THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

EMC TEST REPORT

For

Dongguan Xing Yue Electronic co., Ltd

Free Flow TWS earbuds in case

Test Model: XO-9852-1

Prepared for Address	:	
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	:	101, 201 Building A and 301 Building C, Juji Industrial
		Park, Yabianxueziwei, Shajing Street, Baoan District,
		Shenzhen, Guangdong, China
Tel	:	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	January 13, 2020
1 1		
Number of tested samples	:	1
Serial number	:	Prototype
Date of Test	:	January 13, 2020 ~ January 15, 2020
Date of Report	:	January 17, 2020

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 1 of 58 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

Report No.: LCS200102089AEA

	EMC TEST REPORT		
ElectroMagnetic Compatibility (EMC requirements; Harmonised Stands 2014/53/EU and the es	V3.1.1(2017-02)&EN 55032:2015& EN 55035: 2017 C) standard for radio equipment and services; Part 1: Common technical ard covering the essential requirements of article 3.1(b) of Directive sential requirements of article 6 of Directive 2014/30/EU		
Report Reference No :	LCS200102089AEA		
Date Of Issue :	January 17, 2020		
Testing Laboratory Name : Address :	Shenzhen LCS Compliance Testing Laboratory Ltd. 101, 201 Building A and 301 Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, Guangdong, China		
Testing Location/ Procedure :	Full application of Harmonised standards ■ Partial application of Harmonised standards □ Other standard testing method □		
Applicant's Name : Address :	Dongguan Xing Yue Electronic co., Ltd #98 LiWu Swan Industrial District, Qiao Tou Town, Dong Guan City, Guang Dong, China		
Test Specification Standard :	ETSI EN 301 489-1 V2.1.1 (2017-02) ETSI EN 301 489-17 V3.1.1(2017-02) EN 55032: 2015 EN 55035: 2017		
Test Report Form No: :	LCSEMC-1.0		
TRF Originator : Shenzhen LCS Compliance Testing Laboratory Ltd.			
Master TRF : Dated 2017-06			
This publication may be reproduce Shenzhen LCS Compliance Testing of the material Shenzhen LCS Co	ng Laboratory Ltd. All rights reserved. Ed in whole or in part for non-commercial purposes as long as the g Laboratory Ltd. is acknowledged as copyright owner and source ompliance Testing Laboratory Ltd. takes no responsibility for and ages resulting from the reader's interpretation of the reproduced ontext.		
Test Item Description:	Free Flow TWS earbuds in case		
Trade Mark			
Test Model			
Ratings			
Result	: Positive		
Compiled by:	Supervised by: Approved by:		
Ner a Dang	Jin Wang		
Vera Deng / File administrators	Jin Wang/ Technique principal Gavin Liang/ Manager		
This report shall not be reproduced except i	in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd Page 2 of 58		

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

Report No.: LCS200102089AEA

EMC -- TEST REPORT

Test Report No. : LCS200102089AEA

January 17, 2020 Date of issue

Test Model	: XO-9852-1
EUT	: Free Flow TWS earbuds in case
Applicant	
Address	:
Telephone Fax	
Manufacturer	:
Address	:
Telephone Fax	
Factory	:
Address	:
Telephone	:
Fax	:

Test Result	Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

Revision History

Revision	Issue Date	Revisions	Revised By
000	January 17, 2020	Initial Issue	Gavin Liang

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 4 of 58

TABLE OF CONTENT

Test Report Description	Page
TABLE OF CONTENT	5
1. GENERAL INFORMATION	7
1.1. Product Description for Equipment Under Test (EUT)1.2. Objective1.3. Related Submittal(s)/Grant(s)	7
 1.4. Test Methodology 1.5. Description of Test Facility 1.6. Support equipment List 	7 8
1.7. External I/O1.8. Measurement Uncertainty	8 8
 1.9. Description Of Test Modes 2. SUMMARY OF TEST RESULTS 	
2. SUMMART OF TEST RESULTS	
3.1. Conducted Emission Limit3.2. Test Configuration3.3. Test Data	10 10 11
4. RADIATED DISTURBANCE	
 4.1. Radiated Emission Limit	13 14
5. HARMONIC CURRENT EMISSIONS	
5.1. TEST CONFIGURATION	17 17
6. VOLTAGE FLUCTUATION AND FLICKER	
6.1. TEST CONFIGURATION 6.2. TEST STANDARD	18
7. GENERAL PERFORMANCE CRITERIA FOR IMMUNITY TEST	
 7.1. PERFORMANCE CRITERIA FOR CONTINUOUS PHENOMENA APPLIED TO TRANSMITTER (CT) 7.2. PERFORMANCE CRITERIA FOR TRANSIENT PHENOMENA APPLIED TO TRANSMITTER (TT) 7.3. PERFORMANCE CRITERIA FOR CONTINUOUS PHENOMENA APPLIED TO RECEIVER (CR) 7.4. PERFORMANCE CRITERIA FOR TRANSIENT PHENOMENA APPLIED TO RECEIVER (TR) 	19 19 19
8. RF ELECTROMAGNETIC FIELD (80 MHZ - 6000 MHZ)	
 8.1. TEST CONFIGURATION	22 22
8.4. TEST PROCEDURE 8.5. TEST RESULT	23
9. ELECTROSTATIC DISCHARGE	
9.1. TEST CONFIGURATION 9.2. TEST PROCEDURE 9.3. TEST DATA	24
10. ELECTRICAL FAST TRANSIENT IMMUNITY	27
10.1. TEST CONFIGURATION	
10.2. TEST STANDARD 10.3. TEST PROCEDURE 10.4. TEST DATA	27 27

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 5 of 58

11. RF COMMON MODE	
11.1. TEST CONFIGURATION	
11.2. TEST STANDARD	
11.3. TEST PROCEDURE	
11.4. TEST DATA	
12. SURGES, LINE TO LINE AND LINE TO GROUND	
12.1. TEST CONFIGURATION	32
12.2. TEST STANDARD	
12.3. TEST PROCEDURE	
12.4. TEST DATA	33
13. VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST	
13.1. TEST CONFIGURATION	34
13.2. TEST STANDARD	34
13.3. TEST PROCEDURE	
13.4. TEST DATA	35
14. LIST OF MEASURING EQUIPMENT	
15. TEST SETUP PHOTOGRAPHS	
15.1. Photo of Radiated Emissions Measurement	
15.2. Photo of Power Line Conducted Emissions Measurement	
15.3. Photo of Harmonic & Flicker Measurement	
15.4. Photo of Electrostatic Discharge Test	40
15.5. Photo of Radio-frequency, Continuous radiated disturbance	40
15.6. Photo of Electrical Fast Transient/Burst& Surge Immunity Test	
15.7. Photo of Injected Currents Susceptibility Test.	
15.8 Photo of Voltage Dips and Short Interruptions Immunity Test	42
16. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	43

1. GENERAL INFORMATION

1.1. Product Description for Equipment Under Test (EUT)

EUT	:	Free Flow TWS earbuds in case
Test Model	:	
Power Supply	:	Input: 5V Headset: DC 3.7V by Li-ion Battery(35mAh) Charging case: DC 3.7V by Li-ion Battery(500mAh)
Hardware Version	:	V11
Software Version	:	V10
Bluetooth		
Frequency Range	:	2.402-2.480GHz
Channel Number	:	79 channels for Bluetooth V5.0(BDR/EDR)
Channel Spacing	:	1/2/3MHz for Bluetooth V5.0(BDR/EDR)
Modulation Type	:	GFSK, π /4-DQPSK for Bluetooth V5.0(BDR/EDR)
Bluetooth Version	:	V5.0
Antenna Description	:	Internal Antenna, -0.58 dBi (Max.)

1.2. Objective

ETSI EN 301 489-1	ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU and the essential requirements of article 6 of Directive 2014/30/EU
ETSI EN 301 489-17	ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 17: Specific conditions for Broadband Data Transmission Systems; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU
EN 55032	Electromagnetic compatibility of multimedia equipment — Emission Requirements
EN 55035	Electromagnetic compatibility of multimedia equipment – Immunity requirements

The objective is to determine compliance with ETSI EN 301 489-1 V2.1.1 (2017-02), ETSI EN 301 489-17 V3.1.1(2017-02).EN 55032:2015 and EN 55035: 2017.

1.3. Related Submittal(s)/Grant(s)

No Related Submittals.

1.4. Test Methodology

All measurements contained in this report were conducted with ETSI EN 301 489-1 V2.1.1 (2017-02), ETSI EN 301 489-17 V3.1.1(2017-02).EN 55032:2015 and EN 55035: 2017.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 7 of 58

1.5. Description of Test Facility

FCC Registration Number is 254912.
Industry Canada Registration Number is 9642A-1.
EMSD Registration Number is ARCB0108.
UL Registration Number is 100571-492.
TUV SUD Registration Number is SCN1081.
TUV RH Registration Number is UA 50296516-001.
NVLAP Accreditation Code is 600167-0.
FCC Designation Number is CN5024.
CAB identifier: CN0071.

