrostatic Discharge Test	
15.4.Photo of Radio-frequency, Continuous radiated disturbance	
16. EUT EXTERIOR AND INTERIOR PHOTOGRAPHS	

1. GENERAL INFORMATION

1.1. Product Description for Equipment Under Test (EUT)

EUT : Ourdoor 10W Wireless Charging Solar Powerbank

Test Model : XO-9771

Hardware Version : /

Software Version : /

Operating Frequency : 110.0~205.0KHz

Modulation Type : MSK

Antenna Type : Coil Antenna

Input/Output : Battery Capacity: 3.7V/8000mAh

Input: 5V=2A

CablesOutput: 5V=2.1A

Rated USB1/2 Output: 5V=2.4A

Wireless Output: 5V=2A

1.2. Objective

	ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part
ETSI EN 301	1: Common technical requirements; Harmonised Standard covering the essential
489-1	requirements of article 3.1(b) of Directive 2014/53/EU and the essential requirements of
	article 6 of Directive 2014/30/EU
	ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part
ETSI EN 301	ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 3: Specific conditions for Short-Range Devices (SRD) operating on frequencies between
ETSI EN 301 489-3	

The objective is to determine compliance with ETSI EN 301 489-1 V2.1.1 (2017-02), ETSI EN 301 489-3 V2.1.1 (2017-03) .

1.3. Related Submittal(s)/Grant(s)

No Related Submittals.

1.4. Test Methodology

All measurements contained in this report were conducted with ETSI EN 301 489-1 V2.1.1 (2017-02) ETSI EN 301 489-3 V2.1.1 (2017-03) .

1.5. Description of Test Facility

FCC Registration Number is 254912.

Industry Canada Registration Number is 9642A-1.

EMSD Registration Number is ARCB0108.

UL Registration Number is 100571-492.

TUV SUD Registration Number is SCN1081.

TUV RH Registration Number is UA 50296516-001.

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier: CN0071.

1.6. Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
Lenovo	ADAPTER for Notebook	ADLX65YCC3A		CE
Lenovo	Notebook	TP00094A		CE
MIUI	Mobile Phone	MI9		CE

1.7. External I/O

I/O Port Description	Quantity	Cable
Micro USB Port	1	N/A
USB Port	2	N/A

1.8. Measurement Uncertainty

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	±2.42dB	
Uncertainty for Radiation Emission test in 3m chamber	±3.54dB	Polarize: V
(30MHz to 1GHz)	±4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	±2.08dB	Polarize: H
(1GHz to 25GHz)	±2.56dB	Polarize: V
Uncertainty for radio frequency	$\pm 3*10^{-7}$ MHz	
Uncertainty for conducted RF Power	±0.65dB	
Uncertainty for temperature	±0.2℃	
Uncertainty for humidity	±1%	
Uncertainty for DC and low frequency voltages	±0.05V	

1.9. Description Of Test Modes

There was 3 test Modes. TM1 to TM3 were shown below:

TM1: Wireless charging mode

TM2: Charging mode TM3: Idle mode

***Note:

All test modes were tested, but we only recorded the worst case in this report.

2. SUMMARY OF TEST RESULTS

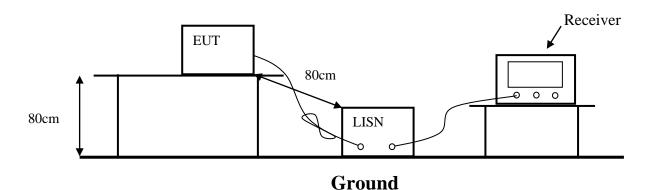
Rule	Description of Test Items	Result
§7.1	Reference to clauses EN 301 489-1 §8.4 AC mains power input/output ports	Compliant
§7.1	Reference to clauses EN 301 489-1§8.3 DC power input/output ports	N/A
§7.1	Reference to clauses EN 301 489-1 §8.2 Enclosure of ancillary equipment measured on a stand alone basis	Compliant
§7.1	Reference to clauses EN 301 489-1 §8.5 Harmonic current emissions (AC mains input port)	N/A
§7.1	Reference to clauses EN 301 489-1 §8.6 Voltage fluctuations and flicker (AC mains input port)	N/A
§7 . 1	Reference to clauses EN 301 489-1§8.7 Telecommunication ports	N/A
§7.2	Reference to clauses EN 301 489-1 §9.3 Electrostatic discharge (EN 61000-4-2)	Compliant
§7.2	Reference to clauses EN 301 489-1 §9.2 Radio frequency electromagnetic field (80 MHz to 6000 MHz)(EN 61000-4-3)	Compliant
§7.2	Reference to clauses EN 301 489-1§9.4 Fast transients, common mode (EN 61000-4-4)	N/A
§7.2	Reference to clauses EN 301 489-1§9.8 Surges (EN 61000-4-5)	N/A
§7.2	Reference to clauses EN 301 489-1§9.5 Radio frequency, common mode (EN 61000-4-6)	N/A
§7.2	Reference to clauses EN 301 489-1 §9.6 Transients and surges in the vehicular environment (ISO 7637-2)	N/A
§7.2	Reference to clauses EN 301 489-1§9.7 Voltage dips and interruptions (EN 61000-4-11)	N/A

Note: N/A means not applicable.

