EMC TEST REPORT

Wireless charging pad

Prepared for : Address :

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : October 10, 2018

Number of tested samples : 1

Serial number : Prototype

Date of Test : October 10, 2018~ October 17, 2018

Date of Report : October 23, 2018

EMC TEST REPORT

Final draft ETSI EN 301 489-3 V2.1.1 (2017-03)

ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 3: Specific conditions for Short-Range Devices (SRD) operating on frequencies between 9 kHz and 246 GHz; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU

Report Reference No.	•••••	:	LCS181010015AEA
Date Of Issue		•	October 23 2018

Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address.....: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure: Full application of Harmonised standards

Partial application of Harmonised standards □

Other standard testing method

Applicant's Name	:
Address	•

Test Specification

Standard.....: ETSI EN 301 489-1 V2.1.1 (2017-02)

Final draft ETSI EN 301 489-3 V2.1.1 (2017-03)

Test Report Form No.: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF: Dated 2017-06

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Wireless charging pad

Trade Mark.....: N/A

Test Model:

Ratings: Input: 5V=1.5A

Output: 5V=1AWirelss Charging Output: 5W Max.

Result: Positive

Compiled by:

Supervised by:

Ryan Hu/ Administrators

Calvin Weng/ Technique principal

pproved by:

Gavin Liang/Manager

October 23, 2018

EMC -- TEST REPORT

Test Report No. : LCS181010015AEA		Date of issue		
Test Model	: CD-1017			
EUT	: Wireless chargi	ing pad		
Applicant	:			
Address	:			
Telephone	:			
Fax	:			
Manufacturer				

Telephone....: Fax..... Factory..... Address..... Telephone....: Fax.....

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

Address.....

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Report Version	Issue Date	Revisions	Revised By
000	October 23, 2018	Initial Issue	Gavin Liang

TABLE OF CONTENTS

Test Report Description	Page
1. GENERAL INFORMATION	7
1.1. PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	7
1.5. RELATED SUBMITTAL(S)/GRANT(S) 1.4. TEST METHODOLOGY 1.5. DESCRIPTION OF TEST FACILITY	7
1.6. Support Equipment List	8 8
1.8. List Of Measuring Equipment 1.9. Measurement Uncertainty 1.10. Description Of Test Modes.	11
2. SUMMARY OF TEST RESULTS	
3. LINE CONDUCTED EMISSION	
3.1. CONDUCTED EMISSION LIMIT 3.2. TEST CONFIGURATION 3.3. EMI TEST RECEIVER SETUP. 3.4. TEST PROCEDURE.	13 14
3.5. Test Data	
4. RADIATED DISTURBANCE	
4.1. RADIATED EMISSION LIMIT	16
4.4. Test Data	
5. HARMONIC CURRENT EMISSIONS	21
5.1. TEST CONFIGURATION	21
6. VOLTAGE FLUCTUATION AND FLICKER	
6.1. Test Configuration 6.2. Test Standard 6.3. Test Data	22 22
7. GENERAL PERFORMANCE CRITERIA FOR IMMUNITY TEST	23
7.1. PERFORMANCE CRITERIA FOR CONTINUOUS PHENOMENA APPLIED TO TRANSMITTER (CT)	23
7.3. PERFORMANCE CRITERIA FOR CONTINUOUS PHENOMENA APPLIED TO RECEIVER (CR)	
8. RF ELECTROMAGNETIC FIELD (80 MHZ - 6000 MHZ)	25
8.1. TEST CONFIGURATION 8.2. TEST STANDARD	
8.3. SEVERITY LEVEL	26
8.5. TEST RESULT 9. ELECTROSTATIC DISCHARGE	
9.1. TEST CONFIGURATION	
9.2. Test Procedure	28
10. ELECTRICAL FAST TRANSIENT IMMUNITY	31
10.1. TEST CONFIGURATION	31 31
10.4. Test Data	

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	Report No.: LCS181010015AEA
11.1. TEST CONFIGURATION 11.2. TEST STANDARD 11.3. TEST PROCEDURE 11.4. TEST DATA	33 34
12. SURGES, LINE TO LINE AND LINE TO GROUND	36
12.1. TEST CONFIGURATION 12.2. TEST STANDARD 12.3. TEST PROCEDURE 12.4. TEST DATA	36 36
13. VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST	38
13.1. TEST CONFIGURATION 13.2. TEST STANDARD 13.3. TEST PROCEDURE 13.4. TEST DATA	38
14. PHOTOGRAPHS OF TEST SETUP	40
15. PHOTOGRAPHS OF THE EUT	45

1. GENERAL INFORMATION

1.1. Product Description for Equipment Under Test (EUT)

EUT : Wireless charging pad

Test Model : CD-1017

Power Supply : Input: 5V=1.5A

Output: 5V=1A

Wirelss Charging Output: 5W Max.

Hardware Version : V1.1 Software Version : V1.0

Operating Frequency : 110.0~205.0KHz

Modulation Type : CW (Continuous Wave)

Antenna Type : Coil Antenna

1.2. Objective

ETSI EN 301 489-1	ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU and the essential requirements of article 6 of Directive 2014/30/EU
Final draft ETSI EN 301 489-3 V2.1.1	ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 3: Specific conditions for Short-Range Devices (SRD) operating on frequencies between 9 kHz and 246 GHz; Harmonised Standard covering the essential requirements of article 3.1(b) of Directive 2014/53/EU

The objective is to determine compliance with ETSI EN 301 489-1 V2.1.1 (2017-02) and Final draft ETSI EN 301 489-3 V2.1.1 (2017-03).

1.3. Related Submittal(s)/Grant(s)

No Related Submittals.

1.4. Test Methodology

All measurements contained in this report were conducted with ETSI EN 301 489-1 V2.1.1 (2017-02) and Final draft ETSI EN 301 489-3 V2.1.1 (2017-03).

1.5. Description of Test Facility

FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

NVLAP Registration Code is 600167-0

1.6. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate
ShenZhen KunXing Technology Co., Ltd.	Quick Adapter	EQ-24BEU		CE
Apple Inc.	Load	iphone X		CE

