

Report No.: 18220WC10093101E Page 1 of 34

RED-EMC Test Report

Client Name :

Address :

Product Name : Wireless Charger

Date : Jun. 16. 2021

Shenzhen Anbotek Compliance Laboratory Limited

* Approved **

Report No.: 18220WC10093101E Page 2 of 34

Contents

1. General Information	
1.1. Client Information	
1.2. Description of Device (EUT)	
1.3. Auxiliary Equipment Used During Test	
1.4. Description of Test Modes	į
1.5. Test Equipment List	
1.6. Description of Test Facility	
1.7. Performance Criteria	
2. Summary of Test Results	
3. Emission Test	10
3.1. Conducted Emission Test at Main Ports	10
3.1.1. Test Standard and Limit	
3.1.2. Test Setup	1
3.1.3. Test Procedure	1
3.1.4. Test Data	1
3.2. Radiated Emission Test	1
3.2.1. Test Standard and Limit	1
3.2.2. Test Setup	
3.2.3. Test Procedure	1
3.2.4. Test Data	1
4. Immunity Test	1
4.1. Electrostatic Discharge Test	20
3.2.4. Test Procedule	20
A LAMEST SELLO	W
4.1.3 Test Procedure	Z. 2.
4.1.4. Test Data4.2. Radiated, RF Electromagnetic Fields Test	2
4.2. Radiated, RF Electromagnetic Fields Test	2
4.2.1. Test Standard and Specification	2
4.2.2 Test Setup	
4.2.3. Test Procedure	2
4.2.4. Test Data	24
APPENDIX I TEST SETUP PHOTOGRAPH	2
4.2.3. Test Procedure	2
APPENDIX III INTERNAL PHOTOGRAPH	3

Report No.: 18220WC10093101E Page 3 of

TEST REPORT

Applicant

Manufacturer

Product Name Wireless Charger

Model No.

Trade Mark N.A

Input: DC 5V/2A Rating(s) Wireless output: 5W

Test Standard(s) ETSI EN 301 489-1 V2.2.3 (2019-11)

ETSI EN 301 489-3 V2.1.1 (2019-03)

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the EN 301 489-1 and EN 301 489-3 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt	May 13, 2021
Date of Test	May 13~May 27, 2021
	Illa Liang
Prepared by	And tek hotek Jinbore Am hotek
anbotek Anbote Anbotek Anbotek	(Ella Liang)
	Vindennom

(Kingkong Jin)

May 13, 2021

Approved & Authorized Signer

Report No.: 18220WC10093101E Page 4 of 34

1. General Information

1.1. Client Information

			hotel	Dilip	 401
Applicant	:				10
Address	:				3
Manufacturer	:				
Address	:				
Factory	:				0
Address	:	5			0

1.2. Description of Device (EUT)

Product Name	:	Wireless Charger	k Anborek Anborek Anborek Anborek
Model No.	:	0	
Trade Mark	:	N.A	Anbotek Anbotek Anbotek Anbotek A
Test Power Supply	:	AC 230V, 50Hz for ada	oter Anbotek Anbotek Anbotek Anbotek
Test Sample No.	:	1-2-1(Normal Sample),	1-2-2(Engineering Sample)
		Operation Frequency:	110.1-205KHz
Product		Modulation Type:	FSK Anborek Anborek Anborek
Description	: A	Antenna Type:	Inductive loop coil Antenna
		Antenna Gain(Peak):	0 dBi Anbotek Anbotek Anbotek Anbotek

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC10093101E Page 5 of 34

1.3. Auxiliary Equipment Used During Test

Adapter	:	M/N: A2013	Anboren	Anbo
		Input: AC 100-240V, 0.7A, 50-60Hz		Aupo.
		Output: 3.6-5.5V=3A/ 6.5-9V=2A/ 9-12V=1.5A	pr.	750
Wireless charging	:	Manufacturer: Shenzhen Ouju Technology Co., Ltd.		
load		M/N: CD2577		
		Power: 5W/7.5W/10W/15W		
		Last Cal.: Oct. 26, 2020		
		Cal. Interval: 1 Year		