3. LINE CONDUCTED EMISSION

3.1. Conducted Emission Limit

ETSI EN 301 489-1 V2.1.1 (2017-02)/EN 55032


Limits for Line Conducted Emission

Frequency	Limit (dBµV)			
(MHz)	Quasi-peak Level	Average Level		
0.15~0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *		
0.50~5.00	56.0	46.0		
5.00~30.00	60.0	50.0		

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.2. Test Configuration

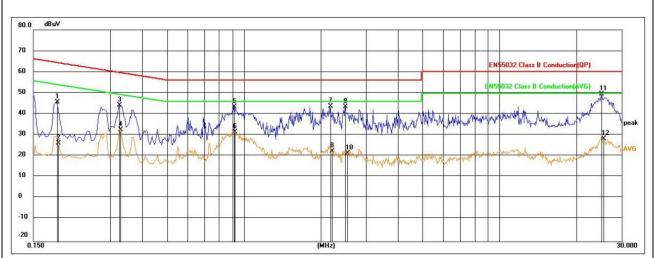
The setup of EUT is according with per ETSI EN 301 489-1 measurement procedure. The specification used was with the ETSI EN 301 489-1 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

The EUT received Adapter which received power through a LISN supplying power of AC 230V/50Hz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

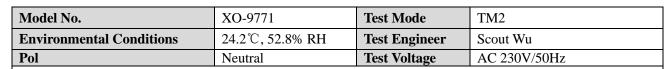
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	30MHz~1000MHz
(IF)RB	9kH

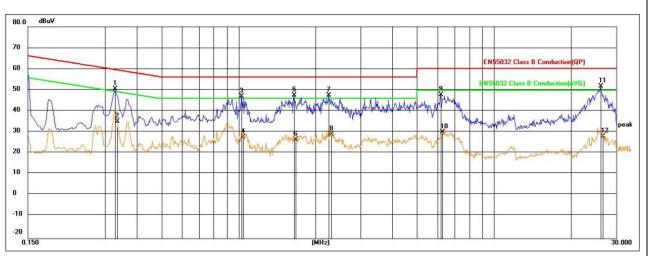

All data was recorded in the Quasi-peak and average detection mode.

Marked on both the 6 highest Quasi-Peak & 6 highest Average emissions points of the EUT.

3.3. Test Data

For pre-scan, the worst test case is TM1, and the test data was show as follow:


Model No.	XO-9771	Test Mode	TM2
Environmental Conditions	24.2℃, 52.8% RH	Test Engineer	Scout Wu
Pol	Line	Test Voltage	AC 230V/50Hz



Temp.()/Hum.(%RH): 24.2 / 52.8 Time: 15:25:51

Standard: EN55032 Class B Conduction(QP) Test By: SCOUT WU

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1859	26.74	19.17	45.91	64.22	-18.31	QP
2	0.1882	7.23	19.17	26.40	54.12	-27.72	AVG
3	0.3255	25.05	19.29	44.34	59.57	-15.23	QP
4	0.3301	13.41	19.29	32.70	49.45	-16.75	AVG
5	0.9149	24.33	19.29	43.62	56.00	-12.38	QP
6	0.9193	12.58	19.29	31.87	46.00	-14.13	AVG
7	2.1703	24.45	19.43	43.88	56.00	-12.12	QP
8	2.2019	3.16	19.43	22.59	46.00	-23.41	AVG
9	2.4990	24.17	19.45	43.62	56.00	-12.38	QP
10	2.5393	2.13	19.45	21.58	46.00	-24.42	AVG
11	25.0304	29.40	20.23	49.63	60.00	-10.37	QP
12	25.5120	8.30	20.19	28.49	50.00	-21.51	AVG

Temp.()/Hum.(%RH): 24.2 / 52.8 Time: 15:23:18 EN55032 Class B Conduction(QP) SCOUT WU Standard: Test By:

Stanuaru.		E1133032 C1	Class D Conduction(Q1)		cst by.	SCOUL WE	
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.3300	31.44	19.29	50.73	59.45	-8.72	QP
2	0.3345	15.87	19.30	35.17	49.34	-14.17	AVG
3	1.0274	27.75	19.26	47.01	56.00	-8.99	QP
4	1.0403	8.63	19.27	27.90	46.00	-18.10	AVG
5	1.6484	28.30	19.36	47.66	56.00	-8.34	QP
6	1.6754	7.46	19.36	26.82	46.00	-19.18	AVG
7	2.2513	28.20	19.43	47.63	56.00	-8.37	QP
8	2.3054	9.73	19.43	29.16	46.00	-16.84	AVG
9	6.1665	28.24	19.54	47.78	60.00	-12.22	QP
10	6.2743	10.73	19.56	30.29	50.00	-19.71	AVG
11	26.1326	31.89	20.15	52.04	60.00	-7.96	QP
12	26.5740	8.21	20.14	28.35	50.00	-21.65	AVG

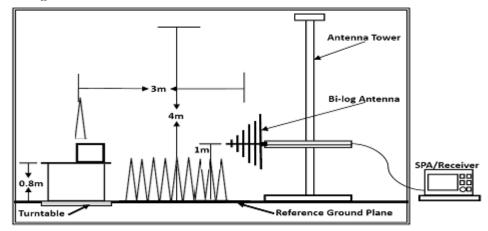
Note: For conducted emission and radiated emission test, a power supply of 230VAC and 120VAC was used for testing respectively, and only recorded the worst case of 230VAC.