1.6. Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
	Charger			CE

Note: Auxiliary equipment is provided by the laboratory

1.7. External I/O

I/O Port Description	Quantity	Cable
DC in Port	1	N/A

1.8. Measurement Uncertainty

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m chamber	3.54dB	Polarize: V
(30MHz to 1GHz)	5.0dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	2.08dB	Polarize: H
(1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	0.01ppm	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2°C	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

1.9. Description Of Test Modes

There was 3 test Modes. TM1 to TM3 were shown below:

TM1: Operate in BT mode. TM2: Charging mode. TM3: Idle mode. ***Note: All test modes were tested, but we only recorded the worst case in this report.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 8 of 58

2. SUMMARY OF TEST RESULTS

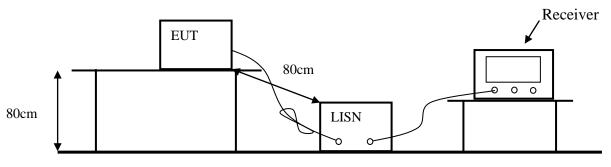
Rule	Description of Test Items	Result
§7.1	Reference to clauses EN 301 489-1 §8.4 AC mains power input/output ports	Compliant
§7.1	Reference to clauses EN 301 489-1 §8.3 DC power input/output ports	N/A
§7.1	Reference to clauses EN 301 489-1 §8.2 Enclosure of ancillary equipment measured on a stand alone basis	Compliant
§7.1	Reference to clauses EN 301 489-1 §8.5 Harmonic current emissions (AC mains input port)	N/A
§7.1	Reference to clauses EN 301 489-1 §8.6 Voltage fluctuations and flicker (AC mains input port)	Compliant
§7.1	Reference to clauses EN 301 489-1 §8.7 Telecommunication ports	N/A
§7.2	Reference to clauses EN 301 489-1 §9.3 Electrostatic discharge (EN 61000-4-2)	Compliant
§7.2	Reference to clauses EN 301 489-1 §9.2 Radio frequency electromagnetic field (80 MHz to 6 000 MHz)(EN 61000-4-3)	Compliant
§7.2	Reference to clauses EN 301 489-1 §9.4 Fast transients, common mode (EN 61000-4-4)	Compliant
§7.2	Reference to clauses EN 301 489-1 §9.8 Surges (EN 61000-4-5)	Compliant
§7.2	Reference to clauses EN 301 489-1 §9.5 Radio frequency, common mode (EN 61000-4-6)	Compliant
§7.2	Reference to clauses EN 301 489-1 §9.6 Transients and surges in the vehicular environment (ISO 7637-2)	N/A
§7.2	Reference to clauses EN 301 489-1 §9.7 Voltage dips and interruptions (EN 61000-4-11)	Compliant

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 9 of 58

3. LINE CONDUCTED EMISSION

3.1. Conducted Emission Limit

ETSI EN 301 489-1 V2.1.1 (2017-02)/EN 55032


Limits for Line Conducted Emission

Limit (dBµV)				
Quasi-peak Level	Average Level			
66.0 ~ 56.0 *	56.0 ~ 46.0 *			
56.0	46.0			
60.0	50.0			
	Quasi-peak Level 66.0 ~ 56.0 * 56.0			

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.2. Test Configuration

Ground

The setup of EUT is according with per ETSI EN 301 489-1 measurement procedure. The specification used was with the ETSI EN 301 489-1 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

The EUT received DC 5V charging power from the notebook which received power through a LISN supplying power of AC 230V/50Hz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	30MHz~1000MHz
(IF)RB	9kH

All data was recorded in the Quasi-peak and average detection mode. Marked on both the 6 highest Quasi-Peak & 6 highest Average emissions points of the EUT.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 10 of 58

3.3. Test Data

. 1 •+ +c ic TM1 4 +1 1 f_11 ~4 1

Fo	r pre-scan, the	worst test ca	se is 11011, a	iu ine iest ui		as follow:	
Model No.		XO	-9852-1	Test	Mode	TM1	
Environme	ental Condition	ns 22.5	5℃, 54.3% R	H Test	Engineer	Scout Wu	
Pol		Lin	e	Test	Voltage	AC 230V/	50Hz
80.0 dBuV 70 60 50 40 20	manum m	moneyword	A MA MARKAMAN A				ass B Conduction(QP) ass B Conduction(QG)
10							V WWW hu
0.0	Frequency	Peading	Correct	(MHz)	Limit	Margin	10 1000 30.000
0.0	Frequency (MHz)	Reading (dBuV)	Correct (dB)	Result	Limit (dBuV)	Margin (dB)	
0.0 0.150	Frequency (MHz) 0.9330	Reading (dBuV) 23.92	Correct (dB) 19.29		Limit (dBuV) 56.00	Margin (dB) -12.79	30.000
0.0 0.150 No.	(MHz)	(dBuV)	(dB)	Result (dBuV)	(dBuV)	(dB)	30.000 Remark
0.0 0.150 No.	(MHz) 0.9330	(dBuV) 23.92	(dB) 19.29	Result (dBuV) 43.21	(dBuV) 56.00	(dB) -12.79	30.000 Remark QP
0.0 0.150 No. 1 2	(MHz) 0.9330 0.9330	(dBuV) 23.92 13.38	(dB) 19.29 19.29	Result (dBuV) 43.21 32.67	(dBuV) 56.00 46.00	(dB) -12.79 -13.33	30.000 Remark QP AVG
0.0 0.150 No. 1 2 3	(MHz) 0.9330 0.9330 2.8860	(dBuV) 23.92 13.38 13.69	(dB) 19.29 19.29 19.47	Result (dBuV) 43.21 32.67 33.16	(dBuV) 56.00 46.00 56.00	(dB) -12.79 -13.33 -22.84	30.000 Remark QP AVG QP
0.0 0.150 No. 1 2 3 4	(MHz) 0.9330 0.9330 2.8860 2.8860	(dBuV) 23.92 13.38 13.69 3.74	(dB) 19.29 19.29 19.47 19.47	Result (dBuV) 43.21 32.67 33.16 23.21	(dBuV) 56.00 46.00 56.00 46.00	(dB) -12.79 -13.33 -22.84 -22.79	30.000 Remark QP AVG QP AVG
0.0 0.150 No. 1 2 3 4 5	(MHz) 0.9330 0.9330 2.8860 2.8860 4.8300 4.8300 6.4860	(dBuV) 23.92 13.38 13.69 3.74 13.02 -0.47 12.81	(dB) 19.29 19.29 19.47 19.47 19.49	Result (dBuV) 43.21 32.67 33.16 23.21 32.51 19.02 32.37	(dBuV) 56.00 46.00 56.00 46.00 56.00	(dB) -12.79 -13.33 -22.84 -22.79 -23.49 -26.98 -27.63	30.000 Remark QP AVG QP AVG QP AVG
0.0 0.150 No. 1 2 3 4 5 6 7 8	(MHz) 0.9330 0.9330 2.8860 2.8860 4.8300 4.8300 6.4860 6.4860	(dBuV) 23.92 13.38 13.69 3.74 13.02 -0.47 12.81 0.83	(dB) 19.29 19.29 19.47 19.47 19.47 19.49 19.49 19.56 19.56	Result (dBuV) 43.21 32.67 33.16 23.21 32.51 19.02 32.37 20.39	(dBuV) 56.00 46.00 56.00 46.00 56.00 46.00 60.00 50.00	(dB) -12.79 -13.33 -22.84 -22.79 -23.49 -26.98 -27.63 -29.61	30.000 Remark QP AVG QP AVG QP AVG QP AVG
0.0 0.150 No. 1 2 3 4 5 6 7 8 9	(MHz) 0.9330 0.9330 2.8860 2.8860 4.8300 4.8300 6.4860 6.4860 10.7430	(dBuV) 23.92 13.38 13.69 3.74 13.02 -0.47 12.81 0.83 15.78	(dB) 19.29 19.29 19.47 19.47 19.49 19.49 19.56 19.56 19.76	Result (dBuV) 43.21 32.67 33.16 23.21 32.51 19.02 32.37 20.39 35.54	(dBuV) 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 60.00 50.00 60.00 60.00	(dB) -12.79 -13.33 -22.84 -22.79 -23.49 -26.98 -27.63 -29.61 -24.46	30.000 Remark QP AVG QP AVG QP AVG QP AVG QP AVG QP
0.0 0.150 No. 1 2 3 4 5 6 7 8 9 10	(MHz) 0.9330 0.9330 2.8860 2.8860 4.8300 4.8300 6.4860 6.4860 10.7430	(dBuV) 23.92 13.38 13.69 3.74 13.02 -0.47 12.81 0.83 15.78 2.53	(dB) 19.29 19.29 19.47 19.47 19.47 19.49 19.56 19.56 19.56 19.76	Result (dBuV) 43.21 32.67 33.16 23.21 32.51 19.02 32.37 20.39 35.54 22.29	(dBuV) 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 60.00 50.00 60.00 50.00	(dB) -12.79 -13.33 -22.84 -22.79 -23.49 -26.98 -27.63 -29.61 -24.46 -27.71	30.000 Remark QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG AVG QP AVG QP AVG
0.0 0.150 No. 1 2 3 4 5 6 7 8 9	(MHz) 0.9330 0.9330 2.8860 2.8860 4.8300 4.8300 6.4860 6.4860 10.7430	(dBuV) 23.92 13.38 13.69 3.74 13.02 -0.47 12.81 0.83 15.78	(dB) 19.29 19.29 19.47 19.47 19.49 19.49 19.56 19.56 19.76	Result (dBuV) 43.21 32.67 33.16 23.21 32.51 19.02 32.37 20.39 35.54	(dBuV) 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 60.00 50.00 60.00 60.00	(dB) -12.79 -13.33 -22.84 -22.79 -23.49 -26.98 -27.63 -29.61 -24.46	30.000 Remark QP AVG