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Wireless Charging Mode

		For Conducted Emission
S/	Final Test Mode	Description
o	Mode 1	Wireless Charging Mode

For Radiated Emission					
Final Test Mode	Description				
Mode 1	Wireless Charging Mode				

Report No.: 18220WC10093101E Page 6 of 34

1.5. Test Equipment List

Conducted Emission Measurement

NP -		our or real				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.Ant	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Oct. 26, 2020	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Oct. 26, 2020	1 Year
°3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Oct. 26, 2020	1 Year
4.	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A	N/A

Radiated Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.,.	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	Oct. 26, 2020	1 Year
2. Anbo	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 02, 2020	2 Year
3. 🖂	Pre-amplifier	SONOMA	310N	186860	Oct. 26, 2020	1 Year
4.	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A	N/A

Electrostatic Discharge Measurement

-			DV.	2		.V	00.
	Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
	1.,,	ESD Simulators	EDS NX30.1	EDS NX30.1	11891	Mar. 25, 2021	1 Year

Report No.: 18220WC10093101E Page 7 of 34

R/S Immunity Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1 _{An} k	Signal Generator	Agilent	N5182A	MY48180656	Oct. 26, 2020	1 Year
2	Amplifier	Micotoop	MPA-80-1000 -250	MPA1903096	Oct. 26, 2020	1 Year
3	Amplifier	Micotoop	MPA-1000-60 00-100	MPA1903122	Oct. 26, 2020	1 Year
4° ^{†©}	Log-Periodic Antenna	Schwarzbeck	VULP9118E	00992	Apr.17, 2021	1 Year
5.nb	Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 02, 2020	2 Year
6	Power Sensor	Agilent	E9301A	MY41498906	Oct. 26, 2020	1 Year
7	Power Sensor	Agilent	E9301A	MY41498088	Oct. 26, 2020	1 Year
8	Power Meter	Agilent	E4419B	GB40202909	Oct. 26, 2020	1 Year
9	Field Probe	ETS-Lindgren	HI-6006	00212747	Apr.17, 2021	1 Year
10	software	EMtrace	EM 3	N/A	N/A	N/A

1.6. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, September 30, 2020.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A, September 30, 2020.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518128

Report No.: 18220WC10093101E Page 8 of 34

1.7. Performance Criteria

1.7.1. For EMS Test:

√A: Normal performance within the specification limits;

 \sqrt{B} : Temporary degradation or loss of function or performance which is self-recoverable;

 $\sqrt{\,}$ C: Temporary degradation or loss of function or performance which requires operator intervention or

system reset;

 $\sqrt{}$ D: Degradation or loss of function which is not recoverable due to damage of equipment (components)

or software, or loss of data

Note: The manufacturer's specification may define effects on the EUT which may be considered

insignificant, and therefore acceptable.

This classification may be used as a guide in formulating performance criteria, by committees

responsible for generic, product and product-family standards, or as a framework for the agreement on

performance criteria between the manufacturer and the purchaser, for example where no suitable

generic, product or product-family standard exists.

Report No.: 18220WC10093101E Page 9 of 34

2. Summary of Test Results

PASS PASS N/A
PASS PASS N/A
PASS N/A
N/A
N/A
- 24
hotek
Results
PASS
PASS
N/A
N/A
N/A
N/A
Anbore

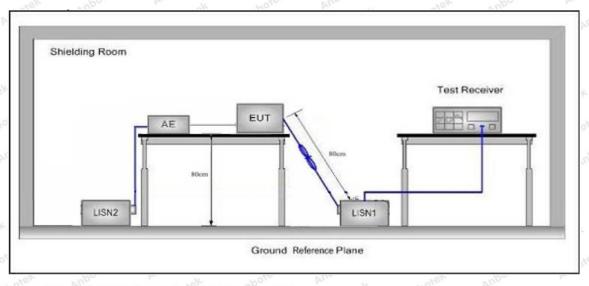
Report No.: 18220WC10093101E Page 10 of 34