4. RADIATED DISTURBANCE

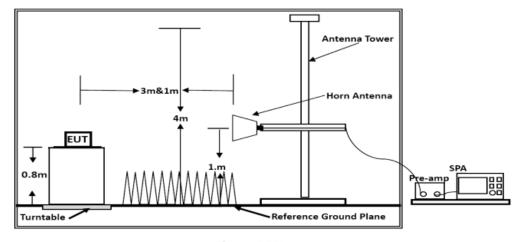
4.1. Radiated Emission Limit

ETSI EN 301 489-1 V2.1.1 (2017-02)/EN 55032 Class B

Limits for radiated disturbance Below 1GHz


Frequency (MHz)	Distance (Meters)	Field Strengths Limit (dBµV/m)
30 ~ 230	3	42-35
230 ~ 1000	3	42

Note: (1) The smaller limit shall apply at the combination point between two frequency bands. (2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.


Limits for radiated disturbance Above 1GHz

Frequency	Distance	Average Limit	Peak Limit			
(MHz)	(Meters)	(dBµV/m)	$(dB\mu V/m)$			
1000-3000	3	50	70			
3000-6000	3	54	74			
Note: The lower limit applies at the transition frequency.						

4.2. Test Configuration

Below 1GHz

Above 1GHz

4.3. Test Procedure

1) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 4 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

2) Sequence of testing 1 GHz to 6 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

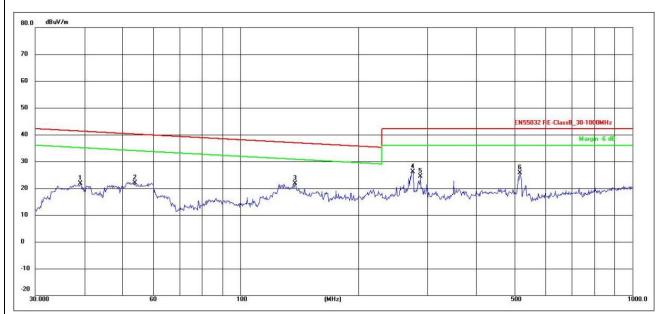
Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 4 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

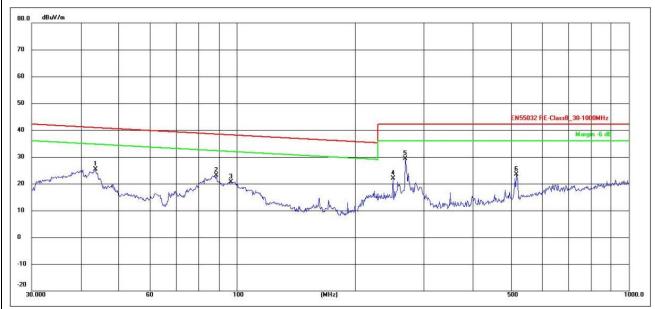
- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.


Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	6000 MHz
RB / VB	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

4.4. Test Data

The worst test mode of the EUT was TM1, and its test data was showed as the follow:

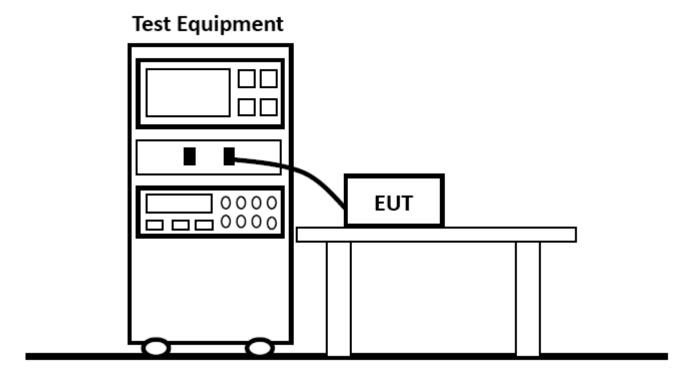

Model No.	XO-9771	Test Mode	TM1
Environmental Conditions	24.0℃, 52.2% RH	Detector Function	Quasi-peak
Pol	Vertical	Distance	3m
Test Engineer	Scout Wu	Test Voltage	AC 230V/50Hz

Site: Antenna::Vertical Temperature(C):24.0(C)
Limit: EN55032 RE-ClassB_30-1000MHz Humidity(%):52.2%

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	39.1615	39.44	-17.68	21.76	41.08	-19.32	QP
2	53.8817	38.94	-17.01	21.93	39.99	-18.06	QP
3 *	137.9028	43.64	-21.91	21.73	36.76	-15.03	QP
4	275.1570	42.32	-16.17	26.15	42.00	-15.85	QP
5	287.9904	40.27	-15.92	24.35	42.00	-17.65	QP
6	517.2479	36.85	-11.13	25.72	42.00	-16.28	QP