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 11 of 58

Report No.: LCS200102089AEA

Model No.			-9852-1	Te	st Mode	TM1	
Environme	ental Condition	ns 22.5	22.5℃, 54.3% RH		st Engineer	Scout Wu	
Pol		Neu	Neutral		st Voltage	AC 230V/50Hz	
80.0 dBuV 70 60 50 40 20	Mar and a	Mar	A Marana		WARM WAR		ass B Conduction(QP) ss B Conduction(NG) MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
0.0							- AVE
0.150 No.	Frequency	Reading	Correct	(MHz) Result	Limit	Margin	30.00
0.150 No.	Frequency (MHz)	Reading (dBuV)	Correct (dB)	Result	Limit (dBuV)	Margin (dB)	30.00 Remark
				1	Limit (dBuV) 56.00		1
No.	(MHz)	(dBuV)	(dB)	Result (dBuV)	(dBuV)	(dB)	Remark
No.	(MHz) 0.6630	(dBuV) 21.04	(dB) 19.25	Result (dBuV) 40.29	(dBuV) 56.00	(dB) -15.71	Remark QP
No.	(MHz) 0.6630 0.6630	(dBuV) 21.04 6.52	(dB) 19.25 19.25	Result (dBuV) 40.29 25.77	(dBuV) 56.00 46.00	(dB) -15.71 -20.23	Remark QP AVG
No.	(MHz) 0.6630 0.6630 0.9420	(dBuV) 21.04 6.52 24.55	(dB) 19.25 19.25 19.29	Result (dBuV) 40.29 25.77 43.84	(dBuV) 56.00 46.00 56.00	(dB) -15.71 -20.23 -12.16	Remark QP AVG QP
No.	(MHz) 0.6630 0.6630 0.9420 0.9420	(dBuV) 21.04 6.52 24.55 10.07	(dB) 19.25 19.25 19.29 19.29	Result (dBuV) 40.29 25.77 43.84 29.36	(dBuV) 56.00 46.00 56.00 46.00	(dB) -15.71 -20.23 -12.16 -16.64	Remark QP AVG QP AVG
No.	(MHz) 0.6630 0.6630 0.9420 0.9420 1.8240	(dBuV) 21.04 6.52 24.55 10.07 12.93	(dB) 19.25 19.25 19.29 19.29 19.39	Result (dBuV) 40.29 25.77 43.84 29.36 32.32	(dBuV) 56.00 46.00 56.00 46.00 56.00 46.00 56.00	(dB) -15.71 -20.23 -12.16 -16.64 -23.68	Remark QP AVG QP AVG QP
No. 1 2 3 4 5 6	(MHz) 0.6630 0.6630 0.9420 0.9420 1.8240 1.8240 2.9400 2.9400	(dBuV) 21.04 6.52 24.55 10.07 12.93 -1.48	(dB) 19.25 19.25 19.29 19.29 19.39 19.39 19.47 19.47	Result (dBuV) 40.29 25.77 43.84 29.36 32.32 17.91	(dBuV) 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	(dB) -15.71 -20.23 -12.16 -16.64 -23.68 -28.09 -22.30 -24.18	Remark QP AVG
No. 1 2 3 4 5 6 7	(MHz) 0.6630 0.6630 0.9420 0.9420 1.8240 2.9400	(dBuV) 21.04 6.52 24.55 10.07 12.93 -1.48 14.23	(dB) 19.25 19.25 19.29 19.29 19.39 19.39 19.47	Result (dBuV) 40.29 25.77 43.84 29.36 32.32 17.91 33.70	(dBuV) 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 56.00	(dB) -15.71 -20.23 -12.16 -16.64 -23.68 -28.09 -22.30	Remark QP AVG QP AVG QP AVG QP AVG QP AVG QP
No. 1 2 3 4 5 6 7 8	(MHz) 0.6630 0.6630 0.9420 0.9420 1.8240 1.8240 2.9400 2.9400	(dBuV) 21.04 6.52 24.55 10.07 12.93 -1.48 14.23 2.35	(dB) 19.25 19.25 19.29 19.29 19.39 19.39 19.47 19.47	Result (dBuV) 40.29 25.77 43.84 29.36 32.32 17.91 33.70 21.82	(dBuV) 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00	(dB) -15.71 -20.23 -12.16 -16.64 -23.68 -28.09 -22.30 -24.18	Remark QP AVG QP
No. 1 2 3 4 5 6 7 8 9	(MHz) 0.6630 0.6630 0.9420 0.9420 1.8240 2.9400 2.9400 6.6075	(dBuV) 21.04 6.52 24.55 10.07 12.93 -1.48 14.23 2.35 14.61	(dB) 19.25 19.25 19.29 19.29 19.39 19.39 19.47 19.47 19.56	Result (dBuV) 40.29 25.77 43.84 29.36 32.32 17.91 33.70 21.82 34.17	(dBuV) 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 56.00	(dB) -15.71 -20.23 -12.16 -16.64 -23.68 -28.09 -22.30 -24.18 -25.83	Remark QP AVG QP AVG QP

Note: For conducted emission and radiated emission test, a power supply of 230VAC and 120VAC was used for testing respectively, and only recorded the worst case of 230VAC.

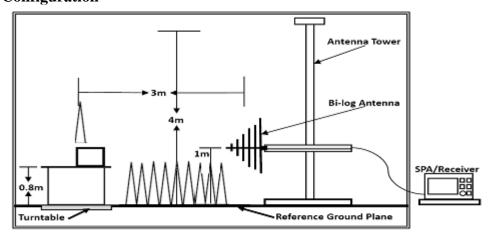
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 12 of 58

4. RADIATED DISTURBANCE

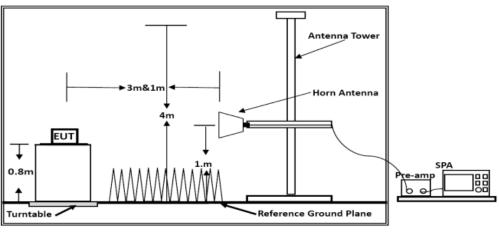
4.1. Radiated Emission Limit

ETSI EN 301 489-1 V2.1.1 (2017-02)/EN 55032 Class B

Limits for radiated disturbance Blow 1GHz


FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT
(MHz)	(Meters)	$(dB\mu V/m)$
30 ~ 230	3	42-35
230 ~ 1000	3	42

Note: (1) The smaller limit shall apply at the combination point between two frequency bands. (2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.


Limits for radiated disturbance Above 1GHz

FREQUENCY (MHz)	DISTANCE (Meters)	Average Limit (dBµV/m)	Peak Limit (dBµV/m)
1000-3000	3	50	70
3000-6000	3	54	74
Note: The lower limit ap	plies at the transition freque	ncy.	

4.2. Test Configuration

Below 1GHz

Above 1GHz Above 1000MHz

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 13 of 58

4.3. Test Procedure

Please refer to ETSI EN 301 489-1 Clause 8.2.3 and EN 55032 Annex A.2 for the measurement methods.