3. Emission Test

3.1. Conducted Emission Test at Main Ports

3.1.1. Test Standard and Limit

Test Standard	ETSI EN 301 489-1 V2.2.3 Clause 8.3 & 8.4
Basic Standard	EN 55032: 2015


Limits for conducted emissions

P. 03.0							
	Fraguenav	Maximum RF Line Voltage (dBuV)					
	Frequency	Quasi-peak Level	Average Level				
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *				
	500kHz~5MHz	56	46				
	5MHz~30MHz	60	50 mbores				
Remark: *Decreasi	ing linearly with logarithm	of the frequency.	ok hotek Anboter				

Limits for conducted emissions of equipment intended to be used in telecommunication centres and industrial environment

	F==========	Maximum RF L	ine Voltage (dBuV)
To add in the	Frequency	Quasi-peak Level	Average Level
Test Limit	150kHz~500kHz	79	66
	500kHz~30MHz	73	60

3.1.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Report No.: 18220WC10093101E Page 11 of 34

3.1.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ETSI EN 301 489-1 V2.2.3 & EN 55032: 2015 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

For the actual test configuration, please refer to the related Item EUT Test Photos.

3.1.4. Test Data

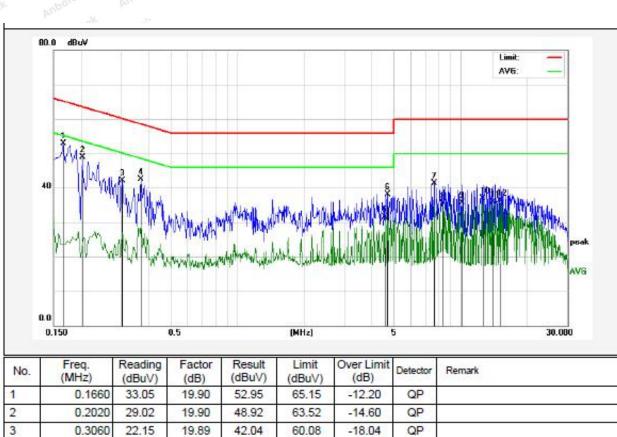
PASS

The EUT should be compliance to the limit of Class B

Only the worst case data was showed in the report, please to see the following pages