Model No.	XO-9771	Test Mode	TM1
Environmental Conditions	24.0℃, 52.2% RH	Detector Function	Quasi-peak
Pol	Horizontal	Distance	3m
Test Engineer	Scout Wu	Test Voltage	AC 230V/50Hz

Site: Antenna::Horizontal Temperature(C):24.0(C)
Limit: EN55032 RE-ClassB_30-1000MHz Humidity(%):52.2%


No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	43.6584	42.01	-16.71	25.30	40.71	-15.41	QP
2	88.6524	43.46	-20.27	23.19	38.28	-15.09	QP
3	96.7749	39.57	-18.88	20.69	37.98	-17.29	QP
4	250.3010	38.65	-16.69	21.96	42.00	-20.04	QP
5 *	269.4282	45.54	-16.26	29.28	42.00	-12.72	QP
6	517.2478	34.57	-11.13	23.44	42.00	-18.56	QP

Model No.	XO-9771	Test Mode	TM1
Environmental Conditions	24.0℃, 52.2% RH	Distance	3m
Test Engineer	Scout Wu		

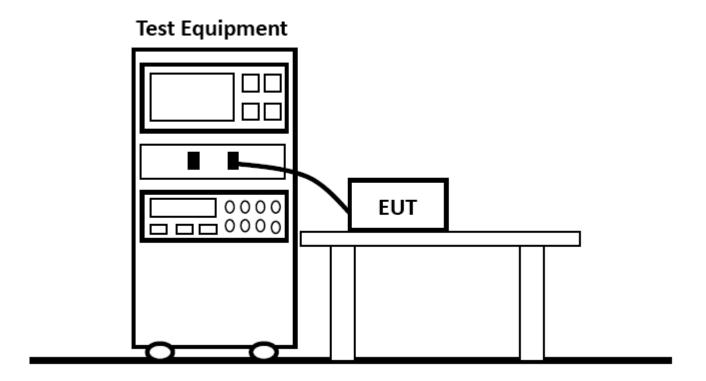
Frequency MHz		on Level V/m	Limits dBµV/m				Polarization
MITIZ	Peak	AV	Peak	AV	Peak	AV	
1366.59	49.85	31.64	70.00	50.00	-20.15	-18.36	Н
1825.53	60.21	34.75	70.00	50.00	-9.79	-15.25	Н
2754.99	56.79	30.00	70.00	50.00	-13.21	-20.00	Н
3790.03	55.61	38.87	74.00	54.00	-18.39	-15.13	Н
4053.70	59.08	36.84	74.00	54.00	-14.92	-17.16	Н
5549.09	55.99	34.88	74.00	54.00	-18.01	-19.12	Н
1015.33	54.16	40.87	70.00	50.00	-15.84	-9.13	V
1884.58	48.01	32.92	70.00	50.00	-21.99	-17.08	V
2346.62	47.60	37.30	70.00	50.00	-22.40	-12.70	V
3596.05	53.34	38.47	74.00	54.00	-20.66	-15.53	V
4110.42	48.05	36.20	74.00	54.00	-25.95	-17.80	V
5090.95	47.99	34.51	74.00	54.00	-26.01	-19.49	V

5. HARMONIC CURRENT EMISSIONS

5.1. Test Configuration

5.2. Test Standard

According to EN 301 489-1 V2.1.1(2017-02) & EN 61000-3-2: 2014


5.3. Test Data

N/A

Note:Because the power of EUT is less than 75W, according to standard EN 61000-3-2, harmonic current unnecessary to test.

6. VOLTAGE FLUCTUATION AND FLICKER

6.1. Test Configuration

6.2. Test Standard

According to EN 301489-1 V1.9.2 (2011-09) & EN 61000-3-3: 2013

6.3. Test Data

DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWN

7. GENERAL PERFORMANCE CRITERIA FOR IMMUNITY TEST

7.1. Performance criteria for Continuous phenomena applied to Transmitter (CT)

For equipment of type II or type III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence.

Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur.

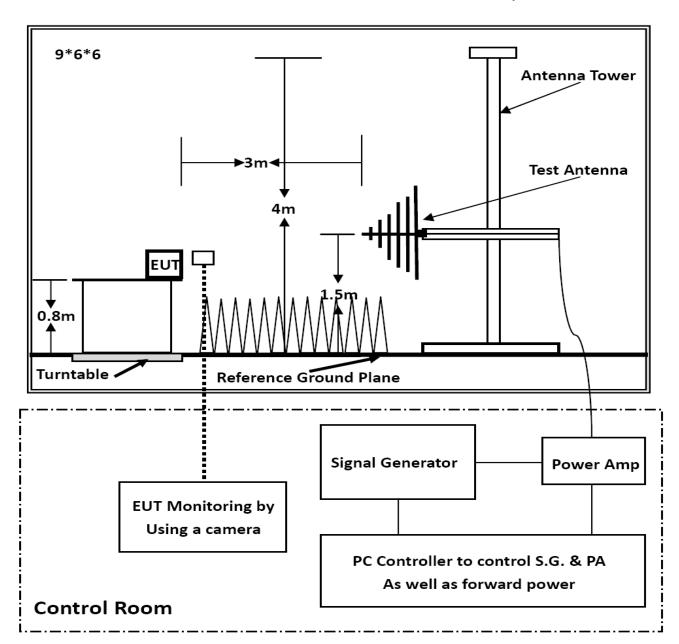
7.2. Performance criteria for Transient phenomena applied to Transmitter (TT)

For equipment of type II or type III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur.