4.4. Test Data

The worst test mode of the EUT was TM1, and its test data was showed as the follow:

odel No.	XO-9852-1	Test Mode	TM1			
vironmental Conditions	23.8℃, 52.9% RH	Detector Function	Quasi-peak			
l	Vertical	Distance	3m			
st Engineer	Scout Wu					
10.0 dBuV/m						
			N55032 RE-ClassB_30-1000MHz			
		6				
		, March	man marketer a hur make market			
1 3	3 , , , ,	Madan managed on man man of man				
Mun maker and man and and and and and and and and and a	we doe have been and the top the prover the prove	High you do have a share we have				
0						
30.000 60	100 (MHz)	50	0 10			

No.	Frequency	Reading	Factor	Level	Limit	Margin	Det.
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	43.9658	29.93	-15.89	14.04	40.69	-26.65	QP
2	49.7068	26.51	-15.66	10.85	40.26	-29.41	QP
3	65.3432	26.76	-18.54	8.22	39.32	-31.10	QP
4	137.9028	32.21	-21.11	11.10	36.76	-25.66	QP
5	220.6171	29.22	-16.76	12.46	35.14	-22.68	QP
6 *	468.8762	33.76	-10.78	22.98	42.00	-19.02	QP

Iodel I	No.	XO-9	9852-1	Tes	t Mode	TM1		
nviror	nmental Conditio	ns 23.8°	°C, 52.9% RH	Det	tector Function	nction Quasi-peak 3m		
ol			zontal	Dis	tance			
	gineer	Scou	t Wu					
80.0 dBu'	V/m							
70								
60								
50				3				
						EN55032 RE-Class8_30-10	OOMHz	
40						Marg	an -6 dE	
30								
20				5		5 mp man mp how man	mandingund	
10	An alter	3		And Amperanting	munan	Marin hour and	and have a second	
10	man the the market	un yana	warehowendowen	white the second second	mindeline	S when we have the second	when had being with	
10 Minutes	num haite have	un and a	ummetrumentalanters	with the second second	and and a second and a second	B Marine Marine and Constants	and and had her granted	
10 -10	num hat have	un and and and and and and and and and an	umana and an and a second s	und in the second	or which a second second	B Marine and Marine and Ma		
10 Minutes	nudar a the state of the state		umanudan madalambata 10	(MHz)		500	100	
10 ////////////////////////////////////							1000 Det.	
10 0 -10 -20 30.000	60	10	00	(MHz)		500	1	
10 0 -10 -20 30.000	Frequency	Reading	•• Factor	(MHz)	Limit	500 Margin	1	
10	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	(MHz) Level (dBuV/m)	Limit (dBuV/m)	500 Margin (dB)	Det.	
10 0 -10 -20 30.000 No.	Frequency (MHz) 42.8998	Reading (dBuV) 28.72	Factor (dB/m) -16.09	(мнг) Level (dBuV/m) 12.63	Limit (dBuV/m) 40.77	Margin (dB) -28.14	Det. QP	

QP

QP

-23.60

-22.52

42.00

42.00

34.31

29.25

-15.91

-9.77

18.40

19.48

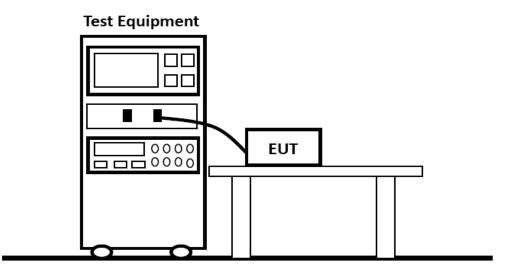
250.3012

515.4374

5

6

Report No.: LCS200102089AEA


Test Mode: TM1(above 1GHz)	Tested by: Scout Wu
Test voltage: DC 3.7V	Test Distance: 3m
Detector Function: Peak+AV	Test Results: Passed

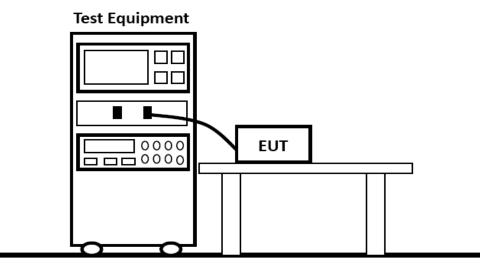
Frequency MHz	Emission Level dBµV/m			Limits dBµV/m		rgin V/m	Polarization
IVITIZ	Peak	AV	Peak	AV	Peak	AV	
1133.28	50.83	37.36	70.00	50.00	-19.17	-12.64	Н
1860.74	46.48	33.92	70.00	50.00	-23.52	-16.08	Н
2081.03	47.77	32.06	70.00	50.00	-22.23	-17.94	Н
3589.87	56.13	32.30	74.00	54.00	-17.87	-21.70	Н
4136.49	46.17	34.88	74.00	54.00	-27.83	-19.12	Н
5572.29	50.63	40.94	74.00	54.00	-23.37	-13.06	Н
1282.62	58.27	40.46	70.00	50.00	-11.73	-9.54	V
1716.90	51.81	30.91	70.00	50.00	-18.19	-19.09	V
2952.32	46.34	30.85	70.00	50.00	-23.66	-19.15	V
3468.49	49.48	34.32	74.00	54.00	-24.52	-19.68	V
4685.39	46.27	40.21	74.00	54.00	-27.73	-13.79	V
5386.02	57.44	40.16	74.00	54.00	-16.56	-13.84	V

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 16 of 58

5. HARMONIC CURRENT EMISSIONS

5.1. Test Configuration

5.2. Test Standard


According to ETSI EN 301 489-1 V2.1.1 (2017-02) & EN 61000-3-2: 2014

5.3. Test Data

Because the power of EUT is less than 75W, according to standard EN 61000-3-2, harmonic current unnecessary to test.

6. VOLTAGE FLUCTUATION AND FLICKER

6.1. Test Configuration

6.2. Test Standard

According to ETSI EN 301 489-1 V2.1.1 (2017-02) & EN 61000-3-3: 2013

6.3. Test Data

Test Model	Free Flow TWS	earbuds in case 7	Test Engineer	Scout Wu		
Type of Test:	Flickermeter Test - Table (EN61000-3-3:2013)					
Power Analyzer:	Voltech PM6000 SN:	200006700523 Firm	ware Version: v1.21.0	7RC2		
	Channel(s):					
	1. SN: 090015502053, 28 Adjust	ted Date: 22 JUN 2011. 2. SN	:None Adjusted Date:None			
	3. SN:None Adjusted Date:Non	e 4. SN:None Adjusted Date	e:None			
	5. SN:None Adjusted Date:Non	e 6. SN:None Adjusted Date	e:None			
	Shunt(s):					
	1. SN: 091024301916, 4 Adjuste	d Date: 23 JUN 2011. 2. SN:N	None Adjusted Date:None			
	3. SN:None Adjusted Date:Non	e 4. SN:None Adjusted Date	None			
	5. SN:None Adjusted Date:Non	e 6. SN:None Adjusted Date	None			
AC Source:	Mains / Manual Source					
Overall Result:	Notes:					
	Measurement method -	- Voltage				
PASS						
 [Pst	dc (%)	dmax (%)	Tmax(> 3.3%)(ms)		
Limit	1.000	3.300	4.000	500		
Reading 1	0.091	0.005	0.262	0		
Reduing I	0.091	0.005	0.202	0		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 18 of 58 HIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER

7. GENERAL PERFORMANCE CRITERIA FOR IMMUNITY TEST

7.1. Performance criteria for Continuous phenomena applied to Transmitter (CT)

For equipment of type II or type III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence.

Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur.

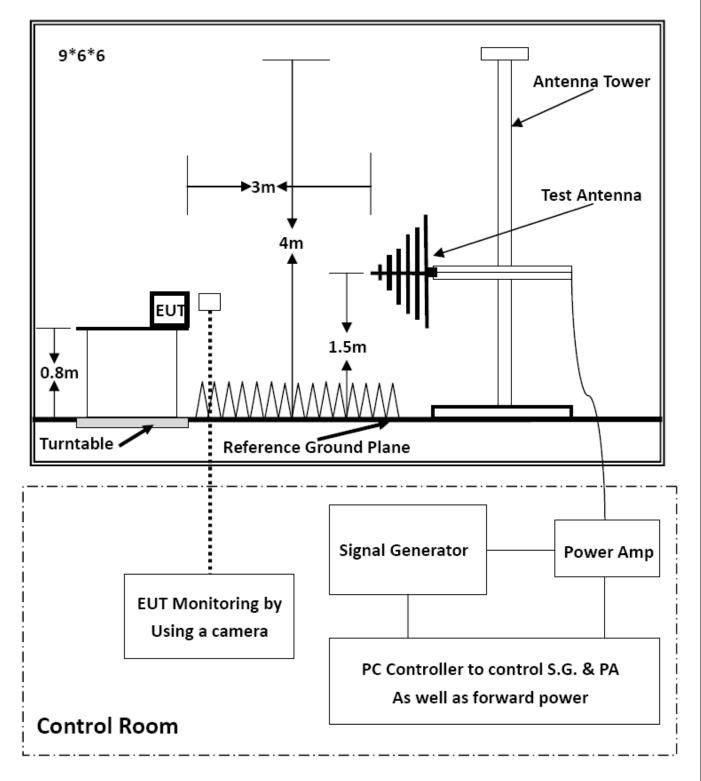
7.2. Performance criteria for Transient phenomena applied to Transmitter (TT)

For equipment of type II or type III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur.