Report No.: 18220WC10093101E Page 12 of 34

Conducted Emission Test Data


Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 230V, 50Hz for adapter

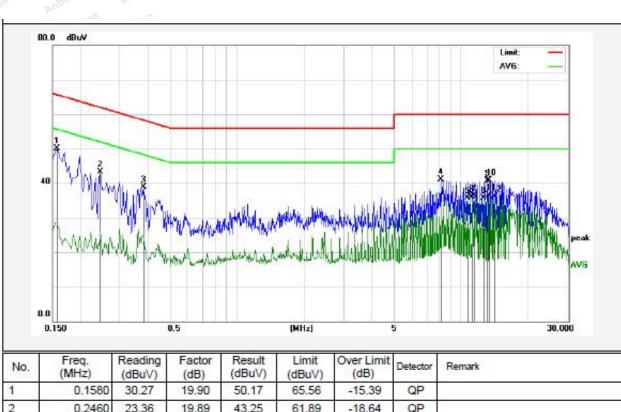
Comment: Live Line

Tem.: 23.6℃ Hum.: 48%

No.	Freq. (MHz)	(dBuV)	Factor (dB)	(dBuV)	(dBuV)	Over Limit (dB)	Detector	Remark
1	0.1660	33.05	19.90	52.95	65.15	-12.20	QP	
2	0.2020	29.02	19.90	48.92	63.52	-14.60	QP	
3	0.3060	22.15	19.89	42.04	60.08	-18.04	QP	
4	0.3700	22.67	19.92	42.59	58.50	-15.91	QP	
5	4.5540	11.40	20.19	31.59	46.00	-14.41	AVG	
6	4.7060	17.95	20.20	38.15	56.00	-17.85	QP	
7	7.6020	21.12	20.28	41.40	60.00	-18.60	QP	
8	8.3260	15.24	20.30	35.54	50.00	-14.46	AVG	
9	10.0900	15.33	20.34	35.67	50.00	-14.33	AVG	
10	12.5219	16.69	20.30	36.99	50.00	-13.01	AVG	
11	13.9660	15.69	20.28	35.97	50.00	-14.03	AVG	
12	14.9660	16.06	20.26	36.32	50.00	-13.68	AVG	
800	- CV		- 16-	WAY	1/20	*		4 D*

Report No.: 18220WC10093101E Page 13 of 34

Conducted Emission Test Data


Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 230V, 50Hz for adapter

Comment: Neutral Line

Tem.: 23.6℃ Hum.: 48%

No.	Freq. (MHz)	(dBuV)	Factor (dB)	(dBuV)	(dBuV)	Over Limit (dB)	Detector	Remark
1	0.1580	30.27	19.90	50.17	65.56	-15.39	QP	
2	0.2460	23.36	19.89	43.25	61.89	-18.64	QP	9
3	0.3820	19.01	19.93	38.94	58.23	-19.29	QP	
4	8.0860	20.90	20.29	41.19	60.00	-18.81	QP	
5	10.6620	15.37	20.33	35.70	50.00	-14.30	AVG	
6	11.1459	15.73	20.32	36.05	50.00	-13.95	AVG	10
7	11.3820	15.92	20.32	36.24	50.00	-13.76	AVG	
8	12.5500	15.45	20.30	35.75	50.00	-14.25	AVG	
9	13.0580	20.39	20.29	40.68	60.00	-19.32	QP	
10	13.2980	20.58	20.29	40.87	60.00	-19.13	QP	15
11	13.2980	16.26	20.29	36.55	50.00	-13.45	AVG	
12	14.0180	15.81	20.28	36.09	50.00	-13.91	AVG	
8101	- OY		- Mc	to U	100		840	407

Report No.: 18220WC10093101E Page 14 of 34

3.2. Radiated Emission Test

3.2.1. Test Standard and Limit

Test Standard	ETSI EN 301 489-1 V2.2.3 Clause 8.2	*	HOICE	Vier	*-	-48K
Basic Standard	EN 55032: 2015					8

Radiated Emission Test Limit (Below 1000MHz)

Limit (dBμV/m) Quasi-peak Level			
40	50		
47	57		
	Quasi-p		

Remark: 1. The lower limit shall apply at the transition frequency. 2. The test distance is 3m.

Radiated Emission Test Limit (Above 1000MHz)

_	Limit (dBμV/m)						
Frequency (MHz)	Cla	ass B	Class A				
	Peak	Average	Peak	Average			
1000 MHz -3000 MHz	70	50	76	56			
3000 MHz -6000 MHz	74	54	80	60			

Radiated Emission Test Limit for FM Receivers

	Lin	mit (dBμV/m)			
Frequency (MHz)	Quasi-peak Level				
(IVII IZ)	Fundamental	Harmonics			
30MHz~230MHz	60	anbore 52 Americk			
230MHz~300MHz	60 Anbor	hotek Ambole 52 Ambole tek			
300MHz~1000MHz	4 60 Marie 60	56			

Frequency Range of Radiated Measurement

Highest free	quency generated or Uppe	er frequency of	
measurement	t used in the device or on	Range (MHz)	
	operates or tunes (MHz)	
hotek Anbo	Below 108	Jotek Anbore	1000
And otek	108 – 500	abotek Anbote	2000
Anbo	500 – 1000	Anborek Anbore	5000
Anbotek Anbotek	Above 1000	Anbotek Anb	5th harmonic of the highest frequency or 6 GHz, whichever is lower