7.3. Performance criteria for Continuous phenomena applied to Receiver (CR)

For equipment of type II or III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

7.4. Performance criteria for Transient phenomena applied to Receiver (TR)


For equipment of type II or type III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

Performance criteria for Final draft ETSI EN 301 489-3 V2.1.1 (2017-03)

Criterion	During test	After test
	Operate as intended	Operate as intended
Α	No loss of function	No loss of function
A	No unintentional responses	No degradation of performance
		No loss of stored data or user programmable functions
	May show loss of function	Operate as intended
В	No unintentional responses	Lost function(s) shall be self-recoverable
Ь		No degradation of performance
		No loss of stored data or user programmable functions

8. RF ELECTROMAGNETIC FIELD (80 MHZ-6000 MHZ)

8.1. Test Configuration

8.2. Test Standard

ETSI 301 489-1, EN 301 489-3 /(EN 61000-4-3: 2006+A2: 2010)

Test level 2 at 3V / m.

8.3. Severity Level

Level	Field Strength V/m
1.	1
2.	3
3.	10
X	Special

Performance criterion: A

8.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD camera is used to monitor EUT screen. All the scanning conditions are as follows:

Condition of Test		Remarks		
1.	Fielded Strength	3 V/m (Severity Level 2)		
2.	Radiated Signal	Unmodulated		
3.	Scanning Frequency	80 - 6000 MHz		
4.	Dwell time of radiated	0.0015 decade/s		
5.	Waiting Time	3 Sec.		

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

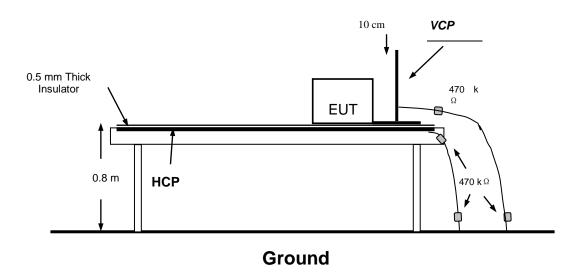
8.5. Test Result

RF ELECTROMAGNETIC FIELD					
Standard					
Applicant	Dongguan Xing Yue Electronic co., Ltd				
EUT	Ourdoor 10W Wireless Charging Solar Powerbank	Temperature	24.0℃		
M/N	XO-9771	Humidity	52.2%		
Test Mode	TM1-TM3	Criterion	В		
Test Engineer	Scout Wu				

TM1 Test Result:

EUT Working Mode	Antenna Polarity	Frequency (MHz)	Field Strength (V/m)	Observation	Position	Conclusion
Operating	Vertical	806000	3	CT,CR	Front, Right, Left, Back	Pass
Mode	Horizontal	806000	3	CT,CR	Front, Right, Left, Back	Pass

TM2-TM3Test Result:


EUT Working Mode	Antenna Polarity	Frequency (MHz)	Field Strength (V/m)	Observation	Position	Conclusion
ldle	Vertical	806000	3	See Note	Front, Right, Left, Back	Pass
lule	Horizontal	806000	3	See Note	Front, Right, Left, Back	Pass

^{***}Note: Unintentional transmission is not founded from the EUT.

9. ELECTROSTATIC DISCHARGE

Please refer to ETSI EN 301 489-1 and EN 61000-4-2.

9.1. Test Configuration

EN 61000-4-2 specifies that a tabletop EUT shall be placed on a non-conducting table which is 80 centimeters above a ground reference plane and that floor mounted equipment shall be placed on a insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement.

For tabletop equipment, a 1.5 by 1.0-meter metal sheet (HCP) is placed on the table and connected to the ground plane via a metal strap with two 470 k Ohms resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material. A Vertical Coupling Plane (VCP) grounded on the ground plane through the same configuration as in the HCP is used.

ETSI EN 301 489-1 V2.1.1 (2017-02)/ EN 61000-4-2: 2009 Test level 3 for Air Discharge at ±8 kV Test level 2 for Contact Discharge at ±4 kV

9.2.1. Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

9.2.2. Contact Discharge

All the procedure shall be same as Section 9.2.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

9.2.3. Indirect Discharge For Horizontal Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

9.2.4. Indirect Discharge For Vertical Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

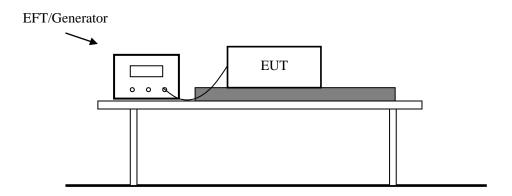
9.3. Test Data

PASS.