1.7. External I/O

I/O Port Description	Quantity	Cable
Micro USB Port	1	N/A
USB Port	2	N/A

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	X-series USB Peak and Average Power Sensor Aglient	Agilent	U2021XA	MY54080022	2017-10-26	2018-10-25
2	4 CH. Simultaneous Sampling 14 Bits 2MS/s	Agilent	U2531A	MY54080016	2017-10-26	2018-10-25
3	Test Software	Ascentest	AT890-SW	20160630	N/A	N/A
4	RF Control Unit	Ascentest	AT890-RFB	N/A	2018-06-16	2019-06-15
5	ESA-E SERIES SPECTRUM ANALYZER	Agilent	E4407B	MY41440754	2017-11-17	2018-11-16
6	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2018-06-16	2019-06-15
7	SPECTRUM ANALYZER	R&S	FSP	100503	2018-06-16	2019-06-15
8	MXG Vector Signal Generator	Agilent	N5182A	MY47071151	2017-11-17	2018-11-16
9	ESG VECTOR SIGNAL GENERATOR	Agilent	E4438C	MY42081396	2017-11-17	2018-11-16
10	PSG Analog Signal Generator	Agilent	E8257D	MY4520521	2017-11-17	2018-11-16
11	Universal Radio Communication Tester	R&S	CMU 200	105788	2018-06-16	2019-06-15
12	WIDEBAND RADIO COMMUNICATION TESTER	R&S	CMW 500	103818	2018-06-16	2019-06-15
13	RF Control Unit	Tonscend	JS0806-1	N/A	2018-06-16	2019-06-15
14	DC Power Supply	Agilent	E3642A	N/A	2017-11-17	2018-11-16
15	LTE Test Software	Tonscend	JS1120-1	N/A	N/A	N/A
16	Temperature & Humidity Chamber	GUANGZHOU GOGNWEN	GDS-100	70932	2017-10-11	2018-10-10
17	DC Source	CHROMA	62012P-80-60	34782951	2017-10-11	2018-10-10
18	RF Filter	Micro-Tronics	BRC50718	S/N-017	2018-06-16	2019-06-15
19	RF Filter	Micro-Tronics	BRC50719	S/N-011	2018-06-16	2019-06-15
20	RF Filter	Micro-Tronics	BRC50720	S/N-011	2018-06-16	2019-06-15
21	RF Filter	Micro-Tronics	BRC50721	S/N-013	2018-06-16	2019-06-15
22	RF Filter	Micro-Tronics	BRM50702	S/N-195	2018-06-16	2019-06-15
23	Splitter/Combiner	Micro-Tronics	PS2-15	CB11-20	2018-06-16	2019-06-15
24	Splitter/Combiner	Micro-Tronics	CB11-20	N/A	2018-06-16	2019-06-15
25	Attenuator	Micro-Tronics	PAS-8-10	S/N23466	2018-06-16	2019-06-15
26	Exposure Level Tester	Narda	ELT-400	N-0713	2018-04-02	2019-04-01
27	B-Field Probe	Narda	ELT-400	M-1154	2018-04-10	2019-04-09
28	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2018-06-16	2019-06-15
29	Positioning Controller	MF	MF-7082	/	2018-06-16	2019-06-15
30	EMI Test Software	AUDIX	E3	N/A	2018-06-16	2019-06-15
31	EMI Test Receiver	R&S	ESR 7	101181	2018-06-16	2019-06-15
32	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-17	2018-11-16
33	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2018-06-22	2019-06-21
34	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2018-05-01	2019-04-30
35	Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-1925	2018-07-02	2019-07-01
36	Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2017-09-21	2018-09-20
37	Broadband Preamplifier	SCHWARZBECK	BBV 9719	9719-025	2017-09-21	2018-09-20
38	RF Cable-R03m	Jye Bao	RG142	CB021	2018-06-16	2019-06-15
39	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2018-06-16	2019-06-15
40	TEST RECEIVER	R&S	ESCI	101142	2018-06-16	2019-06-15
41	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2018-06-16	2019-06-15
42	10Db Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-0032	2018-06-16	2019-06-15

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
43	Artificial Mains	R&S	ENV216	101288	2018-06-16	2019-06-15
44	Power Analyzer Test System	Voltech	PM6000	20000670053	2018-06-16	2019-06-15
45	ESD Simulator	SCHLODER	SESD 230	604035	2018-06-16	2019-06-15
46	RF POWER AMPLIFIER	OPHIR	5225R	1052	NCR	NCR
47	RF POWER AMPLIFIER	OPHIR	5273F	1019	NCR	NCR
48	Stacked Broadband Log Periodic Antenna	SCHWARZBECK	STLP 9128	9128ES-145	NCR	NCR
49	Stacked Mikrowellen LogPer Antenna	SCHWARZBECK	STLP 9149	9149-482	NCR	NCR
50	Electric field probe	Narda S.TS./PMM	EP601	611WX80208	2018-03-26	2019-03-25
51	Power Meter	Agilent	E4419B	MY45104493	2018-06-16	2019-06-15
52	Power Sensor	Agilent	E9301H	MY41495234	2018-06-16	2019-06-15
53	Power Sensor	Agilent	E4412A	MY41500229	2018-06-16	2019-06-15
54	Sound Level meter	BK Precision	735	73500873100	2018-06-16	2019-06-15
55	Audio Analyzer	R&S	UPV	1146.2003K0	2018-06-16	2019-06-15
56	Mouse Simulation	Bruel & Kjaer	4227	A0304216	2018-06-16	2019-06-15
57	Ear Simulation and supply	Bruel & Kjaer	2669.4182.5935	A0305284	2018-06-16	2019-06-15
58	Acoustical Calibrators	Bruel & Kjaer	4231	A0304215	2018-06-16	2019-06-15
59	Immunity Simulative Generator	EM TEST	UCS500-M4	0101-34	2018-06-16	2019-06-15
60	Simulator	FRANKONIA	CIT-10	A126A1195	2018-06-16	2019-06-15
61	CDN	FRANKONIA	CDN-M2	5100100100	2018-06-16	2019-06-15
62	CDN	FRANKONIA	CDN-M3	0900-11	2018-06-16	2019-06-15
63	Attenuator	FRANKONIA	ATT6	0010222A	2018-06-16	2019-06-15
64	Infuse tongs	EM TEST	EM-Clamp	0513A031201	2018-06-16	2019-06-15
65	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2018-06-16	2019-06-15

Note: All equipment is calibrated through GUANGZHOU LISAI CALIBRATION AND TEST CO.,LTD. NCR --- No calibration requirement.

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42Db	
Uncertainty for Radiation Emission test in 3m chamber	3.54Db	Polarize: V
(30MHz to 1GHz)	4.1Db	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	2.08Db	Polarize: H
(1GHz to 25GHz)	2.56Db	Polarize: V
Uncertainty for radio frequency	0.01ppm	
Uncertainty for conducted RF Power	0.65Db	
Uncertainty for temperature	0.2℃	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

1.10. Description Of Test Modes

There was 3 test Modes. TM1 to TM3 were shown below:

TM1: Operate in wireless charging mode;

TM2 : Operate in USB OUTOUT charging mode;

TM3: Idle mode

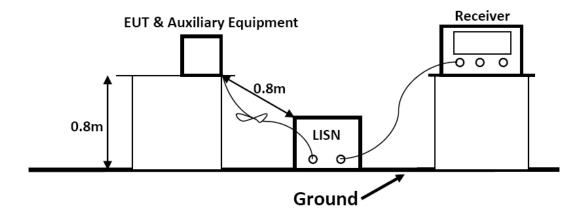
***Note: All test modes were tested, but we only recorded the worst case in this report.