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Page 15 of 34

3.2.2. Test Setup

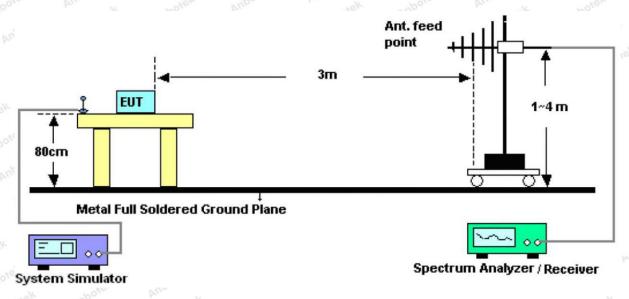


Figure 1. 30MHz to 1GHz

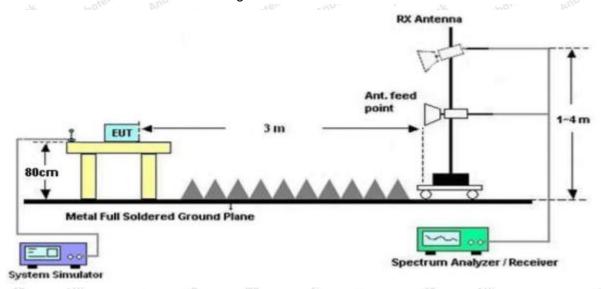


Figure 2. Above 1 GHz

Report No.: 18220WC10093101E Page 16 of 34

3.2.3. Test Procedure

- 1) The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- 2) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 3) The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 5) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1GHz.
- 6) The test receiver/spectrum was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- 7) For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.

The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak/ Average detection at frequency above 1GHz.

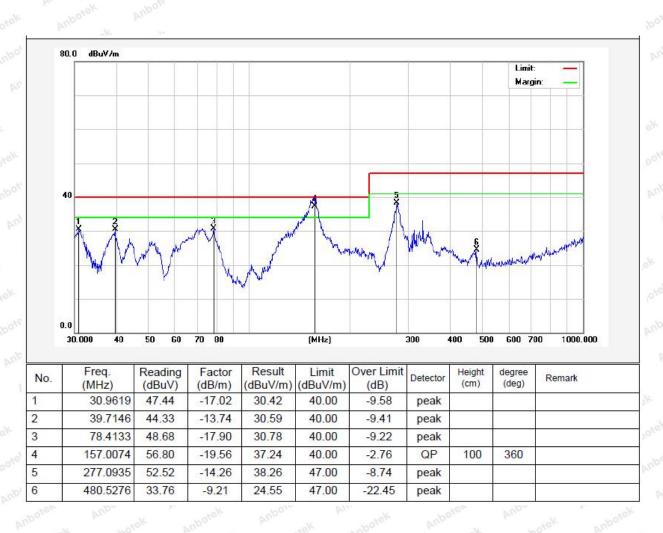
3.2.4. Test Data

PASS

The EUT should be compliance to the limit of Class B

Only the worst case data was showed in the report, please to see the following pages

Report No.: 18220WC10093101E Page 17 of 34


Test Results (30~1000MHz)