Electrostatic Discharge Test Results					
Standard	☐ IEC 61000-4-2 ☐ EN 61	000-4-2			
Applicant	Dongguan Xing Yue Electronic	co., Ltd			
EUT	Ourdoor 10W Wireless Charging Solar Powerbank Temperature 22.4°C				
M/N	XO-9771	Humidity	52.6%		
Criterion	B Pressure 1021mbar				
Test Mode	TM1-TM3 Test Engineer Scout Wu				

TEST RESULT OF TM1

Test Voltage	Coupling	Observation	Result (Pass/Fail)
±2KV, ±4kV	Contact Discharge	TT, TR	Pass
$\pm 2KV$, $\pm 4kV$, $\pm 8kV$	Air Discharge	TT, TR	Pass
±2KV, ±4kV	Indirect Discharge HCP	TT, TR	Pass
±2KV, ±4kV	Indirect Discharge VCP	TT, TR	Pass


TEST RESULT OF TM2-TM3

Test Voltage	Coupling	Result (Pass/Fail)
±2KV, ±4kV	Contact Discharge	Pass
±2KV, ±4kV, ±8kV	Air Discharge	Pass
±2KV, ±4kV	Indirect Discharge HCP	Pass
±2KV, ±4kV	Indirect Discharge VCP	Pass

Note: The EUT performance complied with performance criteria for CT&CR to MS Function and there is no any degradation of performance and function.

10. ELECTRICAL FAST TRANSIENT IMMUNITY

10.1. Test Configuration

10.2. Test Standard

EN 301 489-1 V2.1.1/ EN61000-4-4: 2012 Test level 2 at 1 kV

Test level

Open Circuit Output Test Voltage ±10%							
Level	On Power Supply Lines	On I/O (Input/Output) Signal data and					
		control lines					
1	0.5 kV	0.25 kV					
2	1 kV	0.5 kV					
3	2 kV	1 kV					
4	4 kV	2 kV					
X	Special	Special					

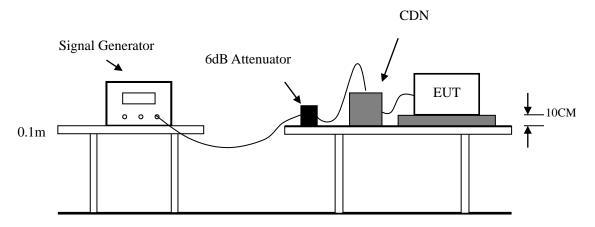
Performance criterion: B

10.3. Test Procedure

The EUT is put on the table, which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

10.4.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device, which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.


10.4.2. For signal lines and control lines ports: No I/O ports. It's unnecessary to test.

10.4.3.For DC output line ports: It's unnecessary to test.

10.4. Test Data

11. RF COMMON MODE

11.1. Test Configuration

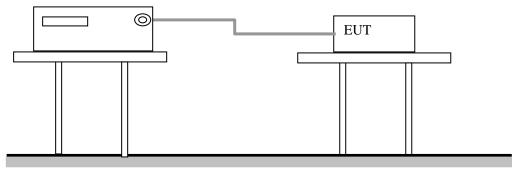
11.2. Test Standard

EN 301 489-1 V2.1.1/ EN 61000-4-6: 2014 Test level 2 at 3 V (r.m.s.), 0.15 MHz ~ 80 MHz,

Modulation type: AM Modulation depth: 80% Modulation signal: 1 kHz

Test level

Level	Voltage Level (r.m.s) (V)
1	1
2	3
3	10
X	Special


Performance criterion: A

- 11.3.1. Let the EUT work in test mode and test it.
- 11.3.2. The EUT are placed on an insulating support 0.1 m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3 m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 11.3.3. The disturbance signal described below is injected to EUT through CDN.
- 11.3.4. The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 11.3.5. The frequency range is swept from 150 kHz to 80 MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.
- 11.3.6. The rate of sweep shall not exceed 1.5*10-3 decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 11.3.7. Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

11.4. Test Data

12. SURGES, LINE TO LINE AND LINE TO GROUND

12.1. Test Configuration

Ground Plane

12.2. Test Standard

ETSI EN 301 489-1 V2.1.1 / EN 61000-4-5: 2014

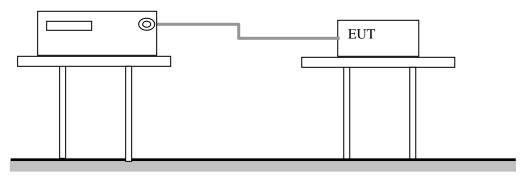
L-N: Test level 2 at 1 kV

L-PE, N-PE Test Level 3 at 2kV

Test Level

	Open Circuit Output Test Voltage ±10%							
Level	On Power Supply Lines	On I/O (Input/Output) Signal data and control lines						
1	0.5 kV	0.25 kV						
2	1 kV	0.5 kV						
3	2 kV	1 kV						
4	4 kV	2 kV						
X	Special	Special						

Performance criterion: B


12.3. Test Procedure

- 12.3.1. For line to line coupling mode, provide a $0.5~\rm{kV}$ 1.2/50us voltage surge (at open-circuit condition).
- 12.3.2. At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 12.3.3. Different phase angles are done individually.
- 12.3.4. Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

12.4. Test Data

13. VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST

13.1. Test Configuration

Ground Plane

13.2. Test Standard

ETSI EN 301 489-1 V2.1.1/ EN 61000-4-11: 2004 Test levels and Performance Criterion

Test Level

Voltage Reduction %UT	Voltage dips %UT	Duration (in period)
100	0	0.5
100	0	1
30	70	5
Voltage Reduction %UT	Voltage Interruptions %UT	Duration (in period)
100	0	250

Performance criterion: B&C

13.3. Test Procedure

- 13.3.1. The interruption is introduced at selected phase angles with specified duration.
- 13.3.2. Record any degradation of performance.