7.3. Performance criteria for Continuous phenomena applied to Receiver (CR)

For equipment of type II or III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

7.4. Performance criteria for Transient phenomena applied to Receiver (TR)


For equipment of type II or type III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

Criteria	During test	After test			
A	Shall operate as intended. (see note 1). Shall be no loss of function. Shall be no unintentional transmissions.	Shall operate as intended. Shall be no degradation of performance (see note 3). Shall be no loss of function. Shall be no loss of stored data or user programmable functions.			
В	May show loss of function (one or more). May show degradation of performance (see note 2). Shall be no unintentional transmissions.	Functions shall be self-recoverable. Shall operate as intended after recovering. Shall be no degradation of performance (see note 3). Shall be no loss of stored data or user programmable functions.			
С	May be loss of function (one or more).	Functions shall be recoverable by the operator. Shall operate as intended after recovering. Shall be no degradation of performance (see note 3).			
 level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended. NOTE 2: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended. NOTE 3: No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified by the manufacturer for the use of the apparatus as intended. NOTE 3: No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified by the manufacturer for the use of the apparatus as intended. In some cases the specified by the manufacturer for the use of the apparatus as intended. In some cases the specified by the manufacturer for the use of the apparatus as intended. In some cases the specified by the manufacturer for the use of the apparatus as intended. In some cases the specified by the manufa					

Performance criteria for ETSI EN 301 489-17 V3.1.1(2017-02)

8. RF ELECTROMAGNETIC FIELD (80 MHz - 6000 MHz)

8.1. Test Configuration

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 21 of 58

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 22 of 58

8.2. Test Standard

ETSI EN 301 489-1, ETSI EN 301 489-17 / (EN 61000-4-3: 2006+A2: 2010)

Test level 2 at 3V/m.

8.3. Severity Level

Level	Field Strength (V/m)
1	1
2	3
3	10
Х	Special
Performance Criterion: A	A

8.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD camera is used to monitor EUT screen. All the scanning conditions are as follows:

Condition of Test	Remark
Fielded Strength	3 V/m (Severity Level 2)
Radiated Signal	Unmodulated
Scanning Frequency	80-6000MHz
Dwell time of radiated	0.0015 decade/s
Waiting Time	3 Sec.

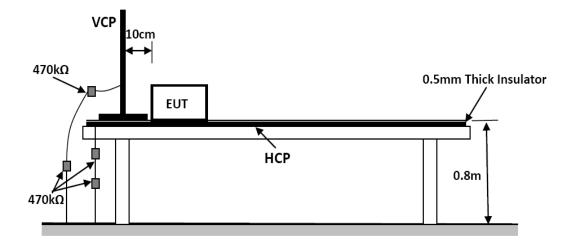
8.5. Test Result

RF ELECTROMAGNETIC FIELD

Standard	□ IEC 61000-4-3 ☑ EN 61000-4-3				
Applicant	Dongguan Xing Yue Electronic co., Ltd				
EUT	Free Flow TWS earbuds in case Temperature 23.8°C				
M/N	XO-9852-1	Humidity	52.9%		
Test Mode	TM1-TM3 Criterion B				
Test Engineer	Scout Wu				

BULETOOTHTest Result:

EUT Working Mode	Antenna Polarity	Frequency (MHz)	Fielded Strength (V/m)	Observation	Position	Conclusion
Operating Mode	Vertical	80-6000	3	CT, CR	Front, Right, Left, Back	Pass
Operating Mode	Horizontal	80-6000	3	CT, CR	Front, Right, Left, Back	Pass
Idle	Vertical	80-6000	3	See Note	Front, Right, Left, Back	Pass
luie	Horizontal	80-6000	3	See Note	Front, Right, Left, Back	Pass


TM2-TM3 Test Result:

EUT Working Mode	Antenna Polarity	Frequency (MHz)	Fielded Strength (V/m)	Observation	Position	Conclusion
Operating Mode	Vertical	80-6000	3	See Note	Front, Right, Left, Back	Pass
Operating mode	Horizontal	80-6000	3	See Note	Front, Right, Left, Back	Pass
Idle	Vertical	80-6000	3	See Note	Front, Right, Left, Back	Pass
	Horizontal	80-6000	3	See Note	Front, Right, Left, Back	Pass

9. ELECTROSTATIC DISCHARGE

Please refer to ETSI EN 301 489-1 and EN 61000-4-2.

9.1. Test Configuration

EN 61000-4-2 specifies that a tabletop EUT shall be placed on a non-conducting table which is 80 centimeters above a ground reference plane and that floor mounted equipment shall be placed on a insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement.

For tabletop equipment, a 1.5 by 1.0-meter metal sheet (HCP) is placed on the table and connected to the ground plane via a metal strap with two 470 k Ohms resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material. A Vertical Coupling Plane (VCP) grounded on the ground plane through the same configuration as in the HCP is used.

9.2. Test Procedure

ETSI EN 301 489-1 V2.1.1 (2017-02) / EN 61000-4-2: 2009 Test level 3 for Air Discharge at ± 8 kV Test level 2 for Contact Discharge at ± 4 kV

9.2.1. Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

9.2.2. Contact Discharge

All the procedure shall be same as Section 9.2.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

9.2.3. Indirect Discharge For Horizontal Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

9.2.4. Indirect Discharge For Vertical Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 24 of 58 vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

9.3. Test Data

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

PASS.

Please refer to the following page.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 25 of 58 SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

 $\pm 2KV$, $\pm 4kV$

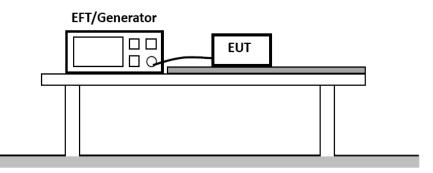
Pass

Electrostatic Discharge Test Results						
Standard	□ IE0	C 61000-4-2	00-4-2			
Applicant	Dong	guan Xing Yue Electronic co	., Ltd			
EUT	Free l	Flow TWS earbuds in case		Temperature	24.6°C	
M/N	XO-9	XO-9852-1 Humidity 54.3%				
Criterion	В	B Pressure 1021mbar				
Test Mode	TM1-	TM3		Test Engineer	Scout Wu	
		TEST RESULT (OF BULETC	ЮТН		
Test Voltage	e Coupling Observation Result (Pass/Fa				Result (Pass/Fail)	
±2KV, ±4kV	-	Contact Discharge CT, CR Pass				
±2KV, ±4kV, ±8	ßkV	kV Air Discharge CT, CR Pass				
±2KV, ±4kV		Indirect Discharge HCP	C	T, CR	Pass	

TEST RESULT OF TM2-TM3

CT, CR

Indirect Discharge VCP


Test Voltage	Coupling	Result (Pass/Fail)
±2KV, ±4kV	Contact Discharge	Pass
±2KV, ±4kV, ±8kV	Air Discharge	Pass
±2KV, ±4kV	Indirect Discharge HCP	Pass
±2KV, ±4kV	Indirect Discharge VCP	Pass

Note: The EUT performance complied with performance criteria for CT&CR to MS Function and there is no any degradation of performance and function.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 26 of 58

10. ELECTRICAL FAST TRANSIENT IMMUNITY

10.1. Test Configuration

10.2. Test Standard

ETSI EN 301 489-1 V2.1.1 (2017-02)/ EN61000-4-4: 2012 Test level 2 at 1 kV

Test Level						
Open C	Circuit Output Test Voltage ± 10	0%				
Level	On Power Supply Lines	On I/O (Input/Output) Signal data and control lines				
1	0.5 kV	0.25 kV				
2	1 kV	0.5 kV				
3	2 kV	1 kV				
4	4 kV	2 kV				
Х	Special	Special				
Performance Criterion: B	· ·	· · ·				

10.3. Test Procedure

The EUT is put on the table, which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

10.3.1.For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device, which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.

10.3.2.For signal lines and control lines ports: No I/O ports. It's unnecessary to test.

10.3.3.For DC output line ports: It's unnecessary to test.

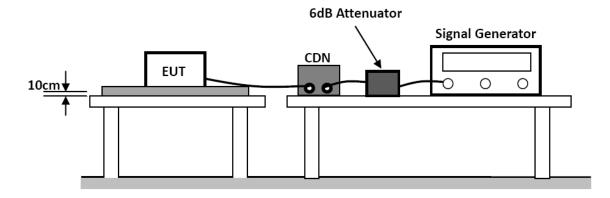
10.4. Test Data

PASS.

Please refer to the following page.