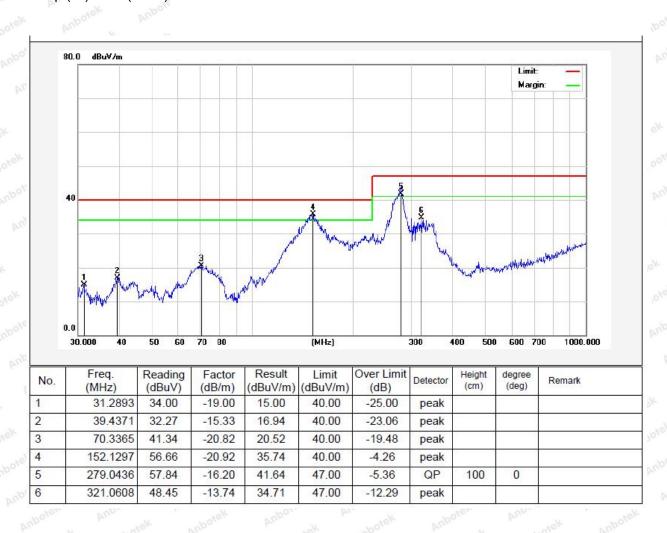
Test Mode: Mode 1

Power Source: AC 230V, 50Hz for adapter

Polarization: Vertical

Temp.(°C)/Hum.(%RH): 24.3°C/46%RH

Report No.: 18220WC10093101E Page 18 of 34


Test Results (30~1000MHz)

Test Mode: Mode 1

Power Source: AC 230V, 50Hz for adapter

Polarization: Horizontal

Temp.(°C)/Hum.(%RH): 24.3°C/46%RH

Report No.: 18220WC10093101E Page 19 of 34

4. Immunity Test

General Performance Criteria

◆ Performance criteria for continuous phenomena applied to transmitters and receivers (CT/CR) During and after the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

During the test the EUT shall not unintentionally transmit or change its actual operating state and stored data.

If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

◆ Performance criteria for transient phenomena applied to transmitters and receivers (TT/TR)

After the test, the apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when

the apparatus is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance.

During the EMC exposure to an electromagnetic phenomenon, a degradation of performance is, however, allowed. No change of the actual mode of operation (e.g. unintended transmission) or stored data is allowed.

If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

◆ Performance criteria for equipment which does not provide a continuous communication link

For radio equipment which does not provide a continuous communication link, the performance criteria described in CT/CR and TT/TR are not appropriate, then the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests.

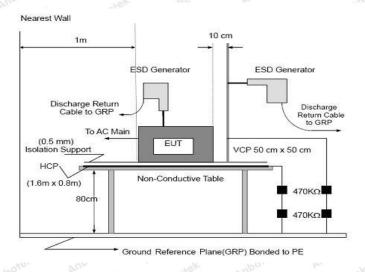
The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in CT/CR and TT/TR.

Performance criteria for ancillary equipment tested on a stand alone basis

If ancillary equipment is intended to be tested on a stand alone basis, the performance criteria described in CT/CR and TT/TR are not appropriate, then the manufacturer shall declare, for inclusion in the test report, his own specification for an acceptable level of performance or degradation of performance during and/or after the immunity tests.

The performance criteria specified by the manufacturer shall give the same degree of immunity protection as called for in CT/CR and TT/TR.

Shenzhen Anbotek Compliance Laboratory Limited


Report No.: 18220WC10093101E Page 20 of 34

4.1. Electrostatic Discharge Test

4.1.1. Test Standard and Specification

Test Standard	ETSI EN 301 489-1 V2.2.3 Clause 9.3	-4ck
Basic Standard	EN 61000-4-2: 2009	8
Discharge Impedance	330 ohm / 150 pF	3
Performance Criterion	CT/CR	
D: 1	Air Discharge: 2kV/4kV/8kV	
Discharge Voltage	Contact Discharge: 2kV/4kV (Direct/Indirect)	
Polarity	Positive & Negative	6
Number of Dischause	Air Discharge: min. 20 times at each test point	
Number of Discharge	Contact Discharge: min. 200 times in total	br. c
Discharge Mode	Single Discharge	otek 1
Discharge Period	1 second minimum	Aupotek

4.1.2. Test Setup

Note:

TABLE-TOP EQUIPMENT:

The Configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940kohm total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC /EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC10093101E Page 21 of 34

FLOOR-STANDING EQUIPMENT:

The equipment under test was installed in a representative system as described in section 7 of IEC/EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

4.1.3. Test Procedure

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

1) Contact discharge was applied to conductive surfaces and coupling planes of the EUT.