13.4. Test Data

14. LIST OF MEASURING EQUIPMENT

LINE CONDUCTED EMISSION

	Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
	1	EMI Test Software	AUDIX	E3	/	N/A	N/A
	2	EMI Test Receiver	R&S	ESPI	101840	2019-06-11	2020-06-10
Ī	3	Artificial Mains	R&S	ENV216	101288	2019-06-12	2020-06-11
	4	10dB Attenuator	SCHWARZBEC K	MTS-IMP-136	261115-001-0032	2019-06-11	2020-06-10

RADIATED DISTURBANCE

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	AUDIX	E3	/	N/A	N/A
2	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2019-06-12	2020-06-11
3	Positioning Controller	MF	MF-7082	/	2019-06-12	2020-06-11
4	By-log Antenna	SCHWARZBEC K	VULB9163	9163-470	2019-07-25	2020-07-24
5	Horn Antenna	SCHWARZBEC K	BBHA 9120D	9120D-1925	2019-07-01	2020-06-30
6	EMI Test Receiver	R&S	ESR 7	101181	2019-06-12	2020-06-11
7	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2019-11-14	2020-11-13
8	AMPLIFIER	QuieTek	QTK	CHM/0809065	2019-11-14	2020-11-13
9	RF Cable-R03m	Jye Bao	RG142	CB021	2019-06-12	2020-06-11
10	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2019-06-12	2020-06-11

VOLTAGE FLUCTUATION AND FLICKER/HARMONIC CURRENT EMISSIONS

	Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
Ī	1	Power Analyzer Test System	Voltech	PM6000	200006700523	2019-06-12	2020-06-11

RF ELECTROMAGNETIC FIELD

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	RS Test Software	Tonscend	/	/	N/A	N/A
2	ESG Vector Signal Generator	Agilent	E4438C	MY42081396	2019-11-14	2020-11-13
3	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2019-06-12	2020-06-11
4	RF POWER AMPLIFIER	OPHIR	5225R	1052	NCR	NCR
5	RF POWER AMPLIFIER	OPHIR	5273F	1019	NCR	NCR
6	Stacked Broadband Log Periodic Antenna	SCHWARZBEC K	STLP 9128	9128ES-145	NCR	NCR
7	Stacked Mikrowellen LogPer Antenna	SCHWARZBEC K	STLP 9149	9149-484	NCR	NCR
8	Electric field probe	Narda S.TS./PMM	EP601	611WX80208	2019-03-25	2020-03-24

ELECTROSTATIC DISCHARGE

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	ESD Simulator	SCHLODER	SESD 230	604035	2019-06-13	2020-06-12

ELECTRICAL FAST TRANSIENT IMMUNITY

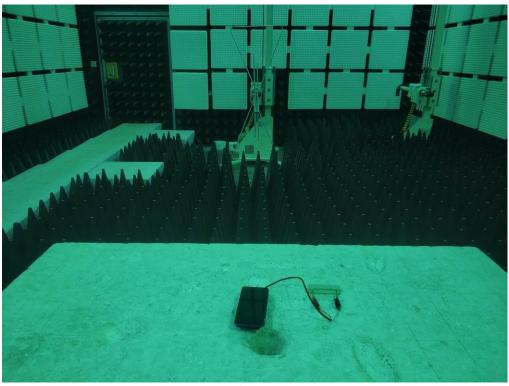
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Immunity Simulative Generator	EM TEST	UCS500 M4	0101-34	2019-06-11	2020-06-10

RF COMMON MODE

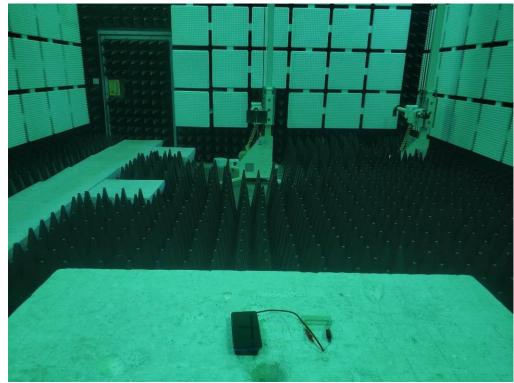
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Simulator	FRANKONIA	CIT-10/75	A126A1195	2019-06-11	2020-06-10
2	CDN	FRANKONIA	CDN-M2+M3	A2210177	2019-06-11	2020-06-10
3	6dB Attenuator	FRANKONIA	DAM25W	1172040	2019-06-11	2020-06-10

SURGES, LINE TO LINE AND LINE TO GROUND

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Immunity Simulative Generator	EM TEST	UCS500 M4	0101-34	2019-06-11	2020-06-10


VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2019-06-11	2020-06-10


 $Note: All\ equipment\ is\ calibrated\ through\ GUANGZHOU\ LISAI\ CALIBRATION\ AND\ TEST\ CO., LTD.$