2. SUMMARY OF TEST RESULTS

Rule	Description of Test Items	Result
§7.1	Reference to clause 8.4 of ETSI EN 301 489-1 Conducted Emission (AC mains input/output port)	Compliant
§7.1	Reference to clause 8.3 of ETSI EN 301 489-1 Conducted Emission (DC power input/output port)	N/A*
§7.1	Reference to clause 8.7 of ETSI EN 301 489-1 Conducted Emission (Wired network port)	N/A*
§ 7. 1	Reference to clause 8.2 of ETSI EN 301 489-1 Radiated Emission (Enclosure of ancillary equipment)	Compliant
§ 7.1	Reference to clause 8.5 of ETSI EN 301 489-1 Harmonic current emissions (AC mains input port)	Compliant
§ 7. 1	Reference to clause 8.6 of ETSI EN 301 489-1 Voltage fluctuations and flicker (AC mains input port)	Compliant
§7.2	Reference to clause 9.3 of ETSI EN 301 489-1 Electrostatic discharge (Enclosure port) (EN 61000-4-2)	Compliant
§7.2	Reference to clause 9.2 of ETSI EN 301 489-1 RF electromagnetic field (80MHz to 6000MHz) (Enclosure port) (EN 61000-4-3)	Compliant
§7.2	Reference to clause 9.4 of ETSI EN 301 489-1 Fast transients common mode (signal, wired network and control ports, DC and AC power ports) (EN 61000-4-4)	Compliant
§7.2	Reference to clause 9.8 of ETSI EN 301 489-1 Surges, line to line and line to ground (AC mains power input ports, wired network ports) (EN 61000-4-5)	Compliant
§7.2	Reference to clause 9.5 of ETSI EN 301 489-1 RF common mode 0.15MHz to 80MHz (signal, wired network and control ports, DC and AC power ports) (EN 61000-4-6)	Compliant
§7.2	Reference to clause 9.6 of ETSI EN 301 489-1 Transients and surges in the vehicular environment (ISO 7637-2)	N/A*
§7.2	Reference to clause 9.7 of ETSI EN 301 489-1 Voltage dips and interruptions (AC mains power input ports) (EN 61000-4-11)	Compliant

3. LINE CONDUCTED EMISSION

3.1. Conducted Emission Limit


Relevant Standard(s): ETSI EN 301 489-1 V2.1.1 (2017-02) / EN 55032: 2015 Class B

L	imits for Line Conducted Emis	ssion
Frequency	Limit	(dBµV)
(MHz)	Quasi-peak Level	Average Level
0.15 ~ 0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *
0.50 ~ 5.00	56.0	46.0
5.00 ~ 30.00	60.0	50.0

NOTE1-The lower limit shall apply at the transition frequencies.

NOTE2-The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.2. Test Configuration

The setup of EUT is according with per ETSI EN 301 489-1 measurement procedure. The specification used was with the ETSI EN 301 489-1 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

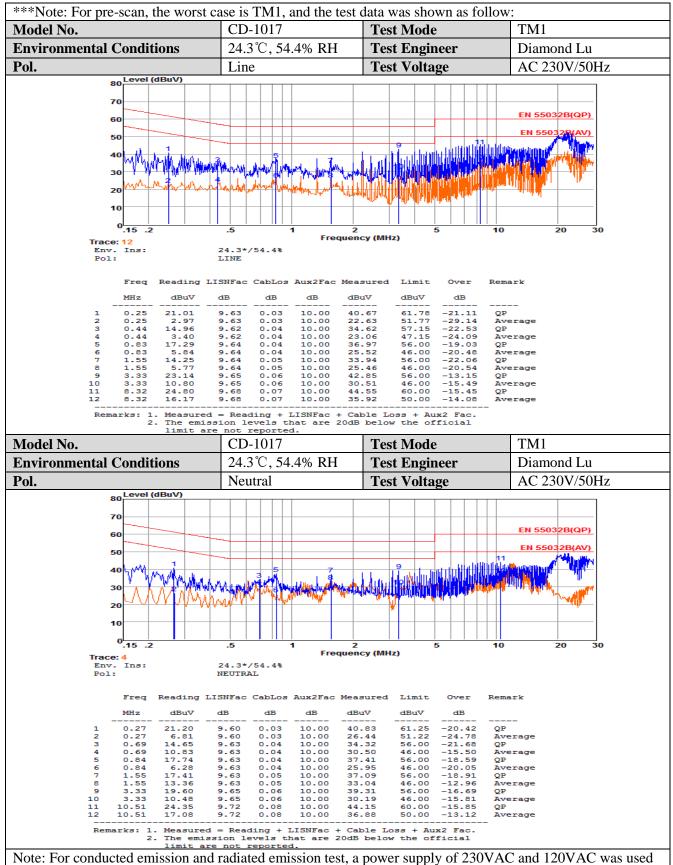
The EUT received DC power from the Adapter which received power through a LISN supplying power of AC 230V/50Hz.

3.3. EMI Test Receiver Setup

During the conducted emission test, the EMI test receiver was set with the following configurations:

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	150KHz ~ 30MHz
(IF)RBW	9kHz

All data was recorded in the Quasi-peak and average detection mode.


3.4. Test Procedure

Power on the EUT, the EUT begins to work. Make sure the EUT operates normally during the test.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

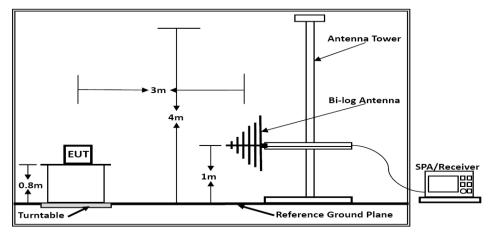
3.5. Test Data

for testing respectively, and only recorded the worst case of 230VAC

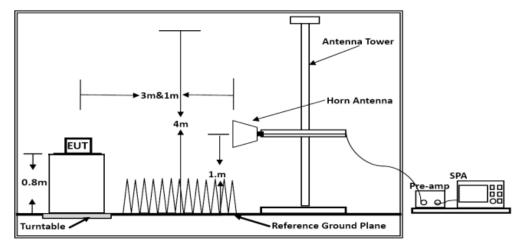
4. RADIATED DISTURBANCE

4.1. Radiated Emission Limit

Relevant Standard(s): ETSI EN 301 489-1 V2.1.1 (2017-02) / EN 55032: 2015 Class B


Limits f	for Radiated Disturbance Below	1GHz
Frequency	Distance	Field Strengths Limit
(MHz)	(Meters)	(dBµV/m)
30 ~ 230	3	40
230 ~ 1000	3	47

^{***}Note:


- (1) The smaller limit shall apply at the combination point between two frequency bands.
- (2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.

	Limits for Radiated Di	sturbance Above 1GHz	Z
Frequency	Distance	Peak Limit	Average Limit
(MHz)	(Meters)	(dBµV/m)	(dBµV/m)
1000 ~ 3000	3	70	50
3000 ~ 6000	3	74	54
***Note: The lower limit	t applies at the transition fr	equency.	

4.2. Test Configuration

Below 1GHz

Above 1GHz

4.3. Test Procedure

1) Sequence of testing 30 MHz to 1 GHz Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre-measurement:

- --- The turntable rotates from 0 °to 315 °using 45 °steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 4 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (±45 °) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with OP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre-measurement with marked maximum final measurements and the limit will be stored.

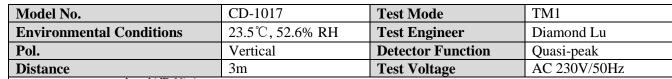
2) Sequence of testing 1 GHz to 6 GHz Setup:

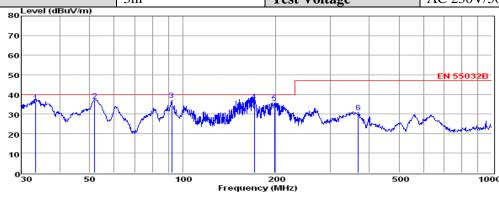
- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Pre-measurement:

- --- The turntable rotates from 0 °to 315 °using 45 °steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 4 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

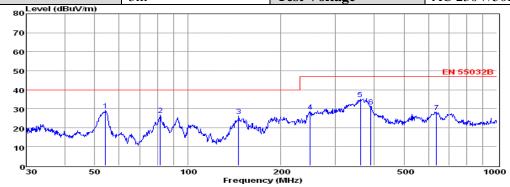

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of pre-measurement the software maximize the peaks by changing turntable position ($\pm 45^{\circ}$) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre-measurement with marked maximum final measurements and the limit will be stored.


Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	30MHz~1000MHz / RBW 100kHz for QP

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	6000 MHz
RBW / VBW	1MHz / 1MHz for Peak, 1 MHz / 10Hz for
NDW / VDW	Average

4.4. Test Data

The worst test mode of the EUT was TM1, and its test data was showed as the follow:


Env./Ins:

23.5℃/52.6% VERTICAL

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dВ	dB/m	dBuV/m	dBuV/m	dВ	
	33.44	23.20	0.37	12.31	35.88	40.00	-4.12	QP
:	51.84	23.20	0.54	13.17	36.91	40.00	-3.09	QP
1	92.14	24.29	0.56	12.30	37.15	40.00	-2.85	QP
Ŀ	170.19	26.84	0.80	8.98	36.62	40.00	-3.38	QP
i	197.89	24.18	0.84	10.57	35.59	40.00	-4.41	QP
5	369.40	15.26	1.22	14.51	30.99	47.00	-16.01	QP

Note: 1. All readings are Quasi-peak values.
2. Measured= Reading + Antenna Factor + Cable Loss
3. The emission that are 20db below the official limit are not reported

Model No.	CD-1017	Test Mode	TM1
Environmental Conditions	23.5°C, 52.6% RH	Test Engineer	Diamond Lu
Pol.	Horizontal	Detector Function	Quasi-peak
Distance	3m	Test Voltage	AC 230V/50Hz

Env./Ins: pol:

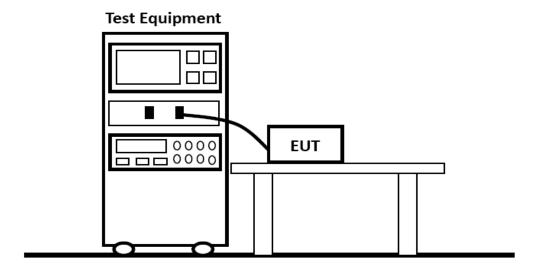
23.5℃/52.6% HOBIZONTAL

Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
MHz	dBuV	dВ	dB/m	dBuV/m	dBuV/m	dВ	
54.26	15.51	0.46	13.05	29.02	40.00	-10.98	QP
81.50	16.94	0.65	9.07	26.66	40.00	-13.34	QP
145.86	17.18	0.77	8.23	26.18	40.00	-13.82	QP
248.55	15.44	1.02	12.07	28.53	47.00	-18.47	QP
361.71	19.51	1.17	14.44	35.12	47.00	-11.88	QP
390.72	15.35	1.17	14.84	31.36	47.00	-15.64	QP
638.37	8.18	1.56	18.59	28.33	47.00	-18.67	OP

Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss 3. The emission that are 20db below the official limit are not reported

نہ
ÿ
ð
ᇤ
₫
BY THE DOC
빞
۲۲
Щ
Ā
₹
ĔΑ
Ä
닒
₹
ō
S
¥
틸
Ö
BLE ALSO. THE ORIGII
SO.
ΞAL
^BL
Ä
3 AV.
WAS
DOCUMENT WAS
闄
ö
<u>ا</u>
ž
Š
里
E
5
MEN
COMEN
E DOCUMENT
THE DOCUMEN
ING THE DOCUMENT
RATING THE DOCUMENT
ENERATING THE DOCUMENT
F GENERATING THE DOCUMENT
E OF GENERATING THE DOCUMENT
TIME OF GENERATING THE DOCUMENT
THE TIME OF GENERATING THE DOCUMENT
AT THE TIME OF GENERATING THE DOCUMENI
:28. AT THE TIME OF GENERATING THE DOCUMENT
2-06-28. AT THE TIME OF GENERATING THE DOCUMENT
2022-06-28. AT THE TIME OF GENERATING THE DOCUMEN
ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMEN
OL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT
J TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMEN
TION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMEN
DACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT
REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMEN
TIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMEN!
DUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT
RODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT
HE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT
H THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT
WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT
ED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT
ACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT
REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT
AS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMEN1
T WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT
IENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMEN
CUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT
DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT
HIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT

Test Mode: TM1 (Above 1GHz)				Tested by: Diamond Lu			
Test Voltage: AC 230V/50Hz			Test Distance: 3m				
Detector Fun	Detector Function : Peak + AV			Test Result	ts: Passed		
Polarization	Frequency (MHz)	Emission Level (dBµV/m)		Limit (dBµV/m)		Margin (dB)	
	1264.56	57.45	32.64	70.00	50.00	-12.55	-17.36
	1857.17	57.63	36.31	70.00	50.00	-12.37	-13.69
Horizontal	2156.23	51.44	32.93	70.00	50.00	-18.56	-17.07
Horizontai	3274.02	50.00	32.13	74.00	54.00	-24.00	-21.87
	4396.57	55.21	37.21	74.00	54.00	-18.79	-16.79
	5727.20	55.32	31.35	74.00	54.00	-18.68	-22.65
	1263.55	56.50	33.42	70.00	50.00	-13.50	-16.58
	1858.44	57.78	37.06	70.00	50.00	-12.22	-12.94
Vertical	2155.65	52.28	33.42	70.00	50.00	-17.72	-16.58
	3275.54	49.33	30.74	74.00	54.00	-24.67	-23.26
	4396.76	55.19	35.70	74.00	54.00	-18.81	-18.30
	5731.46	56.45	31.00	74.00	54.00	-17.55	-23.00


^{1.} Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

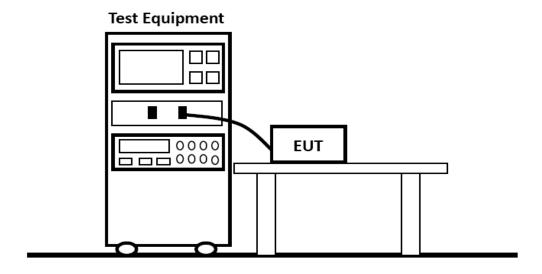
^{2.} Measurements above show only up to 6 maximum emissions noted.

^{3.} Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

5. HARMONIC CURRENT EMISSIONS

5.1. Test Configuration

5.2. Test Standard


According to ETSI EN 301 489-1 V2.1.1 (2017-02) & EN 61000-3-2: 2014

5.3. Test Data

Because power of EUT less than 75W, According standard EN 61000-3-2, Harmonic current unnecessary to test.