During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second.

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

Air discharges at insulation surfaces of the EUT.

It was at least ten single discharges with positive and negative at the same selected point.

- 3) When applying direct discharges to a portable or handheld battery-powered EUT with a display screen, it may not be possible to observe the screen for a given EUT orientation. If observation of the screen is necessary during this test, the EUT may be mounted vertically using non-metallic supports.
- For the actual test configuration, please refer to the related Item –EUT Test Photos.

Report No.: 18220WC10093101E Page 22 of 34

4.1.4. Test Data

Test Mode: Mode 1

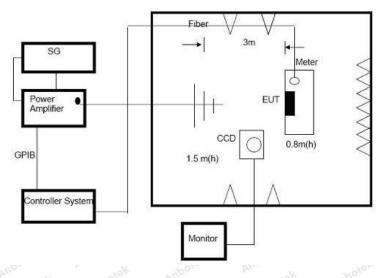
Power Source: AC 230V, 50Hz for adapter

Temp.(℃)/Hum.(%RH): Tem.: 23.4℃ Hum.: 56%

da	100			
3	Contact Discharge to o	Air Discharge at insulating		
Item	to coupli			
	Direct Contact Discharge	Indirect Contact Discharge	surfaces	
Test Voltage	Reaction of EUT / Result	Reaction of EUT / Result	Reaction of EUT / Result	
+2kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS	
-2kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS	
+4kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS	
-4kV	n.r.r. PASS	n.r.r. PASS	n.r.r. PASS	
+6kV	Anbotek - woter A	no tek no	n.r.r. PASS	
-6kV	Vupo	Pil. Of Polen	n.r.r. PASS	
+8kV	tek Anbotek Anbotek	Anbotek Anbotek	n.r.r. PASS	
-8kV	portek Anborek Anbor	otek Anbotek Anbotel	n.r.r. PASS	

Remarks: n.r.r. = no reaction recognized

Performace Criteria B observed and No any function degraded during the tests.


Report No.: 18220WC10093101E Page 23 of 34

4.2. Radiated, RF Electromagnetic Fields Test

4.2.1. Test Standard and Specification

Test Standard	ETSI EN 301 489-1 V2.2.3 Clause 9.2	NOTO	Dur	-	
Basic Standard					
Required Performance					
Frequency Range	80MHz to 6GHz				
Field Strength 3 V/m					
Modulation 1kHz Sine Wave, 80%, AM Modulation					
Frequency Step	1 % of preceding frequency value				
Polarity of Antenna Horizontal and Vertical					
Test Distance	3 m				
Antenna Height	1.5 m			-tel	
Dwell Time			20	K	
- U				. (3)	_

4.2.2. Test Setup

4.2.3. Test Procedure

The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber. The testing distance from antenna to the EUT was 3 meters.

- 1) The field strength level was 3V/m
- 2) The frequency range is swept from 80 MHz to 6000 MHz with the signal 80%amplitude modulated with a 1kHz sine wave.
- 3) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond, but shall in no case be less than 0.5s.
- 4) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC10093101E Page 24 of 34

4.2.4. Test Data

Test Mode: Mode 1

Power Source: AC 230V, 50Hz for adapter

Temp.(°C)/Hum.(%RH): Tem.: 23.0°C Hum.: 51%

Frequency Range (MHz)	Antenna Polarity	R.F. Field Strength	Azimuth	Result
Anbotek Anbote	r		Front	
Anbotek Anb	-botel	3 V/m (rms)	Rear	☑A □B
80~6000	H/V	AM Modulated 1000Hz, 80%	Left	C D per 6
Anbotek Anbotek	Anbotek	oter Mr.	Right	o. Anbotek
Anborek Anbo	tek Anboten	Anbotek Anbotek	ek abotek An	Anbotek Anboten
k Anbotek Ar				
OLC VILLE				
Anbotek Anbotek Anbotek Anbotek Anbotek				