Electrical Fast Transient/Burst Test Results						
Standard	□ IEC 61000-4-4 ☑ EN 61000-4-4					
Applicant	Dongguan Xing Yue Electronic co., Ltd					
EUT	Free Flow TWS earbuds in case	Free Flow TWS earbuds in caseTemperature24.8°C				
M/N	XO-9852-1 Humidity 53.8%					
Test Mode	TM1-TM3 Criterion B					
Test Engineer	Scout Wu					

TEST RESULT OF TM1-TM4						
Line	Test Voltage	Polarity	Observation	Result (Pass/Fail)		
L	1KV	+/-	CT, CR	Pass		
Ν	1KV	+/-	CT, CR	Pass		
L-N	1KV	+/-	CT, CR	Pass		


TEST RESULT OF TM2-TM3

Line	Test Voltage	Polarity	Result (Pass/Fail)
L	1KV	+/-	Pass
Ν	1KV	+/-	Pass
L-N	1KV	+/-	Pass

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 28 of 58

11. RF COMMON MODE

11.1. Test Configuration

11.2. Test Standard

ETSI EN 301 489-1 V2.1.1 (2017-02)/ EN 61000-4-6: 2014 Test level: 3V (r.m.s.) for 0.15MHz ~ 10MHz; 3V (r.m.s.) to 1V (r.m.s.) for 10MHz ~ 30MHz; 1V (r.m.s.) for 30MHz ~ 80MHz Modulation type: AM Modulation depth: 80% Modulation signal: 1 kHz

Test Level				
Level	Voltage Level (r.m.s)			
1				
2	3			
3	10			
Х	Special			
Performance Criterion: A				

11.3. Test Procedure

11.3.1. Let the EUT work in test mode and test it.

11.3.2. The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50mm (where possible).

11.3.3. The disturbance signal described below is injected to EUT through CDN.

11.3.4. The EUT operates within its operational mode(s) under intended climatic conditions after power on.

11.3.5. The frequency range is swept from 150kHz to 10MHz using 3V signal level, 10MHz to 30MHz using 3V to 1V signal level, 30MHz to 80MHz using 1V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.

11.3.6. The rate of sweep shall not exceed 1.5*10-3 decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.

11.3.7. Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

11.4. Test Data

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER

PASS.

Please refer to the following page.

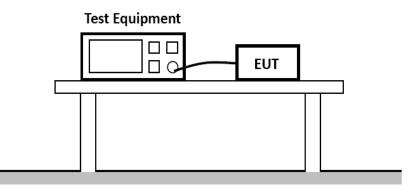
Injected Currents Susceptibility Test Results					
Standard	□ IEC 61000-4-6 ☑ EN 61000-4-6				
Applicant	Dongguan Xing Yue Electronic co., Ltd				
EUT	Free Flow TWS earbuds in caseTemperature22.6°C				
M/N	XO-9852-1 Humidity 52.9%				
Test Mode	TM1-TM3 Criterion A				
Test Engineer	Scout Wu				

TEST RESULT OF TM1-TM4

Frequency Range (MHz)	Strength (Unmodulated)	Injected Position	Observation	Result (Pass/Fail)
0.15 ~ 10	3V			
10 ~ 30	3V to 1V	AC Mains	CT, CR	Pass
30 ~ 80	1V			

TEST RESULT OF TM2-TM3

Frequency Range (MHz)	Strength (Unmodulated)	Injected Position	Result (Pass/Fail)	
0.15 ~ 10	3V			
10 ~ 30	3V to 1V	AC Mains	Pass	
30 ~ 80	1 V			


Remark:

1. Modulation Signal:1kHz 80% AM 2. Measurement Equipment : Simulator: CIT-10 (FRANKONIA) CDN : ☑CDN-M2 (FRANKONIA) □CDN-M3 (FRANKONIA)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 31 of 58

12. SURGES, LINE TO LINE AND LINE TO GROUND

12.1. Test Configuration

12.2. Test Standard

ETSI EN 301 489-1 V2.1.1 (2017-02) / EN 61000-4-5: 2014 L-N: Test level 2 at 1 kV L-PE, N-PE Test Level 3 at 2kV

Test Level					
Open C	Circuit Output Test Voltage ± 10	9%			
Level On Power Supply Lines On I/O (Input/Output) Signal data and control lines					
1	0.5 kV	0.25 kV			
2	1 kV	0.5 kV			
3	2 kV	1 kV			
4	4 kV	2 kV			
Х	Special	Special			
Performance Criterion: B					

12.3. Test Procedure

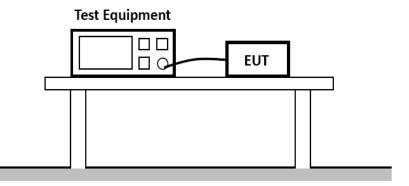
- 12.3.1. For line to line coupling mode, provide a 0.5 kV 1.2/50us voltage surge (at open-circuit condition).
- 12.3.2. At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 12.3.3. Different phase angles are done individually.
- 12.3.4. Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 32 of 58

12.4. Test Data

Surge Immunity Test Result				
Standard	□ IEC 61000-4-5 ☑ EN 61000-4-5			
Applicant	Dongguan Xing Yue Electronic co., Ltd			
EUT	Free Flow TWS earbuds in caseTemperature24.8°C			
M/N	XO-9852-1 Humidity 53.8%			
Test Mode	TM1-TM3	А		
Test Engineer	Scout Wu			

TEST RESULT OF BULETOOTH	


Location	Polarity	Phase Angle	Number of Pulse	Pulse Voltage (KV)	Observation	Result (Pass/Fail)
LN	+	0°, 90°, 180°, 270°	5	1.0	CT, CR	Pass
L-N	-	0°, 90°, 180°, 270°	5	1.0	CT, CR	Pass

TEST RESULT OF TM2-TM3					
Location	Polarity	Phase Angle	Number of Pulse	Pulse Voltage (KV)	Result (Pass/Fail)
L-N	+	0°, 90°, 180°, 270°	5	1.0	Pass
L-IN	-	0°, 90°, 180°, 270°	5	1.0	Pass

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 33 of 58

13. VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST

13.1. Test Configuration

13.2. Test Standard

ETSI EN 301 489-1 V2.1.1 (2017-02)/ EN 61000-4-11: 2004+A1:2017 Test levels and Performance Criterion

Test Level					
Voltage Reduction	Voltage Dips	Duration			
% U _T	%U _T	(in Period)			
100	0	0.5			
100	0	1			
30	70	5			
Voltage Reduction	Voltage Dips	Duration			
~ %U _T	%U _T	(in Period)			
100	0	250			
Performance Criterion: B&C					

13.3. Test Procedure

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

13.3.1. The interruption is introduced at selected phase angles with specified duration.

13.3.2. Record any degradation of performance.

13.4. Test Data

Voltage Dips And Interruptions Test Results				
Standard	□ IEC 61000-4-11 ☑ EN 61000-4-11			
Applicant	Dongguan Xing Yue Electronic co., Ltd			
EUT	Free Flow TWS earbuds in case	Temperature	23.1 °C	
M/N	XO-9852-1 Humidity 54.5%			
Test Mode	TM1-TM3 Criterion A			
Test Engineer	Scout Wu			

TEST RESULT OF BULETOOTH						
Test Level % U _T	81		Observation	Result (Pass/Fail)		
0	100	0.5P	CT, CR	Pass		
0	100	1P	CT, CR	Pass		
70	30	25P	CT, CR	Pass		
0	100	250P	CT, CR	Pass		

TEST RESULT OF TM2-TM3						
Test Level % U _T	Voltage Dips & Short Interruptions % U _T	Duration (in periods)	Result (Pass/Fail)			
0	100	0.5P	Pass			
0	100	1P	Pass			
70	30	25P	Pass			
0	100	250P	Pass			

14. LIST OF MEASURING EQUIPMENT

LINE CONDUCTED EMISSION

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	AUDIX	E3	/	N/A	N/A
2	EMI Test Receiver	R&S	ESPI	101840	2019-06-11	2020-06-10
3	Artificial Mains	R&S	ENV216	101288	2019-06-12	2020-06-11
4	10dB Attenuator	SCHWARZBEC K	MTS-IMP-136	261115-001-0032	2019-06-11	2020-06-10
RAD	IATED DISTURBANCE					
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	AUDIX	E3	/	N/A	N/A
2	3m Full Anechoic Chamber	MRDIANZI	FAC-3M	MR009	2019-09-27	2020-09-26
3	Positioning Controller	MF	MF-7082	/	2019-06-12	2020-06-11
4	By-log Antenna	SCHWARZBEC K	VULB9163	9163-470	2018-07-26	2021-07-25
5	Horn Antenna	SCHWARZBEC K	BBHA 9120D	9120D-1925	2018-07-02	2021-07-01
6	EMI Test Receiver	R&S	ESR 7	101181	2019-06-12	2020-06-11
7	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2019-11-22	2020-11-21
8	Broadband Preamplifier	/	BP-01M18G	P190501	2019-07-01	2020-06-30
9	RF Cable-R03m	Jye Bao	RG142	CB021	2019-06-12	2020-06-11
10	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2019-06-12	2020-06-11