6. VOLTAGE FLUCTUATION AND FLICKER

6.1. Test Configuration

6.2. Test Standard

According to ETSI EN 301 489-1 V2.1.1 (2017-02) & EN 61000-3-3: 2013

6.3. Test Data

Reading 1

0.089

Test Model	CD-1017	Test Engineer	Diamond Lu
Environmental Conditions	24.6℃, 53.3% RH	Test Voltage	AC 230V/50Hz

Voltech IEC61000-3	Voltech IEC61000-3 Windows Software 1.14.06RC1 Test Date: 2018 Oct 11 15:46					
Type of Test:	Flickermeter Test - Table					
Power Analyzer:	Voltech PM6000 SN: Channel(s):	200006700523 Firm	ware Version: v1.2	1.07RC2		
	1. SN: 090015502053, 28 Adjus		,	е		
	3. SN:None Adjusted Date:Nor	•				
	5. SN:None Adjusted Date:Nor	ne 6. SN:None Adjusted Date	e:None			
	Shunt(s):					
	1. SN: 091024301916, 4 Adjuste		•			
	SN:None Adjusted Date:Nor SN:None Adjusted Date:Nor	-				
	5. SN:None Adjusted Date:Nor	,	none			
AC Source:	Mains / Manual Source)				
Overall Result:	Notes:					
DACC	Measurement method	- Voltage				
PASS						
	Pst	dc (%)	dmax (%)	d(t) > 3.3%(ms)		
Limit	1.000	3.300	4.000	500		

0.006

0.169

0

7. GENERAL PERFORMANCE CRITERIA FOR IMMUNITY TEST

7.1. Performance criteria for Continuous phenomena applied to Transmitter (CT)

For equipment of type II or type III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence.

Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur.

7.2. Performance criteria for Transient phenomena applied to Transmitter (TT)

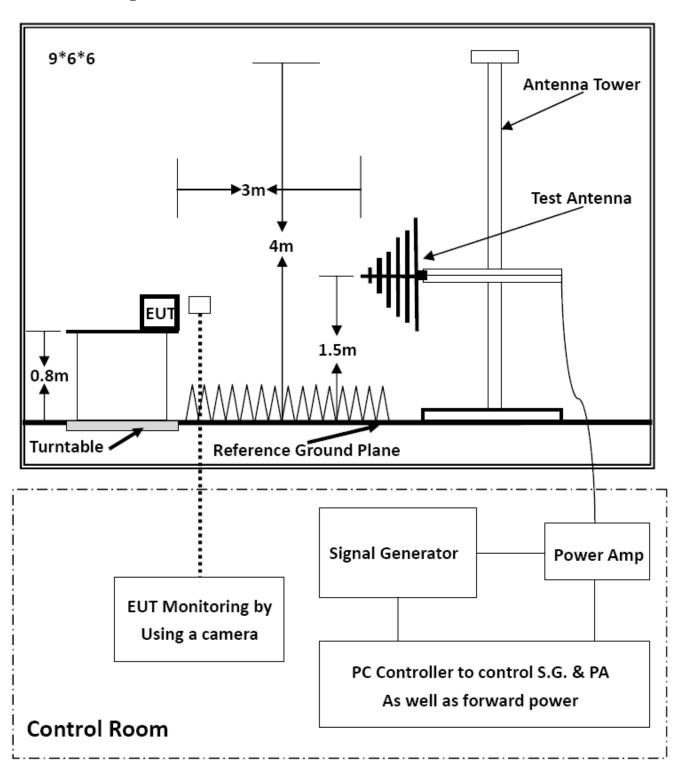
For equipment of type II or type III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transmitter, tests shall be repeated with the EUT in standby mode to ensure that any unintentional transmission does not occur.

7.3. Performance criteria for Continuous phenomena applied to Receiver (CR)

For equipment of type II or III that requires a communication link that is maintained during the test, it shall be verified by appropriate means supplied by the manufacturer that the communication link is maintained during each individual exposure in the test sequence. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.

7.4. Performance criteria for Transient phenomena applied to Receiver (TR)

For equipment of type II or type III that requires a communication link that is maintained during the test, this shall be verified by appropriate means supplied by the manufacturer during each individual exposure in the test sequence. Where the EUT is a transceiver, under no circumstances shall the transmitter operate unintentionally during the test.


THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

Performance criteria for ETSI EN 301 489-3 V2.1.1 (2017-03)

	Device Type 1				
Criteria	During test	After test			
Criteria	Operate as intended	Operate as intended			
	No loss of function	For equipment with primary function type II the			
	For equipment with primary	communication link shall be maintained			
A	function type II the minimum	No loss of function			
	performance shall be 12 dB SINAD	No degradation of performance			
	No unintentional responses	No loss of stored data or user programmable functions			
	May be loss of function (one or	Operate as intended			
	more)	Lost function(s) shall be self-recoverable			
В	No unintentional responses	No degradation of performance			
	140 difficultional responses	No loss of stored data or user programmable functions			
	Device Type 2				
Criteria	During test	After test			
	Operate as intended	Operate as intended			
	No loss of function	For equipment with primary function type II the			
	For equipment with primary	communication link shall be maintained			
A	function type II the minimum	No loss of function			
	performance shall be 6 dB SINAD	No degradation of performance			
	No unintentional responses	No loss of stored data or user programmable functions			
	Manala lana effect diameter	Operate as intended			
В	May be loss of function (one or	Lost function(s) shall be self-recoverable			
D	more)	No degradation of performance			
	No unintentional responses	No loss of stored data or user programmable functions			
	Devid	ce Type 3			
Criteria	During test	After test			
		Operate as intended, for equipment with primary			
	May be loss of function (one or	function type II the communication link may be lost, but			
A and B	more)	shall be recoverable by user			
	No unintentional responses	No degradation of performance			
		Lost functions shall be self-recoverable			

8. RF ELECTROMAGNETIC FIELD (80 MHz - 6000 MHz)

8.1. Test Configuration

8.2. Test Standard

ETSI EN 301 489-1, ETSI EN 301 489-3 / (EN 61000-4-3: 2006+A2: 2010)

Test level 2 at 3V/m.

8.3. Severity Level

Level	Field Strength (V/m)		
1	1		
2	3		
3	10		
X	Special		
Performance Criterion: A			

8.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD camera is used to monitor EUT screen. All the scanning conditions are as follows:

Condition of Test	Remark
Fielded Strength	3 V/m (Severity Level 2)
Radiated Signal	Unmodulated
Scanning Frequency	80-6000MHz
Dwell time of radiated	0.0015 decade/s
Waiting Time	3 Sec.

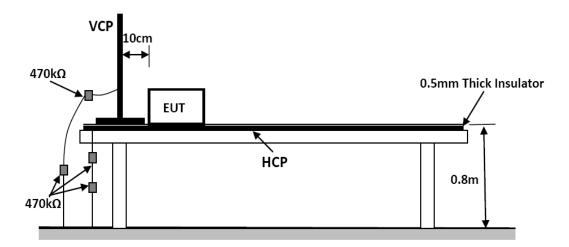
8.5. Test Result

Test Model	CD-1017	Test Engineer	Diamond Lu
Environmental Conditions	23.5℃, 52.6% RH	Test Voltage	AC 230V/50Hz

TM1 Test Result:

EUT Working Mode	Antenna Polarity	Frequency (MHz)	Fielded Strength (V/m)	Observation	Position	Conclusion
Operating Mode	Vertical	80-6000	3	TT, TR	Front, Right, Left, Back	Pass
Operating wode	Horizontal	80-6000	3	TT, TR	Front, Right, Left, Back	Pass
Idle	Vertical	80-6000	3	See Note	Front, Right, Left, Back	Pass
idle	Horizontal	80-6000	3	See Note	Front, Right, Left, Back	Pass

TM2-TM3 Test Result:


EUT Working Mode	Antenna Polarity	Frequency (MHz)	Fielded Strength (V/m)	Observation	Position	Conclusion
Operating Mode	Vertical	80-6000	3	See Note	Front, Right, Left, Back	Pass
Operating Mode	Horizontal	80-6000	3	See Note	Front, Right, Left, Back	Pass
Idlo	Vertical	80-6000	3	See Note	Front, Right, Left, Back	Pass
Idle	Horizontal	80-6000	3	See Note	Front, Right, Left, Back	Pass

Note: The EUT performance complied with performance criteria and there is no any degradation of performance and function.