Report No.: 18220WC10093101E Page 25 of 34

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Conducted Emission Test

Photo of Radiation Emission Test

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

Page 26 of 34

Photo of Electrostatic Discharge Test

Photo of RF Field Strength Susceptibility Test

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Page 27 of 34

APPENDIX II -- EXTERNAL PHOTOGRAPH

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com

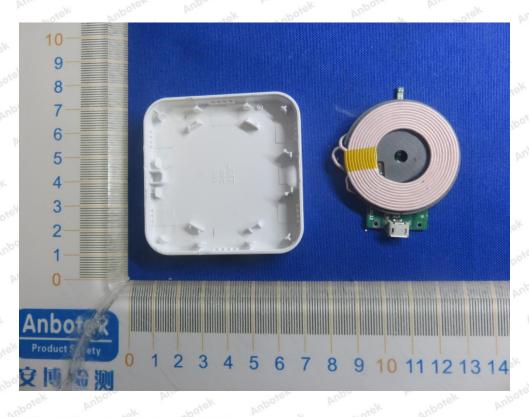
Shenzhen Anbotek Compliance Laboratory Limited

Page 29 of 34

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

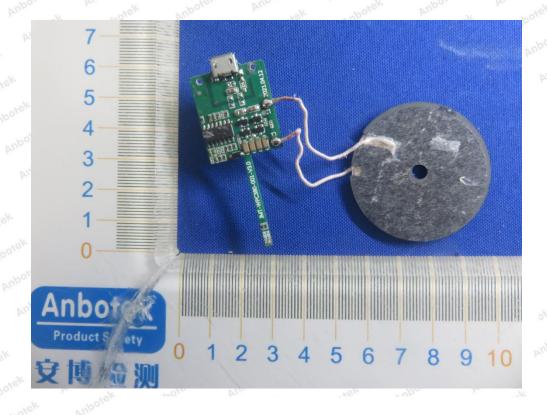
Page 30 of 34



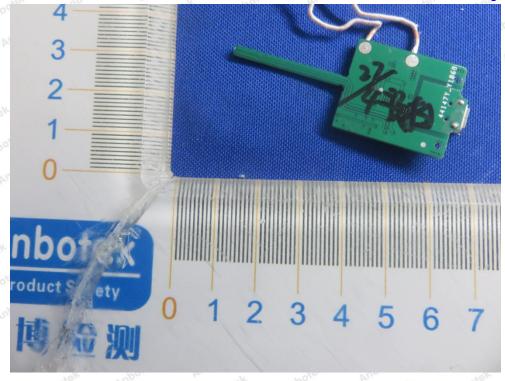
Report No.: 18220WC10093101E Page 31 of 34

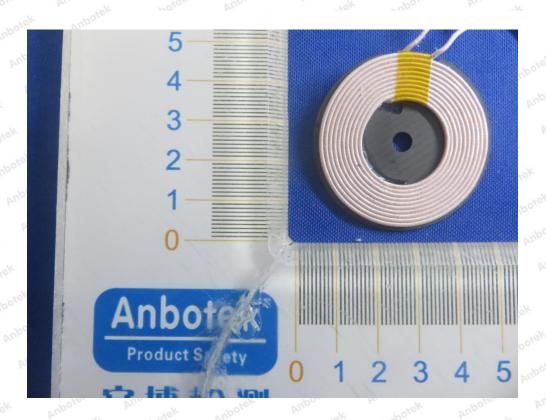
APPENDIX III -- INTERNAL PHOTOGRAPH

Shenzhen Anbotek Compliance Laboratory Limited


Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com





Shenzhen Anbotek Compliance Laboratory Limited

Shenzhen Anbotek Compliance Laboratory Limited

Page 34 of 34

----- End of Report -----

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com