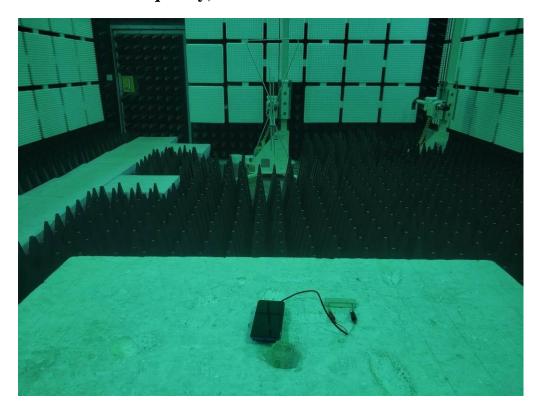
15.TEST SETUP PHOTOGRAPHS

15.1.Photo of Radiated Emissions Measurement

Below 1G

Above 1G

15.2.Photo of Power Line Conducted Emissions Measurement



15.3.Photo of Electrostatic Discharge Test

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

15.4.Photo of Radio-frequency, Continuous radiated disturbance

16. EUT EXTERIOR AND INTERIOR PHOTOGRAPHS

Fig. 1

Fig. 2

Fig. 4

Fig. 5

Fig. 7

Fig. 8

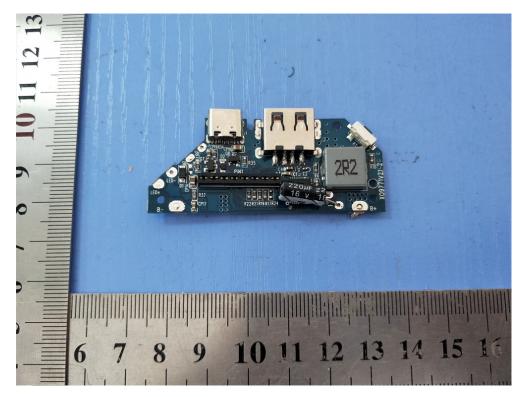


Fig. 9

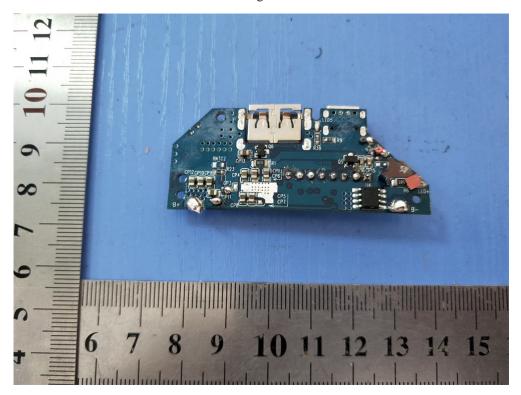


Fig. 10

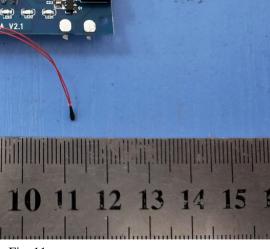


Fig. 11

Fig. 12

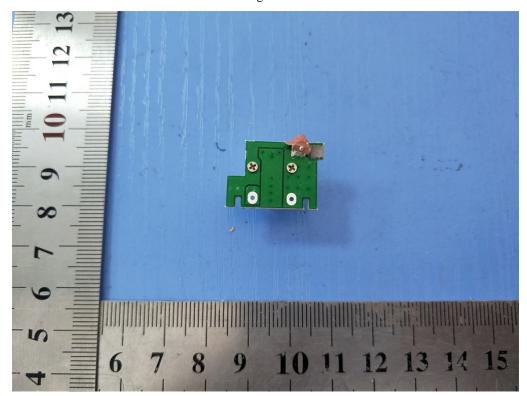


Fig. 14

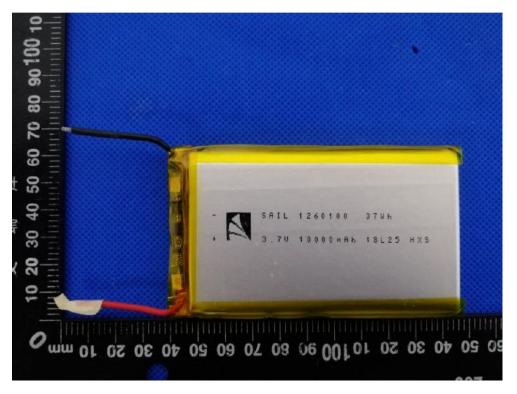


Fig. 15

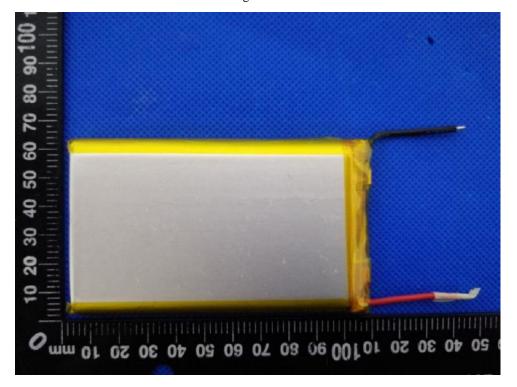


Fig. 16

-----THE END OF REPORT-----