VOLTAGE FLUCTUATION AND FLICKER/HARMONIC CURRENT EMISSIONS

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Analyzer Test System	Voltech	PM6000	200006700523	2019-06-12	2020-06-11

RF ELECTROMAGNETIC FIELD

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	RS Test Software	Tonscend	/	/	N/A	N/A
2	ESG Vector Signal Generator	Agilent	E4438C	MY42081396	2019-11-22	2020-11-23
3	3m Full Anechoic Chamber	MRDIANZI	FAC-3M	MR009	2019-09-27	2020-09-26
4	RF POWER AMPLIFIER	OPHIR	5225R	1052	NCR	NCR
5	RF POWER AMPLIFIER	OPHIR	5273F	1019	NCR	NCR
6	RF POWER AMPLIFIER	SKET	HAP_0306G-50 W	/	NCR	NCR
7	Stacked Broadband Log Periodic Antenna	SCHWARZBEC K	STLP 9128	9128ES-145	NCR	NCR
8	Stacked Mikrowellen LogPer Antenna	SCHWARZBEC K	STLP 9149	9149-484	NCR	NCR

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 36 of 58

ELECTROSTATIC DISCHARGE

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	ESD Simulator	SCHLODER	SESD 230	604035	2019-06-13	2020-06-12

ELECTRICAL FAST TRANSIENT IMMUNITY

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Immunity Simulative Generator	EM TEST	UCS500 M4	0101-34	2019-06-11	2020-06-10

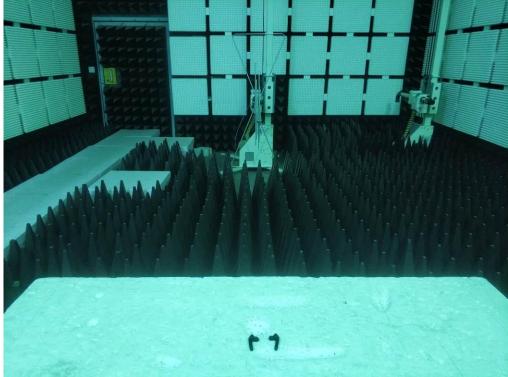
RF COMMON MODE

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Simulator	FRANKONIA	CIT-10/75	A126A1195	2019-06-11	2020-06-10
2	CDN	FRANKONIA	CDN-M2+M3	A2210177	2019-06-11	2020-06-10
3	6dB Attenuator	FRANKONIA	DAM25W	1172040	2019-06-11	2020-06-10

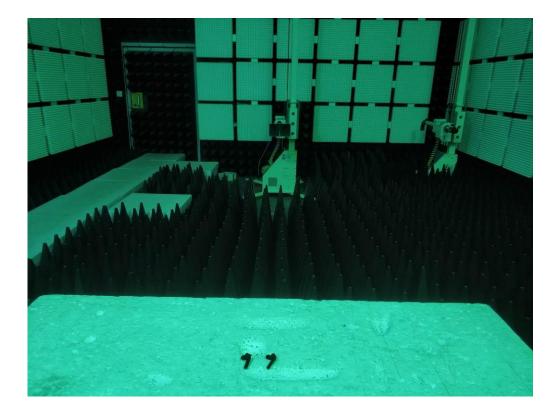
SURGES, LINE TO LINE AND LINE TO GROUND

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Immunity Simulative Generator	EM TEST	UCS500 M4	0101-34	2019-06-11	2020-06-10

VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST


Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2019-06-11	2020-06-10

Note: All equipment is calibrated through CHINA CEPREI LABORATORY and GUANGZHOU LISAI CALIBRATION AND TEST CO., LTD.


15. TEST SETUP PHOTOGRAPHS

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

15.1. Photo of Radiated Emissions Measurement

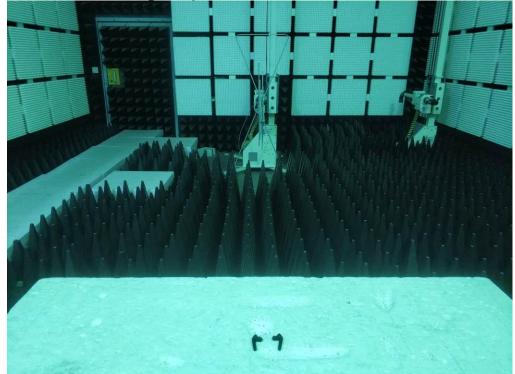
Below 1G

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 38 of 58

15.2. Photo of Power Line Conducted Emissions Measurement

15.3. Photo of Harmonic & Flicker Measurement

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 39 of 58

15.4. Photo of Electrostatic Discharge Test

15.5. Photo of Radio-frequency, Continuous radiated disturbance

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 40 of 58

15.6. Photo of Electrical Fast Transient/Burst& Surge Immunity Test

15.7. Photo of Injected Currents Susceptibility Test

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 41 of 58

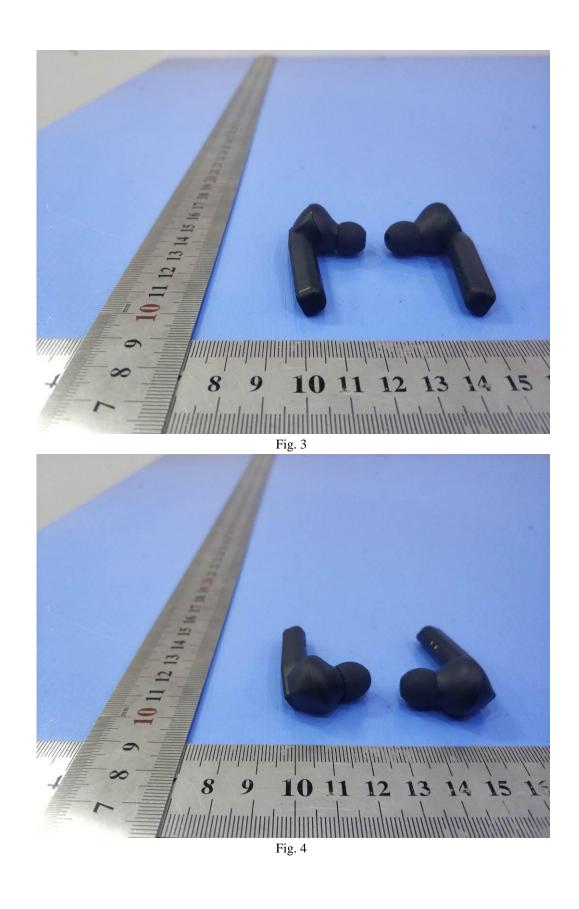
15.8 Photo of Voltage Dips and Short Interruptions Immunity Test

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 42 of 58

8

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2020-03-27. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