9. ELECTROSTATIC DISCHARGE

Please refer to ETSI EN 301 489-1 and EN 61000-4-2.

9.1. Test Configuration

EN 61000-4-2 specifies that a tabletop EUT shall be placed on a non-conducting table which is 80 centimeters above a ground reference plane and that floor mounted equipment shall be placed on a insulating support approximately 10 centimeters above a ground plane. During the tests, the EUT is positioned over a ground reference plane in conformance with this requirement.

For tabletop equipment, a 1.5 by 1.0-meter metal sheet (HCP) is placed on the table and connected to the ground plane via a metal strap with two 470 k Ohms resistors in series. The EUT and attached cables are isolated from this metal sheet by 0.5-millimeter thick insulating material. A Vertical Coupling Plane (VCP) grounded on the ground plane through the same configuration as in the HCP is used.

9.2. Test Procedure

ETSI EN 301 489-1 V2.1.1 (2017-02) / EN 61000-4-2: 2009

Test level 3 for Air Discharge at ±8 kV

Test level 2 for Contact Discharge at ±4 kV

9.2.1. Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

9.2.2. Contact Discharge

All the procedure shall be same as Section 9.2.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

9.2.3. Indirect Discharge For Horizontal Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

9.2.4. Indirect Discharge For Vertical Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

9.3. Test Data

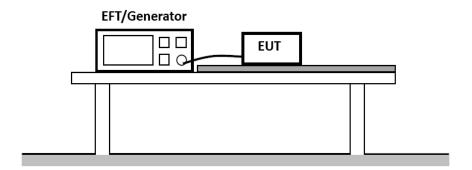
PASS.

Electrostatic Discharge Test Results					
Standard	☐ IEC 61000-4-2 ☑ EN 61000-4-2				
Applicant	SHENZHEN UNIWINS TECHNOLOGY CO.,LTD				
EUT	Wireless charging pad	Temperature	23.8℃		
M/N	CD-1017	Humidity	53.1%		
Criterion	В	Pressure	1021mbar		
Test Mode	TM1-TM3	Test Date	October 11, 2018		
Test Engineer	Diamond Lu				

TEST RESULT OF TM1

Test Voltage	Coupling	Observation	Result (Pass/Fail)
±2KV, ±4kV	Contact Discharge	TT, TR	Pass
±2KV, ±4kV, ±8kV	Air Discharge	TT, TR	Pass
±2KV, ±4kV	Indirect Discharge HCP	TT, TR	Pass
±2KV, ±4kV	Indirect Discharge VCP	TT, TR	Pass

TEST RESULT OF TM2-TM3


Test Voltage	Coupling	Result (Pass/Fail)
±2KV, ±4kV	Contact Discharge	Pass
·		1 488
±2KV, ±4kV, ±8kV	Air Discharge	Pass
±2KV, ±4kV	Indirect Discharge HCP	Pass
±2KV, ±4kV	Indirect Discharge VCP	Pass

Note: The EUT performance complied with performance criteria and there is no any degradation of performance and function.

THE DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT WAS REDACTED WITH THE PROPULATION TOOL ON 2022-06-28.

10. ELECTRICAL FAST TRANSIENT IMMUNITY

10.1. Test Configuration

10.2. Test Standard

ETSI EN 301 489-1 V2.1.1 (2017-02)/ EN61000-4-4: 2012 Test level 2 at 1 kV

Test level 2 at 1 k v			
Test Level			
Open Circuit Output Test Voltage ±10%			
Level	On Power Supply Lines	On I/O (Input/Output) Signal data and control lines	
1	0.5 kV	0.25 kV	
2	1 kV	0.5 kV	
3	2 kV	1 kV	
4	4 kV	2 kV	
X	Special	Special	
Performance Criterion: B			

10.3. Test Procedure

The EUT is put on the table, which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

10.3.1. For input and output AC power ports:

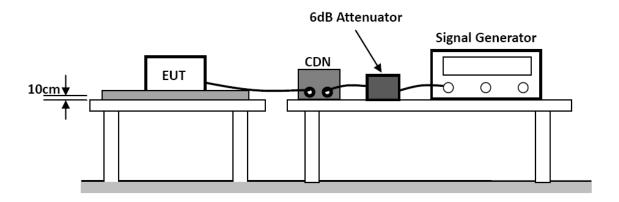
The EUT is connected to the power mains by using a coupling device, which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.

- 10.3.2. For signal lines and control lines ports: No I/O ports. It's unnecessary to test.
- 10.3.3. For DC output line ports: It's unnecessary to test.

10.4. Test Data

PASS.

Please refer to the following page.


Electrical Fast Transient/Burst Test Results			
Standard	☐ IEC 61000-4-4 ☑ EN 61000-4-4		
Applicant	SHENZHEN UNIWINS TECHNOLOGY CO.,LTD		
EUT	Wireless charging pad	Temperature	24.6℃
M/N	CD-1017	Humidity	53.3%
Test Mode	TM1-TM3	Criterion	В
Test Engineer	Diamond Lu	Test Date	October 11, 2018

TEST RESULT OF TM1				
Line	Test Voltage	Polarity	Observation	Result (Pass/Fail)
L	1KV	+/-	TT, TR	Pass
N	1KV	+/-	TT, TR	Pass
L-N	1KV	+/-	TT, TR	Pass

TEST RESULT OF TM2-TM3 Line **Test Voltage Polarity** Result (Pass/Fail) L 1KV +/-Pass N 1KV +/-Pass L-N 1KV +/-Pass

11. RF COMMON MODE

11.1. Test Configuration

11.2. Test Standard

ETSI EN 301 489-1 V2.1.1 (2017-02)/ EN 61000-4-6: 2014

Test level 2 at 3 V (r.m.s.), 0.15 MHz ~ 80 MHz,

Modulation type: AM Modulation depth: 80% Modulation signal: 1 kHz

Test Level		
Level	Voltage Level (r.m.s) (V)	
1	1	
2	3	
3	10	
X	Special	
Performance Criterion: A	•	

11.3. Test Procedure

- 11.3.1. Let the EUT work in test mode and test it.
- 11.3.2. The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50mm (where possible).
- 11.3.3. The disturbance signal described below is injected to EUT through CDN.
- 11.3.4. The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 11.3.5. The frequency range is swept from 150kHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.
- 11.3.6. The rate of sweep shall not exceed 1.5*10-3 decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 11.3.7. Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

11.4. Test Data

PASS.

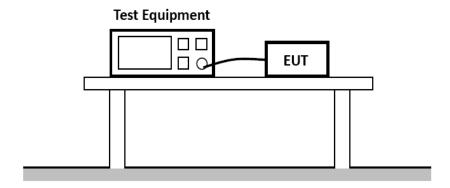
Please refer to the following page.

Injected Currents Susceptibility Test Results			
Standard	☐ IEC 61000-4-6		
Applicant	SHENZHEN UNIWINS TECHNOLOGY CO.,LTD		
EUT	Wireless charging pad	Temperature	24.3℃
M/N	CD-1017	Humidity	54.4%
Test Mode	TM1-TM3	Criterion	A
Test Engineer	Diamond Lu	Test Date	October 11, 2018

TEST RESULT OF TM1				
Frequency Range (MHz)	Injected Position	Strength (Unmodulated)	Observation	Result (Pass/Fail)
0.15 ~ 80	AC Mains	3V	TT, TR	Pass

TEST RESULT OF TM2-TM3 Frequency Range (MHz) O.15 ~ 80 TEST RESULT OF TM2-TM3 Strength (Unmodulated) Result (Pass/Fail) Pass

Remark:


- 1. Modulation Signal:1kHz 80% AM
- 2. Measurement Equipment:
 Simulator: CIT-10 (FRANKONIA)

CDN : ☑CDN-M2 (FRANKONIA) ☐CDN-M3 (FRANKONIA)

THE DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT WAS REDACTED WITH THE PROPULATION TOOL ON 2022-06-28.

12. SURGES, LINE TO LINE AND LINE TO GROUND

12.1. Test Configuration

12.2. Test Standard

ETSI EN 301 489-1 V2.1.1 (2017-02) / EN 61000-4-5: 2014

L-N: Test level 2 at 1 kV

L-PE. N-PE Test Level 3 at 2kV

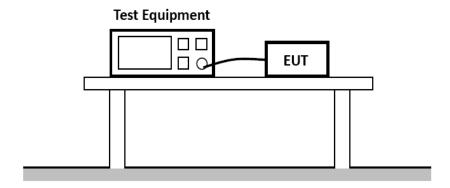
E-1 E, N-1 E Test Level 3 at 2k v			
Test Level			
Open Circuit Output Test Voltage ±10%			
Level On Power Supply Lines On I/O (Input/Output) Signal data and control lines			
1	0.5 kV	0.25 kV	
2	1 kV	0.5 kV	
3	2 kV	1 kV	
4	4 kV	2 kV	
X	Special	Special	
Performance Criterion: B			

12.3. Test Procedure

- 12.3.1. For line to line coupling mode, provide a 0.5 kV 1.2/50us voltage surge (at open-circuit condition).
- 12.3.2. At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 12.3.3. Different phase angles are done individually.
- 12.3.4. Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

12.4. Test Data


Surge Immunity Test Result				
Standard	□ IEC 61000-4-5			
Applicant	SHENZHEN UNIWINS TECHNOLOGY CO.,LTD			
EUT	Wireless charging pad	Temperature	24.6℃	
M/N	CD-1017	Humidity	53.3%	
Test Mode	TM1-TM3	Criterion	A	
Test Engineer	Diamond Lu	October 11, 2018		

TEST RESULT OF TM1						
Location	Polarity	Phase Angle	Number of Pulse	Pulse Voltage (KV)	Observation	Result (Pass/Fail)
L-N	+	0°, 90°, 180°, 270°	5	1.0	TT, TR	Pass
L-IN	-	0°, 90°, 180°, 270°	5	1.0	TT, TR	Pass

TEST RESULT OF TM2-TM3					
Location	Polarity	Phase Angle	Number of Pulse	Pulse Voltage (KV)	Result (Pass/Fail)
L-N	+	0°, 90°, 180°, 270°	5	1.0	Pass
	-	0°, 90°, 180°, 270°	5	1.0	Pass

13. VOLTAGE DIPS/INTERRUPTIONS IMMUNITY TEST

13.1. Test Configuration

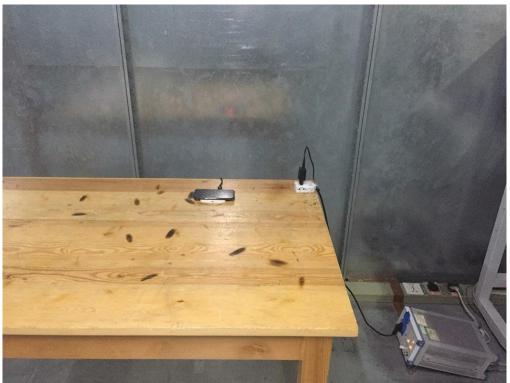
13.2. Test Standard

ETSI EN 301 489-1 V2.1.1 (2017-02)/ EN 61000-4-11: 2004 Test levels and Performance Criterion

Test levels and Ferrormance Criterion				
Test Level				
Voltage Reduction	Voltage Dips	Duration		
$^-$ % $\mathrm{U_T}$	$ m ^{-}U_{T}$	(in Period)		
100	0	0.5		
100	0	1		
30	70	5		
Voltage Reduction	Voltage Dips	Duration		
$^-$ % $\mathrm{U_T}$	$ m ^{-}U_{T}$	(in Period)		
100	0	250		
Performance Criterion: B&C				

13.3. Test Procedure

- 13.3.1. The interruption is introduced at selected phase angles with specified duration.
- 13.3.2. Record any degradation of performance.


13.4. Test Data

Voltage Dips And Interruptions Test Results				
Standard	□ IEC 61000-4-11 □ EN 61000-4-11			
Applicant	SHENZHEN UNIWINS TECHNOLOGY CO.,LTD			
EUT	Wireless charging pad	Temperature	24.6℃	
M/N	CD-1017	Humidity	53.3%	
Test Mode	TM1-TM3	Criterion	A	
Test Engineer	Diamond Lu	Test Date	October 11, 2018	

TEST RESULT OF TM1					
Test Level % U _T	Voltage Dips & Short Interruptions % U _T	Duration (in periods)	Observation	Result (Pass/Fail)	
0	100	0.5P	TT, TR	Pass	
0	100	1P	TT, TR	Pass	
70	30	25P	TT, TR	Pass	
0	100	250P	TT, TR	Pass	

TEST RESULT OF TM2-TM3				
Test Level % U _T	Voltage Dips & Short Interruptions % U _T	Duration (in periods)	Result (Pass/Fail)	
0	100	0.5P	Pass	
0	100	1P	Pass	
70	30	25P	Pass	
0	100	250P	Pass	

14. PHOTOGRAPHS OF TEST SETUP

Power Line Conducted Emission

Radiated Emission Below 1 GHz

Radiated Emission Above 1 GHz

Voltage Fluctuations and Flicker

Electrostatic Discharge

RF Electromagnetic Field (80MHz to 6 000MHz)

Fast Transients Common Mode

RF Common Mode (0.15 MHz to 80MHz)

Surges

Voltage Dips and Interruptions

THIS DOCUMENT WAS REDACTED WITH THE PRODUCTIP REDACTION TOOL ON 2022-06-28. AT THE TIME OF GENERATING THE DOCUMENT THE ORIGINAL WAS AVAILABLE ALSO. THE ORIGINAL CAN ONLY BE MADE AVAILABLE BY THE DOCUMENT OWNER.

15. PHOTOGRAPHS OF THE EUT

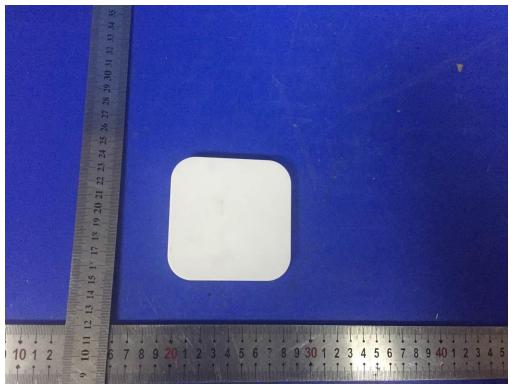
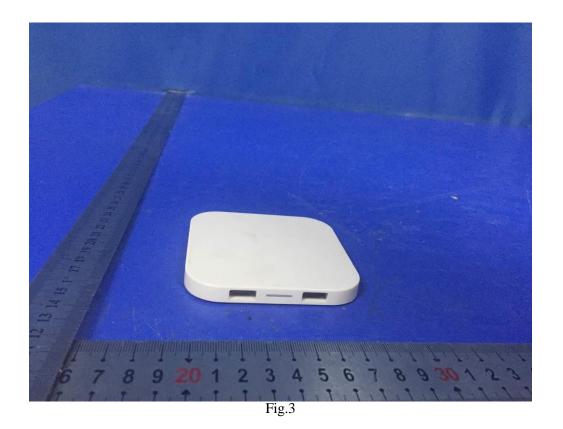



Fig.1

Fig.2

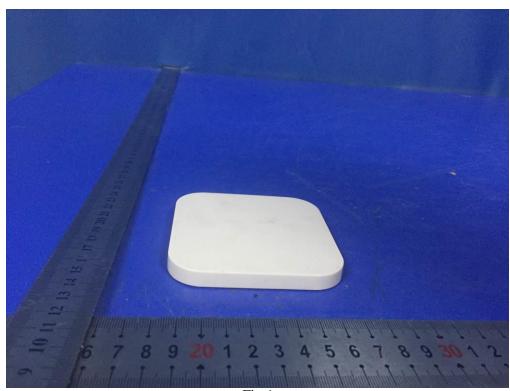


Fig.4

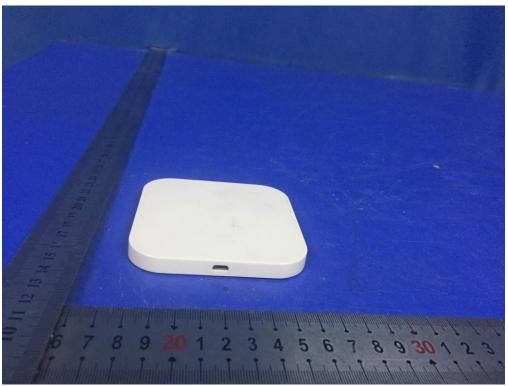


Fig.5

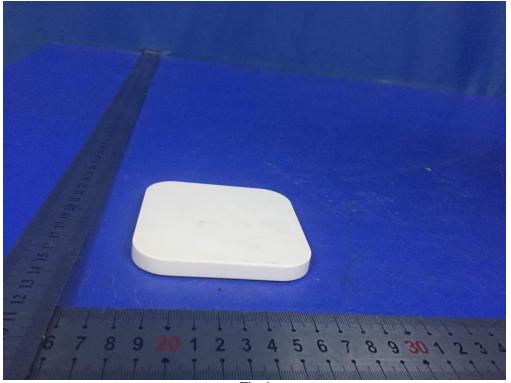


Fig.6

Fig.7

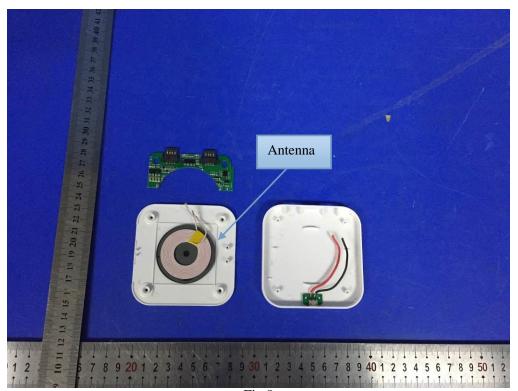


Fig.8

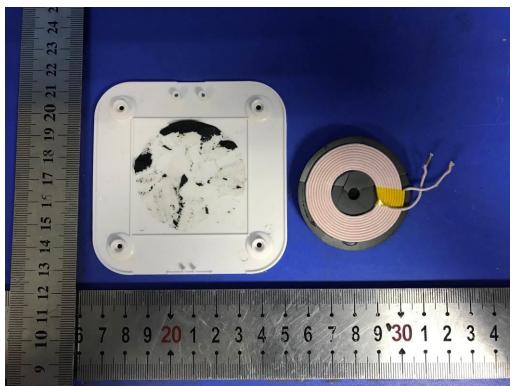


Fig.9

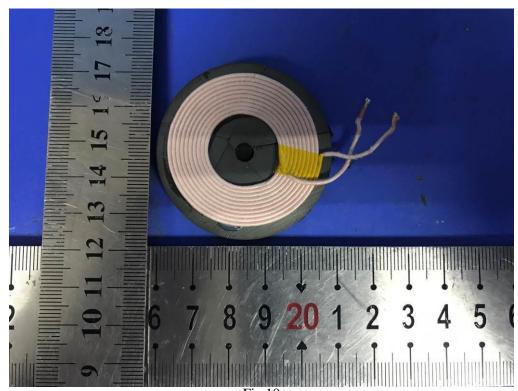


Fig.10

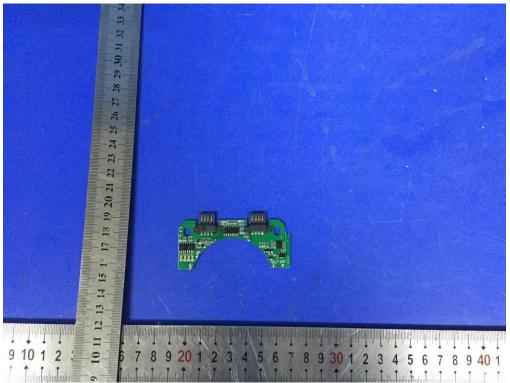


Fig.11

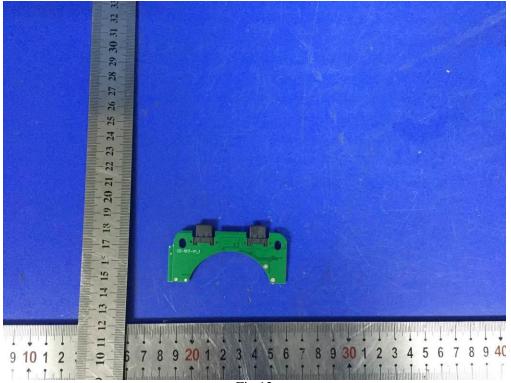


Fig.12

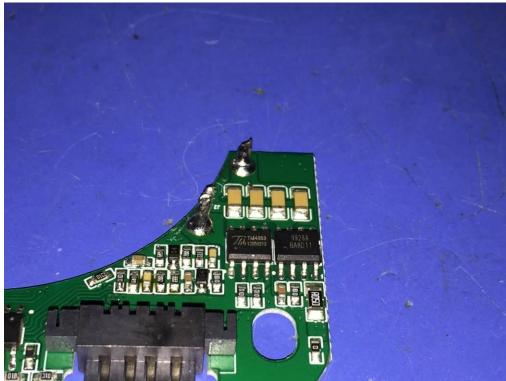


Fig.13

-----THE END OF REPORT-----