16. EXTERNAL AND INTERNAL PHOTOS OF THE EUT


Fig. 2

12

13 14

G

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 43 of 58

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 44 of 58

Fig. 6

Fig. 7

Fig. 8

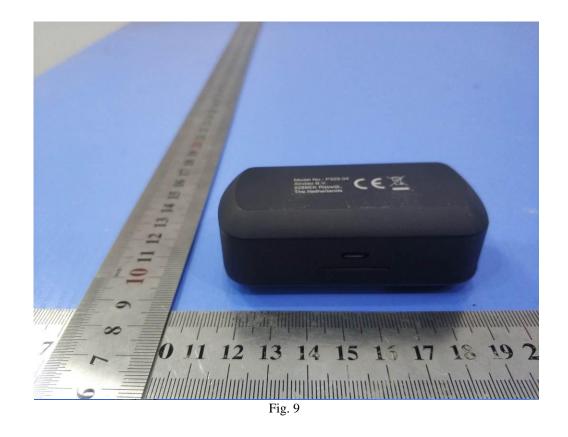


Fig. 10

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 47 of 58

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 48 of 58

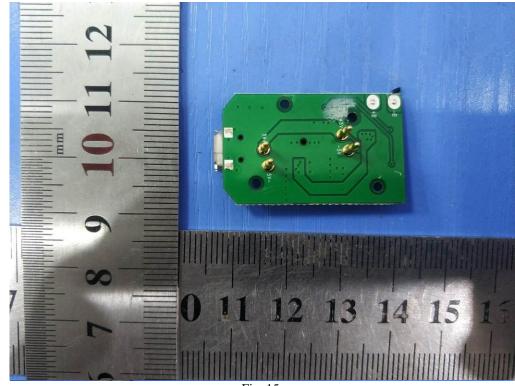


Fig. 13

Fig. 14

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 49 of 58

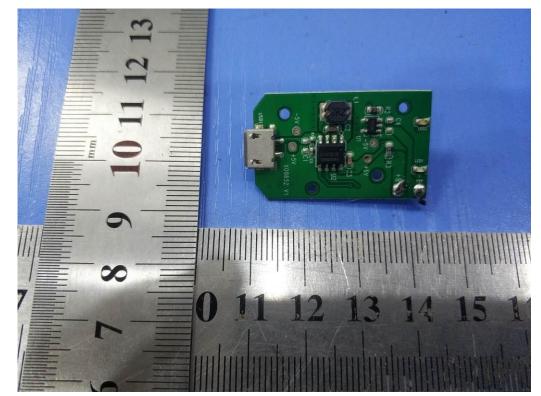


Fig. 16

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 50 of 58

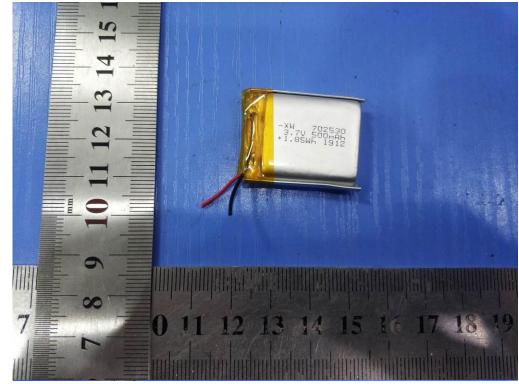
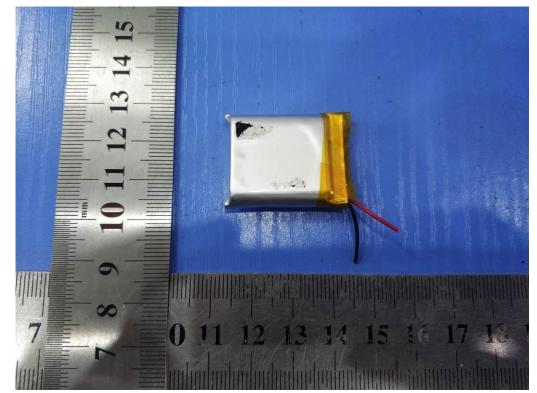


Fig. 17



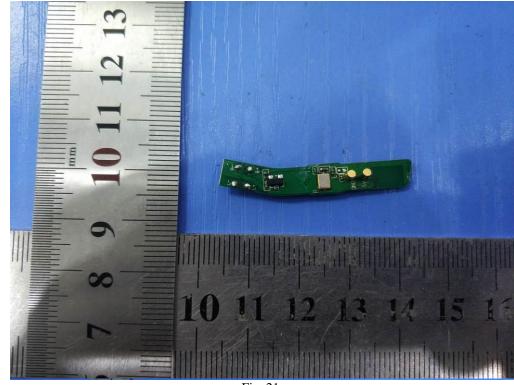

Fig. 18

Fig. 20

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 52 of 58

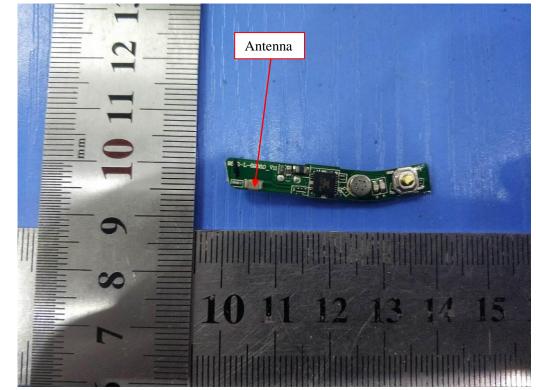
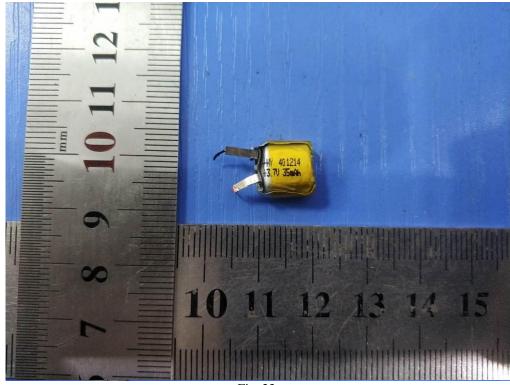
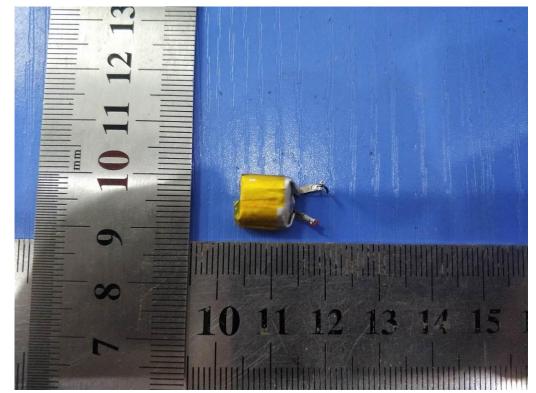
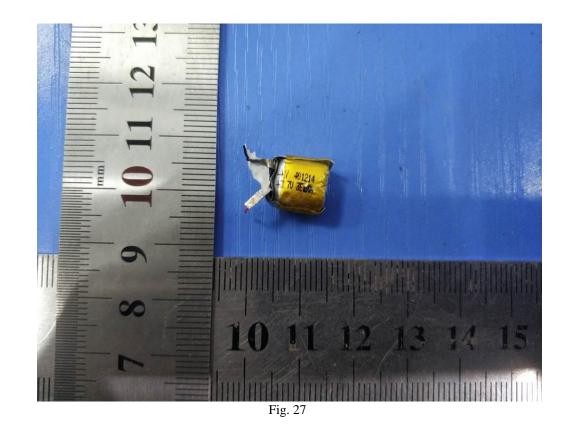
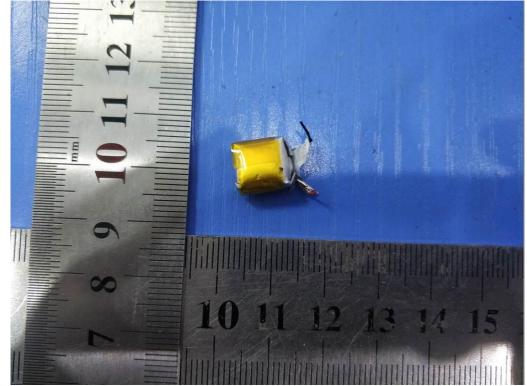



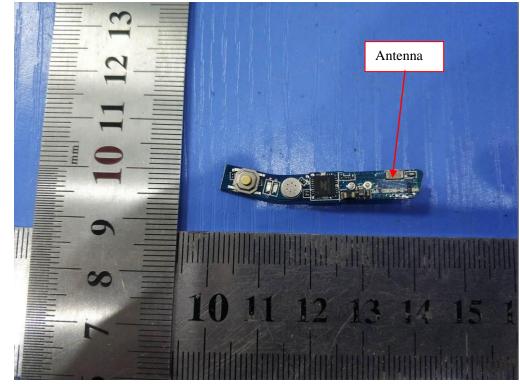
Fig. 22

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 53 of 58




Fig. 24




Fig. 26

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 55 of 58

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 56 of 58

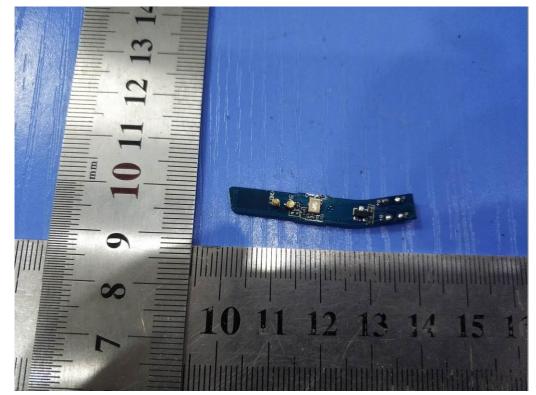


Fig. 30

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 57 of 58

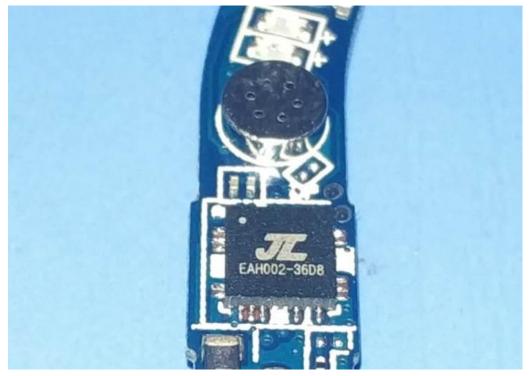


Fig. 31

-----THE END OF REPORT------

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.. Page 58 